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Abstract— A cyclist is a vulnerable road user whose 

interaction with the road infrastructure depends on several 

factors, including variable environmental conditions of lighting 

and meteorological road surface. This paper is concerned with 

nanoscopic crash modelling under  the riskiest environmental 

conditions. There are very few works in the literature dealing 

with such modelling. An intelligent methodological framework 

consisting of the data collection unit and a knowledge 

processing unit (KPU) is proposed. In the knowledge 

processing unit, a combination of a) statistical, b) data learning 

and c) casual inference methods are applied for investigating 

crashes on the study area of Tyne and Wear county in North-

East of England. Three predictive nanoscopic road safety 

models are constructed (with 86% accuracy) using a) Spatial, 

b) Personal, and c) Infrastructure input variables. The 

importance of each of the identified input variable is estimated 

by deep learning and statistically validated through chi-square 

test and Cramer's statistic. It is found that unsafeness of 

interaction between rider and infrastructure depends on 

lighting and road surface meteorological conditions. Different 

environmental conditions present a varying degree of risk to 

different types of infrastructure. The riskiest environment 

conditions are significantly affected by rider's gender and age, 

traffic flow regime, specific riding manoeuvre, and the road 

hierarchy difference. The increase in the number of variables, 

a rider encounters during his entire trip, imparts risky riding 

behaviour, affecting its safe interaction with the infrastructure. 

A novel infrastructure variable, i.e. 'functional road hierarchy 

level and direction' introduced in this work , is found to be a 

critical road safety variable.  A shift in road safety analysis 

towards nanoscopic modelling can help achieve zero-vision 

road traffic fatality. The study reinforces the need to plan and 

design infrastructure to move towards a more holistic 

approach while considering this vulnerable road user's 

limitations. 

Keywords— intelligent transportation system, cycling safety, 

nanoscopic safety modelling, environmental conditions  

I. INTRODUCTION  

Creating a complete and comprehensive network for 
cycle traffic is imperative, which is both comfortable and 
attractive for the user [1]. Based on its role in providing a 
sustainable transportation system, bicycling has started 
gaining a prominent transportation policy role. To embark on 
a pathway towards a sustainable transportation system, 
cycling mode share has to increase by many folds [2], which 
will reduce carbon footprint and enhance cities' liveabilities. 
However, safety concerns are associated with this mode of 
transportation, which is the most commonly perceived 
barrier to its uptake , [2], [3]. The road traffic crashes have 
adverse effects on human health, the wellbeing of 

individuals, and society. Crashes have associated pain, grief 
and suffering due to personal injuries, property damage, 
increased travel time, and a corresponding increase in carbon 
emissions due to congestion. Road safety involves a complex 
interaction of various factors and underlying phenomena, 
requiring an in-depth understanding and knowledge-driven 
measures to reduce crashes' frequency and impact. The 
preference and requirements of cyclists are different from 
other road users [4]. Safety is also a significant mode and 
route choice variable [5]. The effect of safety pessimisticism 
is a more considerable deterrent than the effort involved in 
riding [6]. The susceptibility of the cyclists towards different 
externalities is more pronounced than the motorists (see [7]–
[9]). These externalities include different infrastructure 
types, personal attributes of the rider, traffic flow regime, 
and, variable weather and lighting conditions. Very few 
works have either reported or attempted to model the former 
variable of varying environmental conditions. 

The literature has widely reported that extended periods 
of rainfall negatively affect cycling, affecting the selection of 
cycling as a mode of travel and its safe usage of 
infrastructure [10]. The English and Wales mode choice 
model [11] reported that rainfall has high negative cyclist 
flow elasticity. The variable environment conditions can 
result in an additional variable for the cyclist to deal/ 
negotiate with while interacting with the infrastructure under 
different traffic flow regimes; thereby acting as a significant 
hazard. This phenomenon can be attributed to the safety law 
of complexity [12]; 'more the variables road user has to 
attend to; notable is the risk faced. The rain degrades the 
driving environment through various physical factors, 
through a possible loss of friction between the tyre and road, 
impaired visibility, and a spray of water from other vehicles 
[13]. These conditions can also impact the cyclists riding 
comfort [14]  , its  cognitive capability (safety law of 
cognitive capacity), making it a potential safety hotspot. 
These can affect the safety variedly for a cyclist varying 
from one rider to another [15]. 

The study in Finland on road traffic crashes from 2014 to 
2016, to assess the impact of road surface conditions on road 
safety demonstrated that crash risk increases due to poor road 
weather conditions. They reported that the risk of adverse 
environmental conditions on different infrastructure is highly 
varied in crash frequency and impact [16]. The longitudinal 
survey in the Netherland [15] investigating a cyclists day to 
day choices found that the cyclist, especially women riders, 
are significantly affected by the absence of daylight, 
affecting their perceived safety and corresponding mode 
choice.  Another similar study found that extreme weather 
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conditions substantially increase the crash rates (20% risk 
increase). The effect of variable environmental conditions on 
safety varies spatially with month and day of the week 
journey is being undertaken [17]. An analysis of the impact 
of road surface condition on road safety in Iowa (USA), 
found pavement skid resistance has a significant impact on 
crashes under varied environmental conditions [18].  

This combination of different factors can lead to 
increased crash rates due to a strain on the road user's 
cognitive capability [12]. Different road users respond 
differently to these road safety variables, which is also 
evident in their route choices [19]. Hyden's safety pyramid 
[20] and the Swedish traffic conflict technique [21] 
demonstrate a pyramid-shaped relationship between the 
crashes and everyday conflicts that the cyclist faces with 
other road users. These conflicts form the pyramid's base, 
potential crashes at the top, whereas crashes are the tip; both 
these variables are interlinked and causatives. It is well 
established from the literature that the cyclists' conflicts vary 
from a user to user depending upon their personal attributes 
[22], [23], traffic flow regimes [24], and type of 
infrastructure [25]. Therefore, cyclists' safety modelling 
needs to be incorporate the same and thus, be more 
comprehensive with the modelling focus on a cyclist at the 
nanoscopic level, rather than the aggregate usage of 
infrastructure at the macro level. The increased risk reported 
in the literature due to varied environmental conditions of 
lighting and meteorological road surface conditions is 
summarized in Table I. 

