LEAGAN: A Decentralized Version-Control
Framework for Upgradeable Smart Contracts

Gulshan Kumar, Senior Member, IEEE, Rahul Saha, Senior Member, IEEE,
Mauro Conti, Fellow, IEEE, William J Buchanan, Member, IEEE

Abstract—Smart contracts are integral to decentralized sys-
tems like blockchains and enable the automation of processes
through programmable conditions. However, their immutability,
once deployed, poses challenges when addressing errors or bugs.
Existing solutions, such as proxy contracts, facilitate upgrades
while preserving application integrity. Yet, proxy contracts bring
issues such as storage constraints and proxy selector clashes -
along with complex inheritance management.

This paper introduces a novel upgradeable smart contract
framework with version control, named ”decentraLized vErsion
control and updAte manaGement in upgrAdeable smart coN-
tracts (LEAGAN).” LEAGAN is the first decentralized updatable
smart contract framework that employs data separation with
Incremental Hash (IH) and Revision Control System (RCS). It
updates multiple contract versions without starting anew for
each update, and reduces time complexity, and where RCS
optimizes space utilization through differentiated version control.
LEAGAN also introduces the first status contract in upgradeable
smart contracts, and which reduces overhead while maintaining
immutability. In Ethereum Virtual Machine (EVM) experiments,
LEAGAN shows 40% better space utilization, 30% improved
time complexity, and 25% lower gas consumption compared to
state-of-the-art models. It thus stands as a promising solution for
enhancing blockchain system efficiency.

Index Terms—Blockchain, smart contract, consensus, update,
version

I. INTRODUCTION

LOCKCHAIN is one of the most promising technologies

within the decentralized computing paradigm [1], with
the advantages of immutability, transparency, and enhanced
security [2] [3]. Overall, smart contracts in blockchain provide
a programmable module stored on a blockchain [4]. These
contracts run when predetermined conditions are met and
where they automate the execution of an agreement. With
this, all the participants in a smart contract immediately
obtain the certainty of an outcome without any intermediary’s
involvement or time loss. Smart contracts are thus integral
parts of a blockchain and attract researchers and developers
to enhance performance, integrity, management alignment,
coherence, and compatibility.

M. Conti is with the Department of Mathematics, University of Padua, Italy,
e-mail: jmd.tannishtha@gmail.com, mauro.conti @unipd.it

R. Saha and G. Kumar are with the Department of Mathematics, Uni-
versity of Padua, Padua, Italy and School of Computer Science and Engi-
neering, Lovely Professional University, India, email: rsahaaot@ gmail.com,
gulshan3971 @gmail.com

W. J. Buchanan is with the Blockpass ID Lab at Edinburgh Napier
University, United Kingdom, email: b.buchanan@napier.ac.uk

Manuscript received June XX, 2023; revised August XX, 2023.

An efficient smart contract requires some essential charac-
teristics including being distributed, deterministic, immutable,
autonomous, customizing, trustless, self-verifying, and self-
enforcing. These features ensure accuracy, automation, speed-
up, backup, security, multi-signature account, and informa-
tion management within blockchain transactions [5]. The
immutability feature of smart contracts guarantees contract
performance based on the contract code and where this code
is immutable and irreversible. The deployed smart contract
remains the same on the blockchain forever until it is re-
programmed. The history of the transactions forming part of
the contract is recordable; thus, a smart contract provides
strong transparency and safekeeping. On the other hand, the
immutability feature of smart contracts creates a problem
when an erroneous event occurs in the code, as the smart
contract prohibits itself from being rectified [6]. Moreover,
smart contract amendments are non-permissible even though
the smart contract environmental conditions change. Over-
all, though the problem of immutability is relevant in post-
deployment, smart contracts are mutable in the pre-deployment
phase. To overcome these issues, we need improved smart
contract versioning or version management [7].

Version management in smart contracts is a crucial aspect of
blockchain technology that ensures decentralized applications’
seamless evolution and upgradability. Smart contracts, once
deployed on a blockchain, become immutable, and this makes
it challenging to fix bugs or introduce new features without
disrupting the entire system. This requires version manage-
ment strategies. Developers often create contract versions with
improved functionalities or bug fixes and can adhere to stan-
dardized upgrade patterns such as the proxy contract pattern.
These new versions can be seamlessly connected to existing
contracts, and preserve the integrity of the blockchain’s history
whilst allowing for flexible and efficient upgrades. Careful
version management then not only enhances the reliability
and security of smart contracts, but also fosters the growth
and adaptability of blockchain-based applications in a rapidly
evolving digital landscape.

