

D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 50–60, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Multiple Viewed Interrelated Ontology Model for
Holistic Component Specification and Retrieval

Chengpu Li, Xiaodong Liu, and Jessie Kennedy

School of Computing, Edinburgh Napier University, Edinburgh, UK
{c.li,x.liu,j.kennedy}@napier.ac.uk

Abstract. Despite the success that Component-Based Development has
achieved so far, component mismatch remains as a major hurdle for wider and
smoother component reuse due to the lack of effective and automated ap-
proaches to component specification and retrieval. This paper presents a novel
ontology-based approach to solve the above problem via holistic, semantic-
based and adaptation-aware component specification and retrieval. The Multi-
ple-Viewed and Interrelated Component Specification ontology model
(MVICS) provides an ontology based architecture to specify components in a
spectrum of perspectives. A semantic-based component retrieval method is then
developed and the result of retrieval is presented to CBD engineers in a com-
prehensive component matching profile. Uniquely, the effect of possible com-
ponent adaptation is included in the MVICS model and associated component
specification and retrieval, which enables a more systematic and holistic view
in component specification and selection.

Keywords: component repository, component retrieval, ontology-based com-
ponent specification, component reuse, adaptation assets, result profile.

1 Introduction

Component-Based Development (CBD) is an approach to developing a software sys-
tem by assembling and composing already built software components. Numerous
advantages of CBD have been identified [3][7][12]. However, at present CBD still
fails to reach its full potential due to a few unsolved major hurdles, one of which is
the lack of effective and automated methods for holistically and semantically specify-
ing and retrieving components that precisely match users’ requirements [8].

The above problem is basically caused by the lack of competent semantic-based
component specification/repository and retrieval technologies. Existing approaches
failed to specify components at a systematic and complete spectrum of perspectives
and utilize such specification in retrieval. Although a few approaches started to use
domain model and ontology in component retrieval process, to date it is clear that the
ontology in these approaches has too simple and monolithic structure and few rela-
tionships to deal with the specification and retrieval of modern components
[14]15][15]. Moreover and as part of the consequence, these approaches also failed to
rank the found components with accurate relevance rating and clear unsatisfied
discrepancy to reuse requirements, all of which provide critical guidelines for user’s

 A Multiple Viewed Interrelated Ontology Model 51

decision on component selection and the subsequent component adaptation and
integration.

In this paper, a novel ontology-based approach is proposed to achieve holistic and
semantic-based component specification and then automatic and precise component
retrieval. As a foundation of the approach, a Multiple-Viewed and Interrelated Com-
ponent Specification ontology model (MVICS) for component specification and
repository is first developed. The MVICS model provides an ontology based architec-
ture to specify components in a spectrum of perspectives, it accommodates domain
knowledge of CBSE and application domains, and supports ontology evolution to
reflect the continuous developments in CBD and components. A semantic-based com-
ponent retrieval method is then developed based on MVICS model. The results of
retrieval include not only the matching components but also accurate relevance rating
and unsatisfied discrepancy, which are presented to CBD engineers in a comprehen-
sive component matching profile. Another unique feature of the proposed approach is
that the effect of possible component adaptation is included in the MVICS model and
associated component specification and retrieval, which enables a more systematic
and holistic view in component specification and selection. A prototype tool with an
example component repository is built to verify and automate the approach. Extensive
user feedbacks have been received based on case studies, which show the approach
and tool is effective for the problem.

The reminder of the paper is organized as follows: Section 2 discusses related work
with critical analysis. Section 3 introduces the Multiple-Viewed and Interrelated
Component Specification ontology model. Section 4 describes the MVICS based
holistic component retrieval. Section 5 describes the resultant prototype tool and a
case study. Section 6 discusses the results of an initial evaluation of the system from
practical use. Finally, section 7 presents the conclusion and future work.

