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Abstract: To create a safe bicycle infrastructure system, this article develops an intelligent embedded
learning system using a combination of deep neural networks. The learning system is used as a
case study in the Northumbria region in England’s northeast. It is made up of three components:
(a) input data unit, (b) knowledge processing unit, and (c) output unit. It is demonstrated that various
infrastructure characteristics influence bikers’ safe interactions, which is used to estimate the riskiest
age and gender rider groups. Two accurate prediction models are built, with a male accuracy of
88 per cent and a female accuracy of 95 per cent. The findings concluded that different infrastructures
pose varying levels of risk to users of different ages and genders. Certain aspects of the infrastructure
are hazardous to all bikers. However, the cyclist’s characteristics determine the level of risk that any
infrastructure feature presents. Following validation, the built learning system is interoperable under
various scenarios, including current heterogeneous and future semi-autonomous and autonomous
transportation systems. The results contribute towards understanding the risk variation of various
infrastructure types. The study’s findings will help to improve safety and lead to the construction of
a sustainable integrated cycling transportation system.

Keywords: cyclist safety; road safety model; embedded learning system; infrastructure

1. Introduction

One of the significant challenges that the present world is facing is the uptake of
sustainable modes of transport. The transportation sector is the second largest contributor
to global greenhouse emissions [1]. Another challenge that needs immediate attention is
the number of fatalities and casualties due to road traffic crashes. Road traffic crashes are
the leading cause of death in the younger generation, 15–29 age group [2]. Hence, it is
essential to improve safety as well as decrease the emissions from transportation. This will
help save lives, decrease the number of injuries, and improve the cities’ likeability. These
objectives can only be achieved if we promote cycling as a mode of travel. The share of the
cycling mode should increase many folds from the present low base [3]. Such a measure
will have social, economic, as well as environmental benefits.

The primary hurdle that affects the uptake of cycling as a mode of travel is the high
inequity of cyclists’ safety. Cyclists face 13 times higher risk for the same distance traversed
in Great Britain [4]. A study on the mode shift elasticity [5] concluded that the latter is more
significant than that for cyclists, i.e., they attracted a proportionally higher number of cyclist
road users for a safety improvement. Identifying the physical and environmental threats to
the cyclist in the natural urban environment provides an insight into the preference and
choice of cyclists [6]. The built environment, weather, work-related factors, and attitudes
affect the everyday commute by bicycle [7]. In addition to the varying infrastructure,
environmental, and traffic flow conditions, cycling hazards are also dependent upon cyclist-
specific variables of age, experience, and gender [8]. It is widely established in the literature
(see [9,10]) that how males and females use the infrastructure significantly varies, with
varied safety implications.
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Women are likely to make short journeys, and their journey’s spatial and temporal
structure is different from men. They rarely prefer large multi-lane roads and busy junctions.
Instead, they prefer selected areas of the city having narrow streets with calming traffic
measures. They generally cycle at lower speeds, are more likely to make recreational rather
than commuter trips and have a stronger liking for quiet traffic streets [11]. A study [12]
investigating crashes in the Czech Republic reported that males account for around 69% of
the crashes and are more likely to be involved in a fatal crash (80%). Similarly, a study in
the USA [13] found that males are at a higher risk than females (around five times more
for the same distance travelled). It is common speculation that men drive less safely and
more recklessly than women. Another reported variable in the literature is the age of the
trip maker. The work on cyclist near-misses in London [14] led them to the conclusion that
the age group of the rider directly affects their daily near-misses. They reported that the
daily near-misses decrease with age, from 2.47 (20–29) to 1.85 (>60 groups). These near
misses are correlated with crashes (see [15]). Similar results were obtained in Germany,
and a study concluded that cyclists of varying age groups use the infrastructure differently
and exhibit varying microscopic road traffic behaviour [16,17]. Men are more reluctant to
modal shift to cycling than women [18,19], and it takes much more improvement in the
infrastructure and environment for women to consider cycling [20]. The British cycling
report (Transport Research Lab report 490) argued that gender, age, and cycling experience
are critical variables affecting cyclists’ safety. However, these variables do not influence how
the cyclist rates a particular cyclable route. The qualitative evaluation of the infrastructure
is the same across age and gender [21].