Table I.  Increased risk due to varied environment conditions (lighting 
and meteorological road surface condition) 

Study location Period  Relative 

Crash Rates 

Citation 

West Virginia, USA 1970 2.2 [26] 

Glasgow, UK 1978-79 1.2-1.3 [27] 

Chicago, USA 1977-79 2.0 [28] 

Edmonton, Canada 1983 1.3-1.9 [29] 

Canada 1995-1998 1.75 [30] 

Melbourne Australia 1987-2002 1.61-1.67 [31] 

Iowa, USA 1965-2005 1.84 [32]   

Vancouver, Canada 2003-2007 1.13-1.55 [33] 

Finland 2000-2010 1.20 [17] 

New Zealand  2012 1.35 [34] 

China 2001-2016 1.13 [35] 

 

Jordan 2020 2 [36] 

Therefore, after establishing the importance of the 
variable environmental conditions on cycling safety, and 
need to perform modelling at the nanoscopic level, it is 
imperative to understand the modelling procedure.  The 
infrastructure safety analysis is performed by developing 
safety models, whose accuracy and efficiency directly impact 
road safety investigations, remedial measures, planning, and 
design. The first mathematical theory used in safety 
modelling is generalized linear modelling. Over time, various 
studies proposed a generalized linear model assuming a non-
normal error structure [37], overcoming linear regression 
limitations and produced a better fit to the observed collision 
data [38]. As crashes are discrete positive integral variables, 
therefore this prompted the use of Poisson regression. 
However, it is unable to handle overdispersion (i.e. the 
variance exceeding the mean). This then motivated using 
negative binomial or Poisson gamma models, assuming that 
Poisson parameters follow a gamma distribution [39]. 

However, there are profuse locations with zero reported 
crashes, which motivated the zero-inflated Poisson method, 
having two different states; zero state and normal count state.  
For improving the modelling capabilities, various techniques 
such as hierarchical, random effect, cart, finite-mixture/ 
latent-class, log-linear, probit/logit, Markov switching, 
Poisson–Log normal Regression, Empirical Bayes Method, 
Conway-Maxwell-Poisson, negative Binomial-Lindley 
method and others [40], [41], have been explored in the 
literature. However, as cycling safety is a multifactor 
phenomenon based upon the complex non-linear interaction 
of variables, very few techniques are able to model them 
accurately.  

This limitation is quite evident in the present crash 
models, which are mostly reactive [42] and unable to 
consider the cyclist's dynamic interaction nature with 
variable infrastructure and quantify its safety implications 
[43]. These conventional models are generally developed for 
assignment of motorized modes of travel and are not 
equipped for a cyclist's needs [44]. Although there have been 
attempts to the model cyclist's safety, however, from the 
literature, it is evident that the cyclist's specification and 
requirement are different from motorists [45]. For a modeller 
to effectively and efficiently model cyclist safety, the 
cyclists' vulnerability and susceptibility to various 
externalities need to be modelled at nanoscopic level. One of 
the established externality is the variable environmental 
conditions for a cyclist. Presently, there are limited studies 
which have or attempted to undertake such modelling. 

Hence, we can establish from the literature; there is an 
"Absence of an accurate and dynamic model for a cyclists, 
which can model varied environmental conditions". This 
study seeks to improve the understanding of how 
environmental conditions influence particular cyclists' road 
safety. Therefore, the aim is to develop a road safety model 
for a cyclist at the individual level (nanoscopic), predicting 
the environmental conditions most likely to be unsafe, based 
upon the specific input variables and investigating the causal 
relationship between the input variables and riskiest 
environment condition. More precisely, our objectives are: 

 Investigate, and develop an understanding of how 
cyclist's safety varies with varying environmental 
conditions. 

 Test the hypothesis that unsafeness of interaction 
between rider and infrastructure depends on the 
lighting and meteorological road surface condition. 

 Develop a nanoscopic road safety model with 
environment condition as an output variable. 

 Identify the most critical variable affecting the 
unsafeness during a prevalent environmental 
condition for an individual. 

 Validate the results statistically. 

The aim requires developing a model, which can only be 
performed through an application on a study area. The study 
area of the northeast of England is selected for investigation. 
This is one of the nine official regions of England: 
population of 1.13 million and 3,317 sq. miles area. There 
are five boroughs in the study area, having thirteen urban, 
and three rural districts (Fig 1). In the next section, the 
proposed intelligent hybrid safety modelling framework is de 



 

 

Fig. 1. Study area for model development; northeast of England. 

-fined on the study area. The results and discussion are 
described in section III, limitations in section IV, and 
conclusions drawn from the study in section V. 

II. INTELLIGENT HYBRID MODELLING FRAMEWORK. 

The proposed intelligent hybrid modelling framework 
consists of a) Data collection, and b) Knowledge processing 
unit (KPU.)The study area's crash dataset from 2005 to 2018 
is used for modelling. The data concerning each crash is 
collected through an in-depth crash investigation of the site, 
performed by the city council and Northumbria police force. 
The attributes of each crash are recorded in a predefined 
document 'STATS 19'. For each crash, following four types 
of information is recorded: i) Type of severity, ii) Time, date, 
and location of the crash, iii) Environment conditions such as 
lighting, weather, road surface condition, type of 
infrastructure and number of vehicles involved, iv) 
Sociodemographic information such as age, gender, 
intoxication, journey purpose of the cyclist. All the STATS 
19 forms are stored on an online platform, housed by 
Department for Transport (DfT). For this study, we are 
provided access to the crash database Traffic and Data Unit 
(TADU) by the city council. The classification of the 
severity is performed through the Department for Transport 
(DfT) criterion; fatal: if crash results in the death within 28 
days of the crash, serious: crash resulting in death either after 
28 days or an overnight admission in the hospital, and slight: 
crash resulting in overnight hospital discharge or property 
damage only [46]. The crash investigation by DfT aims to 
record the information as accurately as possible, as it serves 
the basis for further legal and other courses of actions 

To obtain detailed information concerning the crash site's 
infrastructure, WGS84 coordinates of each crash are 
extracted from TADU. These GPS coordinates are recorded 
as accurately as possible, as it serves the basis for further 
legal and other courses of actions. These coordinates are 
used to obtain detailed infrastructure parameters using 
Digimap (access obtained for the study), an online platform 
housing the UK roads' macro and micro characteristics 
including the control, and public transport details. This 
platform also houses historical and spatial data. For each 
crash, requisite infrastructure parameters are extracted for the 
concerned crash date, and then correlated with the 
maintenance plan (from city council) to check any 
maintenance work that might have affected the 
infrastructure's usage. This ensures that the crash time's 
infrastructure parameters are modelled rather than the current 

features, which may have varied over time. Finally, all the 
crash details are combined in a base file to be used as an 
input file in the Knowledge Processing Unit (Table II).  