2 Related Work

Existing component description and retrieval approaches can be classified into two
types: traditional and ontology-based. The traditional approaches include keyword
searching [8], faceted classification [10][13], signature matching [17] and behavioral
matching [5]18]. Traditional approaches are not efficient, and suffer from lower recall
and precision. Recall is a measure of the completeness of components matching,
which can be defined as the proportion of the number of relevant found components
to the number of all relevant components in the repository. Precision is a measure of
the accuracy of component matching, which can be defined as the ratio of the number
of retrieved relevant components to the number of the all retrieved components [13].
The traditional approaches are rather limited in accommodating semantics of user
queries and domain knowledge. To solve this problem, ontology is thus introduced to
help understand the semantics of components. The typical work include Pahl [11],
Sugumaran [14], Liu [8], Yao [15], Yen [4][15].

To summarize, although ontology-based technologies have been used in compo-
nent specification and retrieval, existing approaches have the following limitations: i)
ontology in existing approaches has too simple and/or monolithic architecture and few
relationships and consequently incapable for a holistic specification of components, in

52 C. Li, X. Liu, and J. Kennedy

particular large and complex ones; ii) the gauge of relevance in component retrieval is
too simple, inaccurate and only based on incomplete factors; iii) the evolution of the
component specification ontology is not considered; iv) the impact of component
adaptation is not included as an integral part of component specification and retrieval.

3 Multiple-Viewed Interrelated Component Specification
Ontology Model (MVICS)

A holistic ontology model of component specification will provide the foundation for
effective semantic reasoning in the component retrieval and improve substantially the
precision of component retrieval. The MVICS ontology model has a pyramid archi-
tecture, which contains four facets: function model, intrinsic model, context model and
meta-relationship model, as shown in Figure 1. Each of the four models specifies one
perspective of a component and as a whole they construct a complete spectrum of
semantic-based component specification. All the four models are ontology-based, and
are extracted from the analysis of CBSE knowledge and have extension slots for spe-
cific application domains.

Fig. 1. Multiple-Viewed and Interrelated Component Specification Ontology Model

3.1 Intrinsic Model

The intrinsic model specifies the information of a component which is essential but
irrelevant with functionality and quality features of the component, e.g. its name,
type, and applicable software engineering phases. In the proposed approach, such
information is defined as “intrinsic information” of the component. A taxonomy of
the intrinsic information is developed, which includes attributes such as component
name, component vender, component price, component version, component type.
These attributes are then further modeled in levels of sub-attributes. The intrinsic
attributes are finally modeled as classes in the intrinsic ontology model. Among these
classes, two types of relationships are used to show the links between the classes in
different layers. isA relationship is used to describe super- and sub-class links between
component types. isAttributeof defines the value set of an attribute of a class in the

 A Multiple Viewed Interrelated Ontology Model 53

ontology model, e.g., component vender class is linked with a set of venders under the
“isVenderof” relationship.

3.2 Function Model

The function model specifies the functionality and quality of service of components.
Functions are performed by components which represent fundamental characteristics
of software, and a component provides specific functionality or carries out a specific
task in a particular business domain. As an ontological model, the top level classes
include function type, component domain and QoS. Due to the classes overlap be-
tween different domains, the subclasses of the function type are defined in detail and
are classified without any overlap, such as data conversion, data entry, data valida-
tion and so forth. The way to link the classes is the same as intrinsic model. isAttrib-
uteof is used to connect classes which are used to describe a sort of component
attribute such as component function and component domain. Some of these classes
link to instances directly, but some of them have large tree type architecture of sub-
class, sub subclass and so forth. In this sub model, isA is used to link the classes and
its subclass.

3.3 Context Model

The context model is used to represent the reuse context information of the compo-
nents, including but not limited to the application environment, hardware and soft-
ware platform, required resources and possible dependency with other components.
The top level classes consist of operating system, component container, hardware
requirement and software requirement. The context model is built in the same way as
above two models, i.e., using isA to build ontology hierarchies of class operating
system and class component container, and using isAttributeof to specify the value set
of the attributes of the classes of hardware requirement and software requirement.