Cycling safety is an important topic; however, limited studies effectively model the risk
in terms of exposure [22]. The present need of the transportation system requires cycling
mode share to increase significantly. The major hurdle in this process is insufficient evidence
to understand the relationship between cyclist safety and the identified parameters [23]. The
literature is abundant with evidence of variables affecting cycling safety, which are presently
not modelled in the prevalent general framework. The Italian crash study [24] demonstrated
that the variable gender is a significant primary variable affecting the risk faced in terms
of road type, type of interacting vehicle, riskiest vehicle manoeuvres, collision type, time,
day, and season of the journey. The varied safety implication of gender is compounded
by varied meteorological conditions that present different risks to different genders for
varied infrastructure types [25]. Similarly, different lighting conditions also have different
safety implications [26]. The needs of the cyclists are peculiar while interacting with
other road users and infrastructure and its corresponding safety implications. The present
road safety modelling framework implies a trade-off between prediction accuracy and
knowledge of the causal link between the essential variables [27]. A practical model for
examining road safety should determine causation, be highly predictive, and be scalable
to large data sets [28]. This gap in the literature needs to be filled so that effective cycling
infrastructure design and planning is not compromised. The transportation sector is at the
brink of the fourth industrial revolution, with the movement toward autonomous/semi-
autonomous vehicles and infrastructure to start soon. It is high time that the work on
real-time embedded safety systems is explored. Presently, very few works in the literature
undertake the development of an embedded learning system that can accurately model
cyclist safety. Hence, the study aims to develop an intelligent embedded learning system
for modelling cycling infrastructure. Such a system will be able to take the input data in
real-time, model the variable, and result in an output of the predicted safety. As a result,
the objectives are to:

1. Develop an intelligent framework to construct a real-time embedded learning system
that accurately models cyclist safety.

2. Apply this learning system as a case study on an investigation area.
3. Construct a nanoscopic model for a cyclist to predict the safety for a particular age

and gender.
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4. Identify and quantify the significance of the variable affecting the unsafeness of the
rider based upon the personal attribute.

The proposed embedded learning system will consist of specific hardware and soft-
ware. This will result in a composite system that can continuously take the data and
undertake modelling to present the policymakers/city planners with the final desired out-
put that is ready to use. Such a proactive approach is necessary to achieve the 2030 vision of
zero road traffic fatalities and embark on a pathway towards a smart, green, and integrated
transportation system. It is high time that intelligent embedded systems are incorporated
into transportation research as well as practice. The proposed real-time embedded learn-
ing system is described in the next section, followed by the results in Section 3, and the
conclusions are drawn in Section 4.

2. Real-Time Intelligent Embedded Learning System

This section describes the proposed real-time intelligent embedded learning system in
detail (Figure 1). It consists of three units: (a) input data unit, continuously collects data
in real-time; (b) knowledge processing unit, develops an embedded learning system in
real-time; and (c) output unit, results in the predictive model and variable interaction model.

2.1. Input Unit

The input learning system consists of automatic data collection unit, consisting of:
(a) meteorological, (b) lighting, (c) traffic flow data, (d) crash data logger, and (e) digimap.
The study area of north-east of England is used as a case study. Through the partnership
with the city council, the metrological, lighting, crash datasets, traffic cameras, and counters
were accessed. The flow characteristics for the study area were obtained from the traffic
flow database system (TRADS). Through this system, the traffic cameras and counters were
accessed (Figure 2). The exact WGS84 coordinates were extracted for each crash, which
were then used as an input to obtain the concerned infrastructure parameters. Digimaps is
an online map and data delivery service available to the research group. EDINA operates
it at the University of Edinburgh. This platform was used to extract the infrastructure
information based upon the WGS84 coordinates. This platform hosts accurate infrastructure
maps depicting the present as well as past conditions. This ensured that exact infrastructure
parameters were used for modelling based on the crash’s temporal conditions rather than
the present conditions. The sensors continuously feed the data into the KPU in the form of
a combined base input file.

