Can Federated Models Be Rectified Through Learning Negative Gradients?
Conference Proceeding
Tahir, A., Tan, Z., & Babaagba, K. O. (2024)
Can Federated Models Be Rectified Through Learning Negative Gradients?. In Big Data Technologies and Applications (18-32). https://doi.org/10.1007/978-3-031-52265-9_2
Federated Learning (FL) is a method to train machine learning (ML) models in a decentralised manner, while preserving the privacy of data from multiple clients. However, FL is...
A Generative Neural Network for Improving Metamorphic Malware Detection in IoT Mobile Devices
Book Chapter
Turnbull, L., Tan, Z., & Babaagba, K. O. (2024)
A Generative Neural Network for Improving Metamorphic Malware Detection in IoT Mobile Devices. In A. Ismail Awad, A. Ahmad, K. Raymond Choo, & S. Hakak (Eds.), Internet of Things Security and Privacy: Practical and Management Perspectives (24-53). Boca Raton: CRC Press. https://doi.org/10.1201/9781003199410-2
There has been an upsurge in malicious attacks in recent years, impacting computer systems and networks. More and more novel malware families aimed at information assets were ...
A Generative Neural Network for Enhancing Android Metamorphic Malware Detection based on Behaviour Profiling
Conference Proceeding
Turnbull, L., Tan, Z., & Babaagba, K. (2022)
A Generative Neural Network for Enhancing Android Metamorphic Malware Detection based on Behaviour Profiling. In 2022 IEEE Conference on Dependable and Secure Computing (DSC). https://doi.org/10.1109/DSC54232.2022.9888906
Malicious software trends show a persistent yearly increase in volume and cost impact. More than 350,000 new malicious or unwanted programs that target various technologies we...
A Generative Adversarial Network Based Approach to Malware Generation Based on Behavioural Graphs
Conference Proceeding
McLaren, R. A., Babaagba, K., & Tan, Z. (in press)
A Generative Adversarial Network Based Approach to Malware Generation Based on Behavioural Graphs. In The 8th International Conference on machine Learning, Optimization and Data science - LOD 2022
As the field of malware detection continues to grow, a shift in focus is occurring from feature vectors and other common, but easily obfuscated elements to a semantics based a...
Toward Machine Intelligence that Learns to Fingerprint Polymorphic Worms in IoT
Journal Article
Wang, F., Yang, S., Wang, C., Li, Q., Babaagba, K., & Tan, Z. (2022)
Toward Machine Intelligence that Learns to Fingerprint Polymorphic Worms in IoT. International Journal of Intelligent Systems, 37(10), 7058-7078. https://doi.org/10.1002/int.22871
Internet of Things (IoT) is fast growing. Non-PC devices under the umbrella of IoT have been increasingly applied in various fields and will soon account for a significant sha...
Improving Classification of Metamorphic Malware by Augmenting Training Data with a Diverse Set of Evolved Mutant Samples
Conference Proceeding
Babaagba, K., Tan, Z., & Hart, E. (2020)
Improving Classification of Metamorphic Malware by Augmenting Training Data with a Diverse Set of Evolved Mutant Samples. https://doi.org/10.1109/CEC48606.2020.9185668
Detecting metamorphic malware provides a challenge to machine-learning models as trained models might not generalise to future mutant variants of the malware. To address this,...
Automatic Generation of Adversarial Metamorphic Malware Using MAP-Elites
Conference Proceeding
Babaagba, K. O., Tan, Z., & Hart, E. (2020)
Automatic Generation of Adversarial Metamorphic Malware Using MAP-Elites. In Applications of Evolutionary Computation. EvoApplications 2020. , (117-132). https://doi.org/10.1007/978-3-030-43722-0_8
In the field of metamorphic malware detection, training a detection model with malware samples that reflect potential mutants of the malware is crucial in developing a model r...
Nowhere Metamorphic Malware Can Hide - A Biological Evolution Inspired Detection Scheme
Conference Proceeding
Babaagba, K. O., Tan, Z., & Hart, E. (2019)
Nowhere Metamorphic Malware Can Hide - A Biological Evolution Inspired Detection Scheme. In Dependability in Sensor, Cloud, and Big Data Systems and Applications. , (369-382). https://doi.org/10.1007/978-981-15-1304-6_29
The ability to detect metamorphic malware has generated significant research interest over recent years, particularly given its proliferation on mobile devices. Such malware i...