3.4 Meta-relationship Model

Meta-relationship model provides a semantic description of the relationships among
the classes in different facets (sub-models) of MVICS. Four types of relationships are
identified, namely Matching Propagation Relationship, Conditional Matching Propa-
gation Relationship, Matching Negation Relationship and Supersedure Relationship.
Let’s define a relationship as A →B, where A and B are classes in different facets of
the MVCIS model. The above four relationships are then defined as follows:

Matching Propagation Relationship

A
Pro⎯⎯→B, which reads as the matching propagates from A to B. It means that if A

satisfies the requirement of a component search then B and all its subclasses will
satisfy the requirement as well. In component retrieval, such a relationship will enable
all the components under class B and its subclasses to be part of the result components
for a user query that is matched by class A. The impact on the search path of this rela-
tionship is given in part a) of Figure 2. When the search engine identifies class A as a
match with the user search keyword K1, it will continue to search for result compo-
nents in the subclasses of A, and at the same time also identify class B as a match. It

54 C. Li, X. Liu, and J. Kennedy

Fig. 2. The impact on search path: a) Matching Propagation Relationship; b) Conditional
Matching Propagation Relationship; and c) Supersedure Relationship

would not continue the search in subclasses of B, because all the subclasses of B are
deemed as matching.

Conditional Matching Propagation Relationship
A PrC o−⎯⎯⎯→B (attri=V), which reads as the matching propagates from A to B on the
condition that value of attribute attri is V. In MVICS, A PrC o−⎯⎯⎯→B (attri=V) means that
if A satisfies the requirement of a component search then B and its subclasses may
satisfy the requirement if their attribute attri has value V. In component retrieval, the
relationship enables that the components under class B are part of the result compo-
nents for a user query that is matched by class A, if their attri has value V. This rela-
tionship will impact on the search path as follows: when the search engine identifies
class A as a match with a user search keyword K1, it will continue to search for result
components in the subclasses of A, and at the same time search B and its subclasses
on the condition of attri=V, as shown in b) of Figure 2.

Matching Negation Relationship
A Neg⎯⎯→B, which reads as the matching with A implies not matching with B. In
MVICS, this relationship means that if a result component (C1) is obtained by a key-
word matching with class A, then C1 is not the result component obtained by another
keyword matching with class B. This relationship deals with problems caused by the
incompatible requirements in a user query. When user input several keywords, class A
and class B, which are matched with two different keywords respectively, may have
Matching Negation Relationship, i.e., a result component can not belong to both
classes simultaneously. To tackle this problem, the user query can be treated as two
groups of keywords. One group consists of the keyword matched with class A, the
other group consists of the keyword matched with class B.

 A Multiple Viewed Interrelated Ontology Model 55

Supersedure Relationship
A Sup⎯⎯→B reads as the matching of A is superseded by that of B. In MVICS, Superse-
dure Relationship means that if the content of class B has higher priority to the con-
tent of class A, then the result components obtained by matching A will be replaced by
the result components obtained by matching B. This relationship provides the follow-
ing impact on the search path, as shown in c) of Figure 2: when the search engine
identifies A as a match with a user search keyword K1, it will stop searching in the
subclasses of A, but turn to search from B and its subclasses.

All the above four sub component specification ontology models are defined in
OWL. These OWL documents can be seen as the paths that connect user queries and
result components.

4 Holistic and Precise Component Retrieval

4.1 Class Weight Calculation Method

Weight of Class (Wc) is defined as the foundation for calculating the precision of
result components. In each sub-model of MVICS, every class is given a weight to
calculate the relevance of each search result. The rules of weight assignment are: i) In
one facet, the lower a layer is, the heavier weight its classes have; ii) In different fac-
ets, classes at the same depth in the function model are heavier than those in the in-
trinsic model and the context model. The weight assignment rules are formally de-
fined as follows:

 Wc= (1+x)n (1)

where n is the level of the layer in which the class locates, x = 0.5 if the class belongs
to the function model, x = 0.3 if the class belongs to the intrinsic model, x = 0.2 if the
class belongs to the context model. The weight of a search path (Wp) is the sum of
the weight of the classes included in it.