2.2. Knowledge Processing Unit

The first step in the knowledge processing unit (KPU) involves data cleaning. Multiple
datasets are combined; hence an associated noise is present in the dataset, which is removed
before data analysis has proceeded. The predictive models were developed through deep
learning with neural network classifiers. The final input data was randomly divided into
three categories of training, validation, and testing, in the ratio of 6.5:3.0:0.5. For the network
to develop accurate prediction properties, this is the recommended division [29]. Such
division guarantees adequate data for the network to learn correctly, evaluate the trained
model, and apply the generated models to untrained circumstances. Bernoulli distribution
was utilised to ensure that the data were divided randomly. Two different models (each
for male and female) were constructed using the following input infrastructure variables
(Table 1).

The output variables of the model are described in Table 2.
The following network structure was used to construct the model (Table 3).
The following four-step iterative learning process mapping input with the output

variables was used.
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Table 1. Input variable for the proposed model.

No. Input Variable Values

(a) Type of road Dual carriageway, one-way street, roundabout, single
carriageway, slip road

(b) Speed limit 20–70
(c) RC 1 A, B, C, E, U
(d) RHL 0–4
(e) RHLD −4 to 4

(f) Junction Detail
Crossroad, mini roundabout, multiple junction, straight

road, roundabout, slip road, T or staggered,
private drive

(g) Junction Control No control, traffic signal, give way or uncontrolled,
stop sign

(h) RC 2 A, B, C, E, U

(i) Vehicle Manoeuvre
Changing lanes, going ahead, moving off, overtaking,
parked, reversing, slowing/stopping, turning, U-turn,

waiting to go ahead, waiting to turn

(j) Vehicle Junction Location

Approaching junction or waiting/parked at junction
exit, cleared junction or waiting/parked at junction exit,
entering, leaving, mid junction, straight road (not at or

within 20 m of the junction)

(k) Road Location of vehicle
Bus lane, busway, cycle lane, cycleway, footpath, on

layby or hard shoulder, main carriageway, tram/light
rail track

(l) Skidding and Overturning No skidding or overturning or jack-knifing, overturned,
skidded, overturned and skidded

Output Variable Risk gender and Age Group
where RC = road class, RHL = road hierarchy level, and RHLD = road hierarchy level and direction change.

Table 2. Output variable.

Output Variable

0–16 M 17–20 M 21–29 M 30–39 M 40–49 M 50–59 M 60–69 M 70+ M

0–16 F 17–20 F 21–29 F 30–39 F 40–49 F 50–59 F 60–69 F 70+ F
where M = male, and F = female.
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Table 3. Deep learning network topography.

Network Topology

Number of hidden layers 2
Elements in each layer 350

Activation function between the
hidden layers Hyperbolic Tangent

Activation function between hidden and
output layer Softmax

Error function Cross-entropy

Stopping and
Memory Criterion

Steps (maximum) without a change in
the error 999,999

Training (maximum) time 999,999
Training (maximum) epochs 999,999

Relative change in the training
error (minimum) 0.000001

Relative change in the training error
ratio (minimum) 0.000001

Cases to store in the memory (maximum) 999,999

Training

Type Batch
Optimisation Scaled conjugate gradient

Initial Lambda 0.000000001
Initial Sigma 0.000000001
Initial Centre 0
Initial offset ±0.000000001

Hidden layer (s) Total No. of hidden layers 2
Total No. of units in the hidden layers 700 (350 in each layer)

Output Layer Dependent variables Age and Gender
Total No. of output units 7

Step 1: Random weights and activation. Firstly, between each connection, i.e., input
and hidden, within hidden layers, and hidden and output layer, random weights were
assigned. For signal transmission between the synaptic cleft activation function ‘Hyperbolic
tangent’ Equation (1) for hidden layers and ‘Softmax’ Equation (2) for the output layers
were used.