Knowledge Processing Unit, 

There are four general methodological frameworks for 
road safety analysis i) Traditional statistical, ii) 
Heterogenetic modelling, iii) Causal inference and iv) Data-
driven framework. The process of selecting one of these 
involve making an implicit tradeoff between the prediction 
accuracy and understanding of the causal relationship 
between the governing variables [47]. The data-driven 
methods have a proven application in engineering due to 
their ability to handle a large amount of data with high 
prediction accuracy. However, these are a 'black box', due to 
their inability to understand variable interaction and 
contribution of each variable. On the other hand, the casual-
inference framework is better able to identify and explain the 
underlying phenomenon. Yet, these have been rarely used in 
safety modelling, due to weak predictive capability, and 
ability to address limited explanatory variables. Therefore, a 
hybrid methodology is proposed consisting: i) Traditional 
statistical, ii) Data-driven, and iii) Causal inference 
frameworks. This hybrid methodology can investigate the 
causal relationship between governing variables, have a high 
predictive capability, and scalable to a large data set 

A. Traditional Statistical Framework 

Firstly, statistical analysis of the crashes is undertaken, 
followed by the generation of the heat maps. This results in 
crash rates and investigates the risk's spatial variation for 
varied environmental conditions with different infrastructure.  

B. Data-driven ( Deep Learning Method ) 

A predictive model is developed using supervised deep 
learning neural network classifier, and gradient descent 
backpropagation error function. It is the sub-group of the 
machine learning techniques based upon computational 
methodologies imitating the human brain's working.  These 
are massive parallel distributed processors that have a natural 
propensity to store experiential knowledge [48]. The road 
safety problem is highly non-linear and characterized by the 
underlying correlation between various infrastructural, 
environmental, and personal attributes of the rider. Deep 
learning can capture this non-linear and complex underlying 
characteristic, with a high level of accuracy [49].  The neural 
network has been widely applied as a data analytic method in 
transportation science [50], resulting in generic, accurate, 
and convenient mathematical models, simulating the 
numerical model components  [51]. This is due to their 
ability to work with a large amount of the multi-dimensional 
data, modelling flexibility, learning, generalization ability, 
adaptability and good predictive capacity [51].  

In the first step of model development, a learning 
algorithm is developed to divide the data set randomly into 
training (65%), validation (30%), and testing (5%).  The 
division ensures proper learning of the constructed model, 
assessment of the trained model, and ensures that the 
constructed models are relevant to the untrained scenarios 
[50]. Three models are built using a) Spatial, b) Personal, and 
c) Infrastructure dynamic input variables, described in Table 
II. 



Table II. Input variable for the proposed model 

No. Input Variable Values 

1.   Spatial   

1.1 Journey Hour (The hour in 
which the crash has occurred) 

0-23. 

1.2 Number of vehicles (Number of 
vehicles involved in the crash). 

1-5. 

1.3 Month of Journey (Month in 
which the crash has occurred). 

Jan-Dec. 

1.4 Journey Day (Day of the week 
on which crash has occurred. 
The day, month and hour of the 
journey are a representation of 
the traffic flow regime that was 
plying at the time of the crash) 

Monday, Tuesday, Wednesday, 
Thursday, Friday, Saturday, 
Sunday. 

1.5 Journey Weekday/ Weekend Weekday. Weekend. 

2.  Personal   

2.1 Gender (Gender of the rider). Male, Female, and Unknown 

2.2 Age (Age of the rider) 0-17, 18-24,25-34, 35-44, 45-
54,55-64, and over 65. 

2.3 Age and Gender (Combined) 0-17 male, 14-24 male,25-34 
male, 35-44 male, 45-54 
male,55-64 male, over 65 male, 
0-17 female, 14-24 female,25-34 
female, 35-44 female, 45-54 
female,55-64 female, and over 
65 females. 

2.4 Journey Purpose (The purpose 
of the journey being undertaken 
in which the crash has 
occurred). 

Commuting, work trip, School 
Journey by Pupil, taking pupil to 
school, other, Unknown. 

3.  Infrastructure   

3.1. Road Type (Type of road 
infrastructure present at the 
crash spot). 

Dual Carriageway, One-way 
street, Roundabout, single 
carriageway, slip road,  

3.2. Speed limit (maximum 
permissible speed limit on the 
road). 

20-70 

3.3. 1st Road Class* Functional classification of the 
roadway into: A, B, C, E, U 

3.4. Road Hierarchy Level* (The 
difference in the functional 
classification of 1st and 2nd road 
class) 

0-4 

3.5. Road Hierarchy level and 
direction*(The difference in the 
functional classification of 1st 
and 2nd road class including the 
direction of change ) 

-4 to 4 

3.6. Junction Detail (Type of 
intersection). 

Crossroad, Mini Roundabout, 
Multiple Junction, Straight 
Road, Roundabout, Slip Road, T 
or Staggered, Private Drive 

3.7. Junction Control (Type of 
control that is employed at the 
intersection). 

No Control, Traffic Signal, Give 
way or uncontrolled, Stop sign 

3.8. 2nd Road Class*. Functional classification of the 
roadway into: A, B, C, E, U 

3.9. Vehicle Maneuver (The 
Maneuver that the rider was 
performing/intending to perform 
when the crash occurred). 

Changing lanes, Going ahead, 
Moving off, Overtaking, Parked, 
Reversing, Slowing/stopping, 
Turning, U-turn, Waiting to go 
ahead, waiting to turn 

3.10. Vehicle Junction Location 
(Location of the cyclist to the 
junction when the crash has 
occurred). 

Approaching junction or 
waiting/parked at junction exit, 
cleared junction or 
waiting/parked at junction exit, 
Entering, Leaving, Mid 
Junction, Straight Road (Not at 
or within 20 meters of the 
junction) 

3.11 Road Location of vehicle 
(Location of the cyclist to the 
road infrastructure, when the 
crash has occurred). 

Bus Lane, Busway, Cycle lane, 
cycleway, footpath, on layby or 
hard shoulder, main 
carriageway, tram/light rail track  