A. Classification of smart contracts upgrade methods

We can classify the approaches of upgradeable smart con-
tracts into five categories [8] [9]:

o Contract migration. This involves deploying a new
version of the smart contract while transferring the state
and data from the old contract to the new one. This offers
flexibility, but requires switching to a new address.

o Proxy-based. This approach utilizes a proxy contract
that separates storage from business logic. Overall, this
allows seamless upgrades by redirecting calls to a new
logic contract without changing the user-facing contract
address [10]. The main drawbacks of this approach are
add-on complexity and higher gas costs. Proxy patterns
in smart contract upgradeability involve using a separate
contract (the proxy) to delegate calls to another contract
(the implementation) that contains the business logic.
This allows for upgrades by changing the implemen-
tation address while keeping the same proxy address
and preserving user interactions and state. For example,
the proxy handles user interactions in an upgradeable
voting contract while the implementation manages vote
counting. If a bug is found, the implementation can
be replaced without changing the proxy address, thus
maintaining user trust.

« Data separation. This approach further enhances mod-
ularity by distinctly managing data storage and contract
logic. Overall, this simplifies upgrades but introduces the
challenge of coordination between multiple contracts. In
contrast with the proxy-based approach, data separation
methods store contract data separately from the logic.
An example can be a voting contract, where a separate
data contract keeps voting records and allows for logic
upgrades without affecting the stored data. With a storage
contract, a proxy calls the logic contract during code
execution. Any changes are then written in the business
logic part, where the original smart contract or proxy calls
them through delegated calls.

o Strategy pattern. This enables the dynamic selection
of different logic implementations at runtime through
separate strategy contracts and provides flexibility for
applications needing to adjust to changing conditions with
added cost and complexity.

« Diamond pattern. This allows for multiple facets within
a single contract, enabling various functionalities to co-
exist and be upgraded independently, but requires careful
management to ensure the correct facet calls.

Each approach presents unique advantages and challenges,
and which makes them suitable for different use cases in
decentralized applications.

B. Motivation and contribution

The intrinsic immutability features of smart contracts re-
strict the post-deployment upgrade or versioning of smart con-
tracts. However, the versioning of smart contracts is essential
in the post-deployment stage due to the circumstantial changes
or bug fixes. The motivation behind an upgradeable smart
contract framework comes from the limitations of existing
frameworks, particularly their inefficiency in managing up-
dates and resource utilization. Traditional approaches [8] often
require the redeployment of entire contracts for each update -
leading to increased time complexity, higher gas consumption,
and inefficient space utilization. These challenges create a re-
search gap in developing a more efficient, decentralized system
that can handle updates without compromising immutability.

Therefore, in this paper, we introduce the first smart contract
versioning method that combines proxy contract optimization
and IPFS (InterPlanetary File System): decentraLized vErsion
control and updAte manaGement in UpgrAdeable smart coN-
tracts (LEAGAN) '. The main contributions are:

o Decentralized verification of update. The verification of
the changes (from an update or bug fix) in LEAGAN is
a transparent mechanism that provides security to smart
contract updates. Once any peer in the network initiates
the update request, the peer’s signature is verified. This
signature verification eradicates the probability of a non-
member of the blockchain initiating any update request.
An update verification process follows the signature veri-
fication, where each node provides a vote for the changes.
This consensus on the changes helps LEAGAN avoid any
unnecessary changes.