F∈ = tanh(A∈) =
eA∈ − e−A∈

eA∈ + e−A∈
(1)

F∈ = σ
(

A∈
)
=

eA∈

∑
j
l=1 eAl

(2)

where F∈ is the activation of the ∈ th output neuron, j is the number of output neurons.
Step 2: Error modelling. Cross entropy error function was used to model the error

between the output obtained and the desired output.

C = −
j

∑
l=1

Al ln El (3)

where El is the actual output obtained for the output node l, and Al is the largest value of l.
Step 3: Synaptic weight update. The initially randomly assigned synaptic weights

were updated based on the eq 3 error. The backpropagation algorithm calculates the
gradient of the training error in each training case (epoch).

(i) nodes between the input and hidden layer

∂C
∂sh∈

=
m

∑
∈=1

(F∈ − tl)xhsh∈(1− xh)xk (4)
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(ii) nodes between the output and hidden and layer

∂C
∂sh∈

= (F∈ − tl)xh (5)

After error calculation, the weight ( wh∈) is updated in each epoch by adding it to the
previously updated weight

∆ sh∈ = −∅ ∂C
∂sh∈

(6)

∆ sh∈+1 = sh∈ + ∆ sh∈ (7)

where ∅ is the learning rate, and x is the input variable.
Step 4: Scaled conjugate gradient learning. The above steps were continuously re-

peated (iterated) until either the maximum number of these iterations (epochs) or minimum
training error change was achieved.

The performance of the constructed predictive model was evaluated through the
area under the curve (AUC) of the receiver operating characteristics (ROC). These are the
evaluation matrices utilised for checking the networks classification performance. ROC
is a probability curve, and AUROC represents the measure of the separability power of
the network. While calculating the risk, the higher the AUROC value, the better is the
distinguishable power of the network. Besides, gain and lift charts are used for qualitative
evaluation; the visual aids for evaluating the performance assess the model’s predictive
capability compared with a non-model-based probability evaluation. After model con-
struction and performance measurement, the next step is to validate the model through
validation datasets. This process ensures an unbiased evaluation of the model fit on the
training dataset while tuning the model hyperparameters, followed by checking the model’s
performance on unseen data, and providing an unbiased evaluation of the final developed
predictive model.

The critical variables in the data learning model were identified through variable
importance. The normalised significance of each variable concerning the most vital model
was also evaluated to compare variables relative to each other. The independent variable
importance is a measure of how much the predicted output value changes, viz a viz change
in the input variable. The normalised significance of each input variable is their respective
importance value divided by the largest importance value and expressed as percentages.
This is followed by the Boolean logic, which presents the output in the form of the single
most critical variable affecting the safety of a particular group.

The specific hardware for the embedded system was used. It has wireless connectivity
with an inbuilt memory of 32 GB. Although the embedded system has its own processor,
the said processor is not used in the KPU, which has its own separate processor and
specific RAM. The use of the processor in the embedded system itself should be explored
in future research.

3. Results and Discussion

There were 3325 bike collisions registered in the investigation area: 2638 being slight,
661 serious, and 26 fatal.

3.1. Predictive Model

The findings of the deep learning prediction model that predicts the riskiest age and
gender group based upon infrastructure input factors are reported in this section. Two deep
learning models were built. Their accuracy is measured by comparing their distinguishable
power between the riskiest and non-riskiest age and gender groups using AUROC, as
shown in Table 4. The output predicted versus the observed for the testing datasets is
presented in Figure 3, and the ROC curves for each output variable in Figure 4. It can be
inferred from the ROC curves and the AUROC values that both the models attained a high
level of accuracy. Each model can have up to seven different output values. As a result,
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with perfect precision, the highest value of AUROC can be seven. The male and female
AUROC values obtained were 6.19 and 6.64, respectively. This suggests that the prediction
and distinguishable power is high and consistent. As the physical and cognitive abilities of
riders of different ages and gender groups vary, there are safety implications for each rider
sub-group. Hence, it makes it possible to estimate the most dangerous age and gender
groups based on the individual input data.