4.2 Retrieval Algorithm

Based on MVICS, a search algorithm was developed. This algorithm accepts compos-
ite search conditions with multiple keywords linked with logic connectors. It recog-
nizes the keywords with ‘and’ as a group of requirements, which are then searched
together. Those keywords linked with ‘or’ are considered as two different search
requirements, which are then searched one after the other. To correspond with the
MVICS model in which component specifications are classified into three aspects, the
keywords of a user query are also divided into three groups: Function Keywords
(FK), Intrinsic Keywords (IK), and Context Keywords (CK).

The search engine will then search the three groups of keywords in the MVICS
OWL documents one by one, even though the value of keywords in any group may be
‘Null’. Meanwhile, it will record the search path of every keyword from the result
class to top class and then calculate the path weight by summing up every class
weight in this path. The search engine will record the components that link to the
result class.

56 C. Li, X. Liu, and J. Kennedy

4.3 Precision Calculation Method

After retrieval, a set of records is obtained for each keyword, which includes the re-
sult component name, the search path and its weight. The match precision of a result
component (Pc) is calculated with the following unified formula:

 1 1 1

1 11

0.5 0.3 0.2

a b d

r r r
r r r

i j n

t tt
t tt

WpFK WpIK WpCK
Pc

WpFK WpCKWpIK

= = =

= ==

= × + × + ×
∑ ∑ ∑

∑ ∑∑
 (2)

The numerators in the formula represent the path weight of the result components that
partially match with the keywords in each facet, and the denominator represents the
path weight of those perfectly matched.

4.4 Adaptive Component Matching

Component adaptation is a popular means to alter the functionality and quality features
of selected components [1][2]. The proposed approach accommodates the impact of
adaptation in the specification and selection of matching components. This unique fea-
ture will allow a more systematic and holistic view in component specification and
selection. We call those components whose function and QoS may vary via the applica-
tion of adaptation assets “adaptive components”. In MVICS, the adaptive components
are linked to a class via an adaptation method or assets if the component becomes rele-
vant to that class after adaptation with that method or asset. These adaptation methods
and assets are defined as classes or instances in MVICS. The retrieval path is then re-
corded as an adaptive path, in contrast to the direct path, i.e. without adaptation.

The specification of adaptive components in MVICS and the retrieval algorithm
take into account the adaptation effects, the adaptation methods/assets, and the effort
associated with the adaptation.

4.5 Search Result Profile

In contrast to most existing approaches, which present to the user the name and preci-
sion of the result component, our approach provides a holistic profile of the result
component to help the user make the best decision in component selection.

The profile shows the matching result in each sub ontology model and the corre-
sponding adaptation information. The profile consists of: i) the result component
name; ii) the overall precision of the component match, including the precision with
component adaptation, and the precision without adaptation; iii) the match results in
sub models: function model, intrinsic model, and context model; iv) the associated
adaptation method or asset and its incurred effort.

5 The Prototype Tool and Case Study

A prototype tool with an example component repository is built to verify and auto-
mate the approach. In this tool, the MVICS ontology is implemented in OWL. The
function, intrinsic and context sub-models are implemented in three different OWL
files. The relationships in the meta-relationship model are implemented as links be-
tween classes in the above OWL files.

 A Multiple Viewed Interrelated Ontology Model 57

The tool has a simple user interface (Figure 3 a)), where the user can fill the query
into text area, and the keywords of the user query are classified by different facets of
MVCIS in background process of the tool. The search engine will search the OWL
documents first and then connect to the components. The search result is shown in the
component match profile which we mentioned before. Furthermore, this tool also
provides SQL database search by filling component names directly or clicking the
component names in the match profile.