3.12. Carriageway Hazard (Additional 
unexpected hazards on the 
carriageway). 

Animal in the carriageway 
(except ridden horse), Dislodged 
vehicle load in carriageway, 
Dislodged vehicle load in 

carriageway, Other object in 
carriageway, and none 

 Output Variable Riskiest Environment 
conditions  

An intersection is a roadway facility, wherein two or 
more roads either meet or intersect each other. These 
intersections can have two different hierarchies of the road 
network which join or intersect. The variable first road class 
is the functional classification of the roadway on which the 
vehicle was travelling when the crash occurred. The second 
road class is the functional classification of the roadway on 
which the vehicle intended to move to (if the crash happened 
before exiting the intersection) or roadway on which cyclist 
came from (if the crash occurred after negotiating the 
intersection). The cyclist while utilizing the infrastructure are 
frequently required to change the type of road using, e.g., 
rider may change from an A road type (which is main 
collector road between the cities) to a one-way estate street ( 
E road). This sudden transformation can result in a change in 
the cyclist's behaviour and other road users' interaction 
behaviour with the cyclist. This transformation needs to be 
modelled effectively, as it has the potential to impact safe 
interaction negatively. Therefore, we are introducing a new 
variable road hierarchy level, for the difference in the road 
hierarchy between the first and second road class. This road 
hierarchy level only signifies the change in the functional 
hierarchy, e.g., if the road user is moving from A-type of the 
road to E class of road, is modelled in the same manner as 
that of moving from E class to A-type. This motivates 
introducing an advanced form of this variable, i.e., the road 
hierarchy level and direction. It also considers the direction 
of the change in the road hierarchy, i.e., whether a cyclist is 
moving to a higher road class or a lower road class. If the 
change in the functional hierarchy is one level, and it moves 
from higher to the lower class, then it is modelled as -1, 
whereas if it moves to one higher level, it is modelled as +1. 
Similarly, all crashes are modelled from -4 to 4.  

The primary objective for developing the predictive 
environmental condition model is to aid in in the inclusion of 
this variable in the development and design of cycling 
infrastructure.  We can then further identify the underlying 
safety performance functions, if we can demonstrate that this 
variable can be modelled effectively and efficiently. The 
input variables can be adapted in inverse analysis to model 
reduction in the riskiness of a particular infrastructure during 
severe environmental circumstances and develop 
recommendation improvements and management strategies. 
The cyclists follow Swiss cheese safety criterion; therefore, 
any minor change in the input variables can decrease the 
overall risk. Modelling environmental conditions is a first 
step towards developing a real-time safety model. In such a 
model, the safety will be predicted in real time, leading to a 
nanoscopic real time route selection for a particular rider 
(subject of a further paper ). The model has a renewed focus; 
as we progress toward autonomous vehicles and 
infrastructure management. The motorist-cyclist algorithms 
can be developed to account for additional safety margins 
under these scenarios (predicted by the predictive model). 
Such a nanoscopic approach is critical if we are to achieve 
the vision of zero road traffic fatalities. The safety, mode and 
route choices are correlated; therefore, the model will aid in 
better flow modelling and better management of the network. 
Table III shows the output variables that the predicted model 
can take 



Table III. Risky Environment Conditions (Light and Meteorological 
Road Surface Condition) 

Output Variable: Riskiest Environmental condition of 

Darkness - No Street Lighting, 
and Dry 

Darkness - Street Lights 
present, unlit and Dry 

Darkness - No Street Lighting, 

and Wet/Damp 

Darkness - Street Lights 

present, unlit and Wet/Damp 

Darkness - Street Lighting 
Unknown, and Dry 

Daylight and Dry 

Darkness - Street Lighting 

Unknown, and Wet/Damp 

Daylight and Frost 

Darkness - Street Lights present, 
lit and Dry 

Daylight and Snow 

Darkness - Street Lights present, 

lit and Snow 

Daylight and Wet/Damp 

Darkness - Street Lights present, 
lit and Wet/Damp 

n/a 

The neural network consists of neurons grouped into 
different interconnected layers of input, hidden and output 
layers. The neurons from one layer interact with neurons 
from other layers through weighted connection, a real 
number signifying the strength of association and its 
relationship. A neuron from a single layer is attached to 
multiple neurons from the previous layer. In this manner, the 
signal flows throughout the network. Through these 
weighted connections, the networks learn to map the given 
input with the output and perform non-linear mapping of a 
higher differential order, which cannot be undertaken using 
simple conventional mathematical theories. The following 
four steps iterative process is used for modelling the input 
(Table II), with the output (Table III) variables  

Step 1: Firstly, random weights are assigned to each 
connection between the input and hidden, first and second 
hidden, and second hidden and output layer. For signal 
transmission within the layer’s activation function, 
'Hyperbolic tangent' for the hidden layers (eq 1), and 
'Softmax' for the output layer (eq 2) is used.  

 

(1) 

 

 (2) 

 

where   is the activation of the ath output neuron, and m is 
the number of output neurons. These functions take real 
numbers as arguments and return real values [-1, +1]. 

Step 2: Cross-entropy error function (eq 3) is used to 
obtain the error (as initially weights are randomly assigned) 
between the desired output (target) and output achieved. 

 

(3) 

where Oa is the actual output obtained for the output node j, tj 
is the largest value of j, and m is the number of nodes. 

Step 3: The initial randomly assigned weights are 
updated based upon the error achieved in step 2. The 
backpropagation algorithm is used to determine the training 
error's gradient in each training case (epoch). 

a) nodes between the input and hidden layer 

 

(4) 

 

b) nodes between the output and hidden layer 

 

(5) 

 

In each of the training case (epoch), The weight is 
updated continuously in each epoch,  by adding it  

 

(6) 

 (7) 

  is the learning rate, and x is the input variable.  

Step 4: The weights are continuously updated, i.e., 
iteration is performed until either minimum change in 
training error or the maximum number of iterations (epochs) 
condition is fulfilled. 

The network structure to construct the model is explicitly 
defined in Table IV. 