The literature widely reports that current safety models cannot be directly utilised to
simulate bike infrastructure, due to their inability to appropriately represent safety. In one
comprehensive work to evaluate the efficacy of such a model, the Finnish crash model was
gauged for its efficacy to model cyclist safety [30]. The study revealed an inaccuracy of
around 65%. Similarly, the evaluation of the primary transportation simulation software,
including PTV VISSIM, AIMSUM, TEXAS, and PARAMICS, exhibited an incapacity to
mimic riders adequately and efficiently [31]. These studies concluded that cyclist interaction
cannot be simulated using such packages, developed on the premise of motorised modes
of transport. Hence, the accuracy achieved through the developed learning system is many
times higher than the custom models in the literature. To further demonstrate the benefit
of using the complex methodology for prediction, lift and gain charts are presented in
Figures 3–6. These charts compare the efficacy of the output compared with the traditional
probability-based statistical model.

Table 4. The AUROC values for each output variable of each model.

Male Prediction Model Female Prediction Model
Variable AUROC Variable AUROC

Under 17 M 0.87 Under 17 F 0.94
17–24 M 0.87 17–24 F 0.94
25–34 M 0.87 25–34 F 0.95
35–44 M 0.90 35–44 F 0.96
45–54 M 0.89 45–54 F 0.93
55–64 M 0.86 55–64 F 0.96

Over 65 M 0.93 Over 65 F 0.96
where AUROC = area under the ROC curve, M = male, and F = female.
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For all the variable cases, the ROC curve line is closer to the upper left corner, farther
away from the 45◦ basslines, which depicts significantly high prediction capability, evident
from the AUC values. The gain is a measure of the effectiveness of the constructed model
calculated as the percentage of the correct predictions obtained within the model versus
the accurate predictions obtained without the model, i.e., baseline. A significant higher
gain is obtained for all the output variables (an average of 10%, 80%), i.e., if we sort the
wrong prediction by their pseudo probabilities, the top 10% of the dataset will have all 80%
cases of improper predictions. Similarly, from the gain chart, the average gain value for the
output, at 10% data is eight, i.e., the average accuracy of the models is eight times higher in
comparison to the base case at this point.

3.2. Variable Interaction Model

The critical variables in the data learning model are identified through the variable
and normalised significance (Table 5). This is based upon both testing and validation data
sets. From the variable interaction model, it can be inferred that the overall effect of the
infrastructure is not significantly different for riders of a different gender. However, the
critical variables vary and differ by a small proportion in the rank of importance and their
relative effect. The Boolean logic presents the most critical variable for males as RHLD, and
for females as vehicle manoeuvre. The following variables are estimated in the rank of
their importance for males, RHLD, followed by vehicle manoeuvre, junction location of the
vehicle, junction detail, and road location of the vehicle. However, for females, critical
variables are vehicle manoeuvre, followed by RHLD, junction details, road location of the
vehicle, and road type. The importance rank of the rest of the variables is similar; however,
their normalised importance values vary slightly. This leads us to conclude that there are
specific attributes of the infrastructure that are risky for all cyclists. However, the level
of risk that each infrastructure attribute possesses is dependent upon the gender of the
rider. The results agree with the findings in the literature. The infrastructural hazards
present different levels of risk to the cyclist based upon their gender (see [20,32]), and
that a bad infrastructure design/condition is rated poorly by the cyclists irrespective of
their gender (see [23]). The novel variables introduced in the study, i.e., road hierarchy
level and direction, are significant variables. It is recommended that these variables be
considered in the cyclists’ road safety investigations. The sudden change in the road
hierarchy requires a shift in how cyclists need to interact with the infrastructure and
other road users. Furthermore, the direction of change, i.e., whether the difference in the
hierarchy is from a low class of road to a higher level or vice-versa, is a critical externality.