« Update increments. LEAGAN allows updates in the new
smart contract statements in the logic module of the exist-
ing smart contract. This process uses an incremental hash
method to integrate smart contract version management
and the traceability of changes. LEAGAN is the first
updatable smart contract framework to use the advantages
of incremental hash.

o Revision control. LEAGAN is the first smart contract
framework to include a revision control mechanism. In
this mechanism, LEAGAN compares the modification
of the smart contract and adds only the changed part
referring to the logic module of the data separation.
This feature is advantageous in minimizing resource
consumption.

o Status contract. LEAGAN introduces the concept of a
status contract, and which applies to proxy-based and
non-proxy-based upgradeable smart contracts. Overall,
the storage contract or the proxy contract is immutable,
and where existing implementations show the update of
addresses of the logic contract or implementation contract
in a storage contract. Thus, immutability becomes a
contradiction for storage contracts. Our proposed solution
is the first upgradeable smart contract framework to
ensure the immutability of the storage contracts by using
the status of all the modifications of the logic contracts
separately in a status contract. This also significantly
reduces the updates in the traditional upgradeable smart
contracts.

o Performance. The incremental hash in LEAGAN shows
the benefits of reduced time complexity of the smart
contract updates, and revision control assists in reducing
the space complexity. Thus, the combination of incre-
mental hash and revision control systems in LEAGAN
enhances the performance of our proposed smart contract
framework.

C. Paper organization

Section II discusses the available approaches for smart
contract updates. With Section III we outline the details

'In the Irish language, LEAGAN means version

TABLE I
SUMMARY OF CONTRIBUTION AND RESEARCH GAPS OF THE STATE-OF-THE-ART MODELS

Reference Contribution

Research gap

P. Antonino et al. [11] | Proposes formal specification-based upgrades

Centralization risks due to the off-chain trusted deployer

V. C. Bui et al. [12]

Comprehensive-Data-Proxy pattern tackles re-entrancy attacks

Scalability and proxy selector clash issues

M. Rodler et al. [13]

EVMPATCH enables automated patching without source code

EVMPatch relies on bytecode rewriting, which complicates
debugging and introduces compatibility issues

C. F Torres et al. [14] | Byte-code level patching via Elysium

Fails to address modularity in upgrades

Z. Du et al. [15] Four-tier model for smart contract upgrades

Overhead from on-chain verification

M. Salehi at al. [16] Proxy mechanisms widely adopted

Access control concerns due to EOAs controlling proxies

T. Li et al. [17]

ATOM optimizes contract updates with differentiated code

High overhead from recompilation and redeployment

Y. Huang et al. [18] Differentiated code for interpreting updates

Focuses on logic without considering comprehensive resource
optimization

W. Shao et al. [19]

LSC for online auto-update with anomaly detection

Limited generalizability for broader blockchain applications

of our proposed LEAGAN, and including a system model
following a detailed description of modular functionalities.
Then, Section IV analyzes the security parameters based on
existing smart contract attack models. Section V then discusses
the implementation method, performance metrics, and the
obtained results. Finally, we conclude our work in Section VI.

II. EXISTING SOLUTIONS

Due to their complexity and compatibility issues, smart
contract updates are crucial in post-deployment. Unfortunately,
existing solutions for updatable smart contracts are limited,
particularly in version management. As blockchains and smart
contracts are immutable, updates require altering interaction
patterns rather than direct changes. In this paper, we investigate
key derivations for an upgradeable framework.

Overall, smart contracts are based on the code is law
paradigm. For this, the Ethereum community proposes audit-
ing tools and mutable design patterns, but these only partially
address the challenges of maintaining code the law effect
for detecting faulty contracts and then upgrading them. An-
tonino et al. introduced a systematic framework that moves to
formal specification-based smart contract upgrades [11]. This
framework includes an off-chain trusted deployer to ensure the
specification principle is followed. Here, the primary concern
is that the deployer introduces potential centralization risks and
vulnerabilities. This could compromise the decentralization
principles foundational to blockchain technology.

We study a proxy-based comprehensive framework in [12].
The authors propose the ”Comprehensive-Data-Proxy pattern,”
an innovative framework that combines data segregation with
the proxy pattern to effectively defend against all types of
re-entrancy attacks. The solution also addresses scalability
issues associated with the proxy pattern. Experimental results
demonstrate that the framework successfully tackles the chal-
lenges with minimal impact on performance. In another work,
the researchers introduce an automated patching framework,
called EVMPATCH [13]. It is designed to enhance the security
of unmodified smart contracts without requiring source code.
Utilizing a bytecode rewriter and proxy-based upgradeability,
EVMPATCH enables automatic patching and redeployment in
response to newly discovered vulnerabilities. It continuously
runs vulnerability detection tools to ensure timely updates with
minimal developer intervention. Another byte-code solution
for smart contract updates is available in [14]. A study on