Table IV. The network structure of the deep learning model 

Network 

Topology 

Number of hidden layers 2 

Elements in each layer 350 

Activation function between the 

hidden layers 

Hyperbolic 

Tangent 

Activation function between 

hidden and output layer 

SoftMax 

Error function Cross-entropy 

Training Type Batch 

Optimization Scaled conjugate 

gradient 

Initial Lambda 0.000000001 

Initial Sigma 0.000000001 

Initial Centre 0 

Initial offset ±0.000000001 

Stopping 

and 

Memory 

Criterion 

Steps (maximum) without a 
change in the error 

999,999 

Training (maximum) time 999,999 

Training (maximum) epochs  999,999 

Relative change in the training 
error (minimum) 

0.000001 

Relative change in the training 

error ratio (minimum) 

0.000001 

Cases to store in the memory 
(maximum) 

999,999 

 

The recommended methodology for  measuring the 
performance of the constructed model is to develop Receiver 
Operating Characteristics (ROC) curve [52], which gives the 
visual display of sensitivity and specificity.. Sensitivity is a 
measure of true positive cases that are predicted by the 
model as positive, whereas specificity is the measure of the 
true negative cases. To evaluate the performance 
quantitatively, Area Under the Curve of the ROC (AUROC) 
is used, an evaluation matrix utilized for checking networks' 
classification performance. ROC is a probability curve, and 
AUROC represents the measure of the separability power of 
the network. In calculating the risk, the better the AUROC 



value (closer to 1 (100%)), the better is the network's 
distinguishable power between the risky and non-risky 
environmental condition. Besides, gain and lift charts are 
used for qualitative evaluation, the visual aids for evaluating 
performance. After constructing the model and measuring 
the performance, the next step is to validate the model 
through validation datasets. This process ensures an unbiased 
evaluation of the fitted model on the training dataset while 
tuning the model hyperparameters. This is followed by 
checking the model's performance on unseen data, providing 
an unbiased evaluation of the final model constructed using 
the training dataset. Through this three-step process of 
training, validation, and testing, the constructed model's 
performance is estimated to establish the credibility and 
confidence for further evaluation, planning, design, and 
policy implications.  

C. Causal Inference 

The critical variables in the data learning model are 
identified through variable importance, and normalized 
importance of each variable concerning the most critical 
variable is also calculated. This is based upon both testing 
and validation data sets. The independent variable 
importance is a measure of how much the predicted output 
value changes viz a viz change in the input variable. The 
normalized importance of each input variable is their 
respective importance value divided by the largest 
importance value, expressed as a percentage. 

These critical variables identified, need to be validated 
statistically for their association. These are measured either 
on a nominal or ordinal scale. Therefore, non-parametric 
technique is the ideal statistical method in such a case, 
especially when the sample size is small. However, two 
assumptions need to be met i) Random sampling, and ii) 
Independence of observations. The crashes are a random 
phenomenon [53] and are independent of other crashes 
occurring at different locations, thereby, satisfying the two 
requisite requirements. The chi-square test for goodness of fit 
is a non-parametric technique, which tests whether there 
exists a relationship between the two variables and uses the 
sample data to test the hypothesis regarding the shape of the 
proportion of population distribution. It determines how well 
the obtained sample proportions fit the population proportion 
specified by the null hypothesis. Each variable in the sample 
is classified on n variables, creating an n-dimensional 
frequency distribution matrix. Whenever chi-square test 
involves a matrix larger than two by two order, modification 
of the Phi-Coefficient known as Cramer's V, is used to 
measure the strength of association [54]. The following four-
step statistical approach is used:  

Step 1: Degree of freedom of the two variables, whose 
association is being evaluated is calculated:  

dfRVC

where R = row, and C = column 

Step 2: Chi-square statistic is calculated: 

 

(9) 

Step 3: For determining the strength of the correlation, 
Cramer's V statistic is calculated:   

 
     (10) 

Step 4: Strength of correlation: Cramer's V is a single-
valued output, which is converted into qualitative knowledge 
through Cohen's table. This determines the strength of 
correlation using the degree of freedom and numerical V 
value, in terms of no correlation, small, medium, and large 
correlation. 

III. RESULTS AND DISCUSSION 

A.   Statistical Model 

There are 3,325 (79.3% slight, 19.9% serious, and 0.8% 
fatal) cyclist crashes reported in the study area. Out of these, 
83 % occurred in daylight and 82% on the dry road surface. 
The mode choice for a cyclist is affected by the adverse 
environmental conditions. It is established in the literature 
[15] that cyclist's mode choice is highly varied and 
susceptible to change due to change in the environmental 
conditions. As the mode usage during these adverse 
conditions is low, therefore, reported crashes are also low in 
these conditions. There is a strong bias towards daylight 
crashes. This has the potential to result in modelling 
inaccuracy in the predictive deep learning model, as it will be 
difficult for the neural network to learn, classify and test 
effectively, and distinguish between different output 
variables. Therefore, lighting variables are further grouped 
into another environmental variable, i.e., meteorological road 
surface condition (Table VI). 

Table V. Crash recorded in a) classification by fatality b) varying 
environmental conditions in the study area. 

Time Period 2005-2018 Variable Value 

Slight 2638 Darkness 542(16.8%) 

Serious 661 Daylight 2683 (83.2%) 

Fatal 26 Dry 2644 (82%) 

Total  3325 Wet/Frost/Snow 581(18%) 

For understanding the spatial variation of crashes and 
hypothesis testing, following heatmaps are constructed. 

  

 Fig. 2. Heat maps for hotspot identification for a) Daylight, and b) Darkness 
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Fig. 3. Heat maps for hotspot identification for a) Dry Road Surface, and b) 
Wet/Snow/Frost. 

 

 
 Fig. 4. Heat maps for hotspot identification for a) Daylight, and Dry Road 

Surface, and b) Darkness, and Wet/Snow/Frost. 
Table VI. Crash recorded in the combined environment variable. 

Variable  Frequency (f) %age Variable  f %age 

Darkness - No 

Street Lighting, 

and Dry 

25 0.8 Darkness 

- Street 

Lights 
present, 

unlit and 

Dry 

8 0.2 

Darkness - No 
Street Lighting, 

and Wet/Damp 

23 0.7 Darkness 
- Street 

Lights 

present, 
unlit and 

Wet/Dam

p 

1 0 

Darkness - 

Street Lighting 

Unknown, and 

Dry 

10 0.3 Daylight 

and Dry 

2333 72.3 

Darkness - 

Street Lighting 

Unknown, and 
Wet/Damp 

4 0.1 Daylight 

and Frost 

16 0.5 

Darkness - 

Street Lights 
present, lit and 

Dry 

268 8.3 Daylight 

and Snow 

1 0 

Darkness - 
Street Lights 

present, lit and 

Snow 

6 0.2 Daylight 
0and 

Wet/Dam

p 

333 10.3 

Darkness - 
Street Lights 

present, lit and 

Wet/Damp 

197 6.1   n/a   n/a  n/a 

 
The hotspot results suggest that how different locations act as 
a hotspot depends on the environment variables of lighting 
and meteorological road surface condition. There is an 
expected centralization in Newcastle city centre, as it has a 
higher cyclist flow than the rest of the study area. Similar 
results for the city centre have been reported in the literature 
for university towns (see [55] ). Newcastle, predominantly a 
university town, is surrounded by two big universities. It is 
evident from Fig 2-4 that except for this centralization; the 
crash pattern in terms of both frequencies as well as density 
and spread is significantly different for each environmental 
variable case. The study area is made up of local council 
units (Fig 1) with varying land-use patterns and traffic mixes 
in terms of composition and 85th percentile speed. As a 
result, the design and operation of infrastructure networks 
alter ( modelled in the predictive infrastructure model), and 
their safety is influenced by changing environmental 
circumstances. This leads to conclude that the safe usage of 