Table 5. The critical variable significance model for the input variable.

Male Female

R Variable Importance
(Descending Order) VS NS R Variable Importance

(Descending Order) VS NS

1 RHLD 0.098 100.0% 1 Vehicle manoeuvre 0.087 100.0%
2 Vehicle manoeuvre 0.096 98.2% 2 RHLD 0.083 95.2%
3 Junction location of vehicle 0.094 96.8% 3 Junction detail 0.08 91.8%
4 Junction detail 0.092 94.5% 4 Road location of vehicle 0.072 82.3%
5 Road location of vehicle 0.086 88.4% 5 Road type 0.071 81.7%
6 RC 2 0.082 84.5% 6 RC 2 0.07 80.9%
7 Road type 0.081 83.3% 7 Speed limit 0.069 79.1%
8 Junction control 0.079 80.7% 8 Skidding and overturning 0.069 79.9%
9 Speed limit 0.076 77.6% 9 RC 1 0.067 77.2%
10 RHL 0.075 77.1% 10 Junction location of vehicle 0.067 76.6%
11 RC 1 0.074 75.4% 11 Junction control 0.066 76.1%
12 Skidding and overturning 0.067 68.4% 12 RHL 0.065 74.4%

where R = ranking, vs. = variable significance, and NS = normalised significance.
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4. Conclusions

This paper proposes a real-time nanoscopic rider safety system based on the varied
infrastructure variables. Such a system will help improve safety, hence the attractiveness
of the mode of travel. An embedded real-time learning system was developed, whose
knowledge processing unit is primarily based upon deep neural networks. This is applied
as a case study on the Northumbria region in England’s northeast. Two accurate prediction
safety models were developed that can predict the riskiest age and gender groups.

An average accuracy of 92% was obtained in these prediction models. This accu-
racy is several times higher than the available models in the literature. In addition, a
variable interaction model was developed that ranks the input variable and estimates the
variable importance.

The research’s primary contribution is developing a comprehensive embedded system
that models safety in real-time. The system includes an input unit, knowledge processing
unit, and output unit. Not only prediction models are developed, but an understanding of
the critical variables was determined and established. Presently, very few such systems
exist in the literature that have affected infrastructure systems’ design and planning. The
present models in the literature are primarily based upon the probabilistic functions of
human error, which model variables such as miles traversed, speed limits, intoxication,
and others. These variables model road users’ behaviour at an aggregate level, such as
a city or a county. The learning system developed in this work models the road user
at a nanoscopic level. The local authorities and city planners can directly apply such a
system. Through the application of the learning system on the north-east of England, it
is established that the varied types of infrastructure impose differing risks to riders of
various ages. The interaction between cyclists and infrastructure can cause both physical
and cognitive stressors, to which riders of different ages and genders respond differently,
allowing us to estimate the riskiest age and gender group depending on the specific input
factors. Furthermore, certain infrastructural characteristics are hazardous to all bicycles.
However, the rider’s personal attributes such as age and gender determine the amount
of danger that any infrastructure poses. The critical variable affecting the safe usage of
infrastructure for females is the rider manoeuvre that they are required to perform. This
is due to the varying physical and cognitive abilities that females possess compared with
males. However, for males, it is a sudden change in the road hierarchy level that presents
the highest level of risk. The sudden change in the road hierarchy requires a shift in how
cyclists need to interact with the infrastructure and other road users.

The study’s findings will assist in improving safety and contribute to the development
of a sustainable integrated bicycle transportation system. The study’s findings will aid in
better understanding the risk variance of various infrastructure types. Following validation,
the developed real-time learning system is interoperable in several situations, including
present heterogeneous and future semi-autonomous and autonomous transportation sys-
tems. The embedded learning system will improve the attractiveness of cycling as a mode
of travel and contribute to a smart and green transportation system.
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