The tool and approach have been applied to a case study. As an example from the
case study, a user wants to search for a component with the following requirements:
Function: File Transfer and Encryption
Component Type: .NET Class, and WPF
Component Platform: Window XP and Window Vista
Component Container: Microsoft Visual Basic 2008, IBM VisualAge, and Oracle

JDeveloper
The search engine searched the keywords one by one in function, intrinsic and context
sub-model of MVICS. In the same time, the relationships between the sub-models add
more semantics, e.g., the class IBM VisualAge in the Context model has a Matching
Propagation Relationship with Java Class and C++ Class, which are subclasses of
Component Type in the intrinsic model. This implies that components which run on
IBM VisualAge should have a component type of Java or C++. This indicates that the
result component obtained while the user query is matched. This indicates that the
result component obtained while the user query is matched class Java class or C++
class are also the result components when the user search keyword is IBM VisualAge.

The names of the result components and their precisions are displayed in the
right pane of the interface, as shown in a) of Figure 3. When a result component is
highlighted, its search result profile will pop up, as shown in b) of Figure 3. The upper
part of the profile illustrates the result component name and the overall precision of
the component search. The first and the second number indicate the precision
after the component adaptation, more than one adaptation path (APi) is possible.

Fig. 3. a) The UI of the MVICS prototype tool b) The Result Component Profile

58 C. Li, X. Liu, and J. Kennedy

The third number (0.45) indicates the original match precision. The three output areas
in the middle indicate the match results in Function, Intrinsic and Context model. The
text area at the bottom of the profile shows the adaptation method(s) or asset(s) used
in the component search and their efforts to apply. By clicking the component name
in the profile, the complete specification of the component will be presented.

6 Validation

To test the validity of the approach, a project website was built. The prototype tool
was transformed to a web application and published on the site. 300 components
(acutely component specifications) were selected from several component sale web-
sites, e.g. Componentsources, Componentplanet and Allfreeware with possible adap-
tation assets developed, and then were populated into a corresponding component
repository. Software engineers, researchers and amateurs are able to use the applica-
tion and comment on it via a questionnaire. The above users followed the following
steps to evaluate the MVICS tool against traditional component retrieval approaches:
1) Proposing requirements based on the exiting component specifications and se-

lecting suitable result component (R1) manually.
2) Using the MVCIS based prototype tool to search the same requirements and

receive a set of search results (R2).
3) Using the SQL database search tool which is supported by traditional approaches

to search the requirements again and record another set of results (R3).
4) Comparing R2 and R3 with R1 respectively, and then fill out a questionnaire re-

garding how well each search performed according the four criteria: Recall (R),
Precision (P), Result Display (RD), and Adaptation Suggestion (AS).

Recall and precision, as motioned in section 2, are crucial dimensions to judge the
effectiveness of component retrieval. The result display is to indicate the degree of
user satisfaction with the completeness, clearness and usefulness of the display of the
result components. The criteria adaptation suggestion is used to estimate the degree
of usefulness and user acceptance of the found adaptation suggestion.

Up to present, 69 users have tested the tool in practice. The results of these compo-
nent retrieval experiments are analyzed and shown in Figure 4. The MVICS based
search tool improves recall, precision, result display, and adaptation suggestion effec-
tively at a rather large extend, in particular on the criteria of result display and adapta-
tion suggestion.

0%

20%

40%

60%

80%

100%

R P RD AS

Tr andi t i onal
Appr oaches

MVI CS based

Appr oach

Fig. 4. The level of satisfaction of MVICS prototype tool and traditional search tools

 A Multiple Viewed Interrelated Ontology Model 59

7 Conclusions

The objectives of the research are to develop an ontology-based approach to solving
the component mismatch problem via holistic, semantic-based and adaptation-aware
component specification and retrieval. Our literature investigation has shown that the
proposed approach has novel contributions to the research area and similar work has
not been done.