infrastructure depends on the environmental conditions that a 
cyclist is subjected: i) Daylight and darkness, ii) Dry, and 
wet/snow/frost road surface, and iii), Daylight with dry, and 
darkness with wet/ snow/frost road surface condition. These 
conditions result in a varied level of risk for the same type of 
infrastructure to the cyclist, making the rider's subjected 
environmental conditions a dynamic road safety variable. 

This is an unexpected finding, compared with the 
traditional road safety models/theories available in the 
literature. The present models although acknowledge, that 
road infrastructure and safety are interlinked. However, they 
do not consider that environmental conditions affect different 
infrastructure's safety in a varied manner, reinforcing the 
conclusion from Dublin cycling model [44], that the present 
models do not consider the cyclist's limitations and 
vulnerability. Unlike cyclists, the motorists are not adversely 
affected by these adverse environmental conditions, e.g., wet 
road surface condition will only affect the friction and skid 
resistance for the motorists. This effect is usually the same 
across all types of infrastructure. However, for a cyclist, the 
interaction with the infrastructure is already much more 
complicated and difficult. These adverse conditions pose 
varying challenges for the rider while using the 
infrastructure, which results in both physical and cognitive 
strains, and therefore act as a significant road safety variable  
(safety law of cognitive capability [12]). Thus, complex 
environmental conditions of lighting and meteorological road 
surface condition, alone and in combination with each other 
affect the cyclist's safe interaction with infrastructure. This 
variable needs to be modelled effectively and efficiently to 
develop the requisite knowledge-driven approach for cycling 
infrastructure. Such modelling will allow for the 
development of a dynamic safety index, which will allow 
safety analysis at the individual level (nanoscopic), rather 
than at a macroscopic level. To estimate the safety at an 
aggregate level, such as the city, this nano-safety can be 
aggregated to depict an area's overall safety. This shift in 
safety analysis towards nanoscopic modelling can help 
achieve the zero-vision road traffic fatality, demonstrated in 
the next section.  

B. Deep Learning model. 

The deep learning predictive models are constructed with 
a highly non-linear structure comprising of two hidden 
layers; with the principle characteristics described in Table 
VII. To evaluate the accuracy of the models, ROC curves are 
developed (Fig 5), and for numerical quantification, AUROC 
values are presented in Table VIII. In addition to the average 
AUROC values for three models, each output variable's 
values are also tabulated to ensure that both the overall 
accuracy and individual accuracy of each variable are 
evaluated. To compare the model's performance with the 
probability-based statistical model, lift charts are developed 
(Fig 6). 

There are three different predictive models constructed 
using the input i) Spatial, ii) Personal, and iii) Infrastructure 
variables. Significantly high accuracy is obtained in all these 
constructed models, with the output of the 'riskiest 
environmental subgroup'. The model can take 13 output 
values; therefore, the ideal 100% accurate model will have 
an AUROC value of 13. The following AUROC values are 
obtained for, i) Spatial: 12.36 (95%), ii) Personal: 10.22 
(79%), and iii) Infrastructure variables: 11.11 (85%), with an 
average value of 11.23 (86%). The accuracy achieved for the 
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least accurate model (i.e. personal attribute) is significantly 
higher compared to available models in the literature (e.g.  
[45] found an error of more than 2/3 in Finnish TRAVA 
safety model for a cyclist, [56] found that due to inaccuracy, 
around 70% of the European countries either don't or rarely 
use crash prediction models). Although the present models in 
literature mostly serve their intended purpose, however for 
the cyclist these need to take into the specific safety variable 
such as the variable environmental conditions. The 
individual prediction capability of each of the 13 subgroups 
that the output can take is also evaluated separately. The 
median prediction accuracy of these 13 outputs for spatial, 
personal, and environmental model is 98%, 87% and 79% 
respectively. Thereby establishing the credibility of the 
constructed model. The high accuracy is attributed to the 
ability of deep learning methodology to model the non-linear 
complex relationships. The crashes are multifactored and 
relationship between the contributory factors is highly non-
linear and complex. Therefore, it can be concluded based 
upon the accuracy obtained, that deep learning is a useful 
methodology for road safety investigation to develop 
accurate and efficient nanoscopic safety models. 

Table VII. Characteristics and Structure of the constructed Network 

Characteristics and Structure of the constructed Network  

Input 
Layer 

 Spatial model Personal 
Model 

Infrastructure 
model 

1 Hour Gender Road Type 

2 Number of 
Vehicles 

Age Speed limit 

3 Month Age and 
Gender 
(combined) 

1st Road Class 

4 Day Journey 
Purpose 

Road Hierarchy 
Level 

5 Weekday or 
Weekend 

n/a Road Hierarchy 
level and 
direction 

6 n/a n/a Junction Detail 

7. n/a n/a Junction Control 

8 n/a n/a 2nd Road Class 

9 n/a n/a Vehicle 
Maneuver 

10 n/a n/a Vehicle 
Junction 
Location  

11 n/a n/a Road Location 
of vehicle 

12 n/a n/a Carriageway 
Hazards 

No. of Input Units 50/ 29/86 

Hidden 
Layer(s) 

Total No. of Hidden Layers 2 

Total No. of Units in the Hidden 
Layers 

700 (350in each 
layer) 

Output 
Layer 

Dependent Variables Riskiest 
Environment 
Condition 

Total No. of Output units  13 

Error Function Cross-entropy 

Activation Function for Hidden Layers   Hyperbolic tangent 

Activation Function for Output Layer SoftMax 

Table VIII. The area under the curve for the three constructed deep 
learning models 

