Distributed Event-triggered Bipartite Consensus for Multi-agent Systems Against Injection Attacks
Journal Article
Zhao, H., Shan, J., Peng, L., & Yu, H. (in press)
Distributed Event-triggered Bipartite Consensus for Multi-agent Systems Against Injection Attacks. IEEE Transactions on Industrial Informatics, https://doi.org/10.1109/tii.2022.3157595
This paper studies fully distributed data-driven problems for nonlinear discrete-time multi-agent systems (MASs) with fixed and switching topologies preventing injection attac...
Learning-based Robust Bipartite Consensus Control for a Class of Multiagent Systems
Journal Article
Zhao, H., Shan, J., Peng, L., & Yu, H. (in press)
Learning-based Robust Bipartite Consensus Control for a Class of Multiagent Systems. IEEE Transactions on Industrial Electronics, https://doi.org/10.1109/tie.2022.3174275
This paper studies the robust bipartite consensus problems for heterogeneous nonlinear nonaffine discrete-time multi-agent systems (MASs) with fixed and switching topologies a...
Event-Triggered Distributed Data-Driven Iterative Learning Bipartite Formation Control for Unknown Nonlinear Multiagent Systems
Journal Article
Zhao, H., Yu, H., & Peng, L. (2024)
Event-Triggered Distributed Data-Driven Iterative Learning Bipartite Formation Control for Unknown Nonlinear Multiagent Systems. IEEE Transactions on Neural Networks and Learning Systems, 35(1), 417-427. https://doi.org/10.1109/tnnls.2022.3174885
In this study, we investigate the event-triggering time-varying trajectory bipartite formation tracking problem for a class of unknown nonaffine nonlinear discrete-time multia...
Decentralized dynamic understanding of hidden relations in complex networks
Journal Article
Mocanu, D. C., Exarchakos, G., & Liotta, A. (2018)
Decentralized dynamic understanding of hidden relations in complex networks. Scientific Reports, 8(1), https://doi.org/10.1038/s41598-018-19356-4
Almost all the natural or human made systems can be understood and controlled using complex networks. This is a difficult problem due to the very large number of elements in s...
A topological insight into restricted Boltzmann machines
Journal Article
Mocanu, D. C., Mocanu, E., Nguyen, P. H., Gibescu, M., & Liotta, A. (2016)
A topological insight into restricted Boltzmann machines. Machine Learning, 104(2-3), 243-270. https://doi.org/10.1007/s10994-016-5570-z
Restricted Boltzmann Machines (RBMs) and models derived from them have been successfully used as basic building blocks in deep artificial neural networks for automatic feature...
Lightweight Reinforcement Learning for Energy Efficient Communications in Wireless Sensor Networks
Journal Article
Savaglio, C., Pace, P., Aloi, G., Liotta, A., & Fortino, G. (2019)
Lightweight Reinforcement Learning for Energy Efficient Communications in Wireless Sensor Networks. IEEE Access, 7, 29355-29364. https://doi.org/10.1109/access.2019.2902371
High-density communications in wireless sensor networks (WSNs) demand for new approaches to meet stringent energy and spectrum requirements. We turn to reinforcement learning,...
Resilience of Video Streaming Services to Network Impairments
Journal Article
Torres Vega, M., Perra, C., & Liotta, A. (2018)
Resilience of Video Streaming Services to Network Impairments. IEEE Transactions on Broadcasting, 64(2), 220-234. https://doi.org/10.1109/tbc.2017.2781125
When dealing with networks, performance management through conventional quality of service (QoS)-based methods becomes difficult and is often ineffective. In fact, quality eme...
An Edge-Based Architecture to Support Efficient Applications for Healthcare Industry 4.0
Journal Article
Pace, P., Aloi, G., Gravina, R., Caliciuri, G., Fortino, G., & Liotta, A. (2019)
An Edge-Based Architecture to Support Efficient Applications for Healthcare Industry 4.0. IEEE Transactions on Industrial Informatics, 15(1), 481-489. https://doi.org/10.1109/tii.2018.2843169
Edge computing paradigm has attracted many interests in the last few years as a valid alternative to the standard cloud-based approaches to reduce the interaction timing and t...
Interference graphs to monitor and control schedules in low-power WPAN
Journal Article
van der Lee, T., Liotta, A., & Exarchakos, G. (2019)
Interference graphs to monitor and control schedules in low-power WPAN. Future Generation Computer Systems, 93, 111-120. https://doi.org/10.1016/j.future.2018.10.014
Highlights
• This study presents the complete and slotted interference graph model.
• The service uses the complete interference graph to evaluate the network.
• Slotted int...
An AI approach to Collecting and Analyzing Human Interactions with Urban Environments
Journal Article
Ferrara, E., Fragale, L., Fortino, G., Song, W., Perra, C., di Mauro, M., & Liotta, A. (2019)
An AI approach to Collecting and Analyzing Human Interactions with Urban Environments. IEEE Access, 7, 141476-141486. https://doi.org/10.1109/access.2019.2943845
Thanks to advances in Internet of Things and crowd-sensing, it is possible to collect vast amounts of urban data, to better understand how citizens interact with cities and, i...