The MVICS ontology model has a novel architecture. It gets rid of the over-
complication problem in traditional monolithic ontology, because it has a set of highly
coherent and relatively loosely coupled sub-models. The inter-relationships among
the classes in different sub-models ensure a holistic view in component specification
and selection, and improve the retrieval precision and efficiency. Another contribu-
tion is that search result is presented in a profile which consists of a spectrum of
elements instead of simply the components and their relevance. Unlike existing ap-
proaches, in the MVICS approach component adaptation is considered as an integral
part of component specification and selection. Available adaptation assets and meth-
ods such as wrappers and aspects are defined in MVICS. During component selection,
appropriate adaptation assets/methods will be selected or suggested against the unsat-
isfied discrepancy.

Our case studies and user feedbacks have shown that the approach and the tool are
promising in their ability and capability to solve the identified drawbacks in compo-
nent specification and selection. In the future, we could improve the MVICS approach
by extending MVICS to popular application domains. i.e., add more domain specific
attributes to improve its capability, and by developing a mechanism for MVICS
model evolution.

References

1. Bosch, J.: Superimposition: A Component Adaptation Technique. Information and Soft-
ware Technology 41(5) (1999)

2. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation. Journal of
Systems and Software 74(1), 45–54 (2005)

3. Due, R.: The Economics of Component-Based Development. Information Systems Man-
agement 17(1) (2000)

4. Gao, T., MA, H., Yen, I.-L., Khan, L., Bastani, F.: A Repository for Component-Based
Embedded Software Development. International Journal of Software Engineering and
Knowledge Engineering 16(4), 523–552 (2006)

5. Hall, J.: Generalized Behavior-Based Retrieval. In: Proceedings of the Fifteenth Interna-
tional Conference on Software Engineering, pp. 371–380 (1993)

6. Han, J.: A Comprehensive Interface Definition Framework for Software Components. In:
Proceedings of Asia-Pacific Software Engineering Conference APSEC 1998, p. 110 (1998)

7. Kim, Y., Stohr, E.A.: Software Reuse: Survey and Research Directions. Journal of Man-
agement Information Systems 14(4), 113–147 (1998)

8. Liu, Q., Jin, X., Long, Y.: Research on Ontology-based Representation and Retrieval of
Components. In: 8th ACIS International Conference, vol. 1, pp. 494–499 (2007)

60 C. Li, X. Liu, and J. Kennedy

9. Mili, A., Mili, R., Mittermeir, R.: Storing and Retrieving Software Components: A Re-
finement- Based System. IEEE Transactions on Software Engineering 23(7), 445–460
(1997)

10. Ostertag, E., Hendler, J., Prieto-Diaz, R., Braum, C.: Computing Similarity in a Reuse Li-
brary System: An AI-based Approach. ACM Transactions on Software Engineering and
Methodology 1(3), 205–228 (1992)

11. Pahl, C.: An ontology for software component matching. International J. Software Tools
Technology Transfer 9, 169–178 (2006)

12. Patrizio, A.: The new developer portals. Information Week (799) (August 2000)
13. Prieto-Diaz, R., Freeman, P.: Classifying Software for Reuse. IEEE Software 4(1), 6–16

(1987)
14. Sugumaran, V., Storey, V.: A Semantic-Based Approach to Component Retrieval. The Da-

tabase for Advances in Information Systems, Volna 34(3) (2003)
15. Yao, H., Letha, E.: Towards A Semantic-based Approach for Software Reusable Compo-

nent Classification and Retrieval. ACMSE 2004 (2004)
16. Yen, I., Goluguri, J., et al.: A Component-based Approach for Embedded Software Devel-

opment. In: Proceedings of the 5th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing. ISORC, p. 402 (2002)

17. Zaremski, A.M., Wing, M.: Signature Matching: A Key to Reuse. Software Engineering
Notes 18(5), 182–190 (1993)

18. Zaremski, A.M., Wing, J.M.: Specification Matching of Software Components. Software
Engineering Notes 20(4), 6–17 (1995)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