 
Spatial Personal 

Infra-

structure Average 

Darkness - No Street 
Lighting, and Dry 0.94 0.74 0.87 0.85 

Darkness - No Street 
Lighting, and Wet/Damp 0.92 0.81 0.97 0.9 

Darkness - Street 

Lighting Unknown, and 

Dry 0.7 0.88 0.96 0.85 

Darkness - Street 

Lighting Unknown, and 

Wet/Damp 1 0.94 0.82 0.92 

Darkness - Street Lights 
present, lit and Dry 0.98 0.67 0.86 0.84 

Darkness - Street Lights 

present, lit and Snow 1 0.97 1 0.99 

Darkness - Street Lights 
present, lit and 

Wet/Damp 0.99 0.75 0.87 0.87 

Darkness - Street Lights 
present, unlit and Dry 0.98 0.66 0.87 0.84 

Darkness - Street Lights 

present, unlit and 

Wet/Damp 1 0.85 0.42 0.76 

Daylight and Dry 0.96 0.64 0.84 0.81 

Daylight and Frost 0.96 0.91 0.87 0.91 

Daylight and Snow 1 0.79 0.9 0.9 

Daylight and Wet/Damp 0.92 0.63 0.86 0.8 

Total 12.36 10.22 11.11 11.23 

Average 0.95 0.79 0.85 0.86 

Median 0.98 0.87 0.79 

 
     

 

 
 

Fig. 5. Receiver Operating Characteristics (ROC) curve a) Spatial, b) 

Personal, and c) Infrastructure 

 

high low  



 

Fig. 6. Lift Chart a) Spatial, b) Personal, and c) Infrastructure 

C. Causal Inference Method 

1) Importance of input variables  
The importance of each variable and their respective 

normalized importance are calculated and tabulated in Table 
IX.  

Table IX. Normalized importance of various variables in the three 
constructed models 

 Variable Importance Normalized 

Importance 

 

 

 

Spatial 

Hour 0.281 100.0% 

Number of Vehicles 0.168 59.7% 

Month 0.264 93.7% 

Day 0.179 63.8% 

Weekday or Weekend 0.108 38.2% 

 

 

Personal 

Driver Gender 0.166 48.2% 

Driver Age Group 0.281 81.5% 

Age and Gender 0.345 100.0% 

Journey Purpose of 

Driver/Rider 

0.208 60.3% 

 

 

 

 

 

 
Infrastructure 

Road Type 0.083 82.8% 

Speed Limit 0.085 84.8% 

1st Road Class 0.073 73.0% 

Road hierarchy level 0.076 76.0% 

Road hierarchy level 
and direction 

0.092 91.2% 

Junction Detail 0.086 85.6% 

Junction Control 0.070 69.4% 

2nd Road Class 0.089 88.9% 

Vehicle Manoeuvre 0.101 100.0% 

Carriageway Hazards 0.078 77.1% 

Road Location of 

Vehicle 

0.084 83.3% 

Junction Location of 
Vehicle 

0.082 81.3% 

In the spatial model, the most critical variables are hour 
and month in which the journey is undertaken. The hour and 
month of travel can also be correlated with the lighting 

conditions, however, more than 80% of the crashes have 
occurred in daylight. Both these variables are a 
representation of the traffic flow regime. Traffic flow is 
reported a significant variable affecting cycling safety (see 
[57]–[59]). The number of vehicles that are involved in the 
crash is not a significant variable, however, the overall traffic 
flow regime that the cyclist is exposed to during the entire 
trip is found to be a critical variable. The safety is negatively 
affected as the number of variables to be considered by the 
cyclist increases (safety law of cognitive capability [12]). 
This increase in the variable during the entire trip imparts the 
unsafeness in the interaction. This leads to the conclusion 
that traffic flow regime directly impacts the probable riskiest 
environmental condition to be experienced by the cyclist. A 
more in depth understanding of these variables in future has 
the potential to lead towards development of a real time 
autonomous route selection model, based upon the prevalent 
flow regime and environmental conditions.    

In the personal variable model, the most important 
variable is the age and gender (combined) (100%), followed 
by driver age (81%), journey purpose (60%), and gender of 
the trip maker (48%). The rider's age and gender have an 
impact on how they react to varying environmental 
conditions (vulnerability, and experience of different age 
groups). The rider belonging to different age and gender 
have varied physical and cognitive abilities, thereby reacting 
differently to varied adverse environmental conditions. The 
result is a contribution to the understanding of how personal 
attributes of the rider affect their safety. Although age is an 
expected variable, however, results have shown that both 
gender and age in combination with each other (however, 
gender alone being the least significant variable), affect safe 
usage of the infrastructure in varied environmental 
conditions.  

In Infrastructure model, the most critical variable is the 
vehicle manoeuvre (100%), followed by road hierarchy level 
and direction (91%), second road class (89%), junction detail 
(86%), and speed limit (85%). The least important variable is 
the control employed at the junction. This leads us to infer 
that the environmental conditions become critical when the 
cyclist must perform specific manoeuvres while interacting 
in the natural road environment. This is followed by the 
difference in the road hierarchy level and the corresponding 
direction of change in the hierarchy of road networks in 
which the cyclist is required to perform these specific 
manoeuvres. The third variable is the second road class. The 
road hierarchy level and direction, and the second road class 
are correlated with each other. The variable of road hierarchy 
level and direction signifies the difference between the first 
and second functional road classes. The next important 
variable is junction details and speed limit. Therefore, we can 
conclude, at intersections, environmental conditions become 
critical based upon the specific riding manoeuvres, the 
difference in road hierarchy level and direction of the change 
in road hierarch, and junction details. These are the most 
critical infrastructure parameters, affecting safe usage of the 
infrastructure under varying environmental conditions.  

The novel variable introduced in this research, i.e., road 
hierarchy level and direction is found to be a critical variable. 
This can be attributed to a sudden change in driver 
behaviour, infrastructure parameters, and change in traffic 
flow regimes (which has been found critical in the spatial 
model). The motorists are not affected by such scenarios, as 



they are required by law to change the speed (with the 
change in the road hierarchy) and adhere to the speed limit 
on  specific roads. The cyclist needs to make an immediate 
change in its riding style, the relative safety margin of errors, 
and its manner of interaction with the motorists. The motorist 
may start sudden accelerations, as they may want to 
accelerate suddenly if they have moved to a higher 
hierarchical functional road class, negatively affecting its 
interaction with the cyclists. The design elements of roadway 
also change drastically due to a change in the road hierarchy 
(see [60], [61] ). The cyclist is more susceptible to these 
changes, whereas these infrastructure elements are designed 
specifically for the motorists, and their expected manoeuvres. 
Therefore, the research reinforces a requirement for planning 
and designing the infrastructure to move towards a more 
holistic approach while considering this vulnerable road 
user's limitations. Suppose we are to achieve a sustainable 
urban transport system. In that case, the cycling mode share 
has to increase by many folds ( [62] highlighted the 
importance of increasing modal share of the cyclist in their 
scenario analysis for a sustainable transport system for the 
study area). This increase can only be achieved, if we make 
cyclist the pivot of our infrastructure design and network 
planning. 

2) Statistical validation 
The association between the target variable and input 

variables is tested statistically using Chi-square test. Their 
strength of the association with the riskiest environment is 
determined using Cramer's V value and Cohen's table. 

Table X. Chi-square test for different variables across gender 

Variable Dof  Chi-

square 

value 

p-value H Cramer's V A  

Hour 13 2488.8 0.01  0.24 M 

Number of 
Vehicles 

4 130.1 0.01  0.1 S  

Month 11 1080.9 0.01  0.18 M 

Day 6 163.2 0.01  0.09 M 

Weekday or 

Weekend 

1 14.6 0.33  n/a n/a 

Driver Gender 1 24.1 0.03  0.09 S 

Driver Age Group 6 267.0 0.01  0.11 M 

Age and Gender 13 402.3 0.001  0.10 S 

Journey Purpose 

of Driver/Rider 

5 233.9 0.01  0.12 S 

Road Type 5 80.3 0.01  0.07 S 

Speed Limit 5 348.2 0.01  0.15 M 

1st Road Class 4 167.6 0.01  0.11 S 

Road hierarchy 

level 

4 163.4 0.01  0.11 S 

Road hierarchy 
level and 

direction 

8 225.4 0.01  0.09 S 

Junction Detail 8 342.4 0.01  0.12 S 

Junction Control 3 164.3 0.01  0.13 S 

2nd Road Class 5 241.6 0.01  0.12 S 

Vehicle 

Manoeuvre 

13 311.1 0.01  0.09 S 

Carriageway 

Hazards 

4 144.5 0.01  0.11 S 

Road Location of 

Vehicle 

7 127.1 0.07  n/a n/a 

Junction Location 

of Vehicle 

8 206.8 0.01  0.09 S 

where Dof is the degree of freedom, H is the hypothesis 
adopted, Ho; Null hypothesis: Interaction in the risky 

environment is independent of the variable, H1; Alternate 
Hypothesis: Interaction in the risky environment is 
dependent on the variable, and A is the type of the 
association (S = Small, M = Medium, n/a = no association) 

These results have depicted that the identified critical 
variables from deep learning model are associated with the 
risky environment at a 99.9% confidence interval. This is 
further validated by the Cramer's V value and the 
corresponding interpretation using Cohen's table. The only 
two variables, i.e., weekday or weekend, and road location of 
the vehicle, are not statistically associated; the same result 
from deep learning variable importance. Thereby validating 
the deep learning results statistically and developing the 
requisite confidence for model application and policy 
implications. 

IV. LIMITATIONS  

The study uses the crash database, based upon the 
reported crashes. However, there is a reported underreporting 
in the literature, especially concerning single cyclist slight 
crashes. In contrast, severe and fatal crashes are almost 
certainly reported due to the nature of the injury sustained. 
However, there are very few alternatives to using the crash 
database; although other methods have been explored, such 
as naturalistic study (see [63], [64]). However, these methods 
are still in infancy as their results cannot be quantified in 
terms of lives saved, or disruptions to the transportation 
network. Another methodology explored is making use of 
hospital data; however, such data cannot be further linked to 
the exact infrastructure location, time of the crash, and the 
prevalent traffic flow regime. The primary motivation for 
using the crash database is the ability to quantify the results 
and establish confidence for the policy implications, and 
further use of knowledge-driven measures by the road safety 
professionals.  

V. CONCLUSION   

In this work, the factors that determine the manner by 
which a cyclist interact with the road infrastructure is 
investigated, including variable environmental conditions of 
lighting and meteorological road surface. There are very few 
works in the literature which have modelled this variable.  In 
the present literature, there have been compromises due to 
research focused on a single framework. The crashes are a 
multi-dimensional and multifactored phenomenon, requiring 
a similar multi-dimensional approach. In this study, an 
intelligent hybrid modelling framework is applied on north-
east of England, consisting of a data collection unit and a 
knowledge processing unit (KPU). The KPU consists of: a ) 
The statistical framework, b) Deep learning, and c) Causal 
inference. Three nanoscopic safety models have been 
constructed in the KPU, and a causal relationship has been 
identified between i) Spatial, ii) Infrastructure, and iii) 
Personal variables, with varying environmental conditions, 
followed by statistical validation. By combining multiple 
frameworks, we have demonstrated that a road safety model 
can be constructed with significantly high accuracy (spatial 
95%, personal 79%, and infrastructure 85%, with an average 
of 86% across all models) and predictive power. To estimate 
the safety at the city level, this nano-safety can be aggregated 
to depict the overall safety of an area. A novel infrastructure 
variable, i.e., 'road hierarchy level and direction' is 
introduced in this study, which has been found critical. It is 



recommended that this variable is considered in cycling 
infrastructure planning and network design. The following 
main conclusions are deduced from the study a) Unsafeness 
of the interaction between user and infrastructure is 
dependent upon lighting and road surface meteorological 
conditions, b) Different environmental conditions pose 
different risks to different types of infrastructure, c) The 
riskiest environmental conditions are significantly affected 
by rider's gender and age group, and the prevalent traffic 
flow regime, d) The environment conditions significantly 
affect the interactions in which the rider needs to undertake 
specific manoeuvres due to a sudden change in the road 
hierarchy. The change in road hierarchy level and direction 
of change, (i.e., from higher hierarchical functional 
infrastructure type to a smaller one or vice versa) impacts the 
safety interactions, and e) The increase in the number of 
variables that are encountered during the entire trip 
negatively impact cycling safety.  

A shift in the road safety analysis towards nanoscopic 
modelling can help achieve zero-vision road traffic fatality. 
The research reinforces a need for planning and design of 
infrastructure to move towards a more holistic approach 
while considering the limitations of this vulnerable road user. 
The result can contribute towards improving road safety and 
lead towards the development of a sustainable integrated 
cycling transportation system. It is hoped that this research 
will help reduce the cyclist crashes, thereby contributing to 
the promotion of this travel mode. The final output variable, 
i.e., the riskiest environmental condition, can be correlated 
with many underlying factors. Therefore, future research 
should aim to create a heterogeneous model, which can 
uncover the underlying variables. 
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