smart contract upgradeability presents a four-tier smart con-
tract model [15]. The model includes proxy, verification, busi-
ness, and storage layers, facilitating contract linkage, integrity
checks, business logic execution, and uniform data storage.
Additionally, an on-chain upgrade and verification algorithm
is introduced to ensure contract upgrades, verifications, and
version compatibility. We observe that proxies are primarily
used for upgrading smart contracts, but they are not always
obvious and also raise security concerns. For example, the
work in [16] evaluates six upgradeability patterns and identi-
fies 1.4 million proxy contracts with 8,225 unique upgradeable
proxies in Ethereum. The study also reveals that about 50%
proxies are controlled by a single Externally Owned Address
(EOA); this raises concerns about access control and gov-
ernance in upgradeability. The proxy mechanism is indeed
easy to implement, but proxy patterns face the challenges
of smart contract compatibility, proxy selector clashing, and
storage issues. We separate business logic and data storage
into separate contracts in the data separation mechanism. We
need a new smart contract whose address must be configured
in the storage contract to update a smart contract, as this
contract is immutable. Strategy patterns use satellite contracts.
A new satellite contract can be developed with a new program
and configured with the main contract with a new address.
The diamond pattern improves the proxy pattern, where the
contract can delegate function calls to multiple logic contracts.

In a recent work [17], the authors show a new smart con-
tract architecture and optimization mechanism, called ATOM,
which provides architectural support to update contracts eco-
nomically and fast executing instruction-wise. Generally, the
smart contract architecture and updating mechanisms are low
speed and cause high overhead due to the recompilation
and redeployment process. ATOM addresses these issues and
shows its efficiency in updating the smart contract. The use
of differentiated code for the updatable smart contracts is
noteworthy [18]. Differentiated code is the source code except
for the repeated ones in two similar smart contracts. This
shows how a software feature is implemented or a program-
ming issue is solved. Such differentiated code is used to
interpret the update of a smart contract in its next version.
LSC, a framework for online auto-update smart contracts in
blockchain-based log systems is shown in [19]. LSC is a
secure updatable smart contract mechanism with time-varying
log anomaly detection. It uses self-adaptive machine learning

log anomaly analysis and is continuously fed to the contracts.
LSC uses shared anomaly detection strategies for audit log
systems to defend against targeted detection evasion. Table I
outlines the contribution and research gap for each of the
above-mentioned works.

The literature survey highlights significant challenges in up-
gradeable smart contracts, including centralization risks, proxy
selector clashes, bytecode rewriting complexities, scalability
issues, access control vulnerabilities, and inefficient resource
utilization. Existing frameworks rely heavily on proxy-based
mechanisms, differentiated code approaches, and auto-update
models. However, these models show limitations such as high
gas consumption, complex debugging, storage inefficiencies,
and lack of version traceability. Many solutions require off-
chain trusted deployers, which leads to centralization risks
or inefficient recompilation processes and increases compu-
tational overhead. Addressing these gaps requires a decen-
tralized, efficient, and modular framework that can manage
contract updates, optimize resource utilization, and ensure
security. Our proposed LEAGAN provides a solution to the
above-mentioned problems integrating incremental hashing,
revision control, and decentralized verification; this enables
efficient upgrades, transparent governance, and immutability,
reducing computational complexity while enhancing security,
scalability, and flexibility in blockchain-based upgradeable
smart contract management.

III. PROPOSED FRAMEWORK: LEAGAN

LEAGAN is the first comprehensive and decentralized smart
contract framework to include incremental hash-based updates,
revision management, and update verification. In this section,
we first describe the system model (Section III-A) of our
proposed LEAGAN followed by the module-wise function-
alities (Section III-B). Note that we discuss only the change
and update in a smart contract assuming all the other basic
functionalities of a smart contract are the same. We add
Table II to summarize the notations used to discuss our
proposed LEAGAN functionalities.

A. System model

In Figure 1, we show a comprehensive system model for
our proposed LEAGAN. The blockchain consists of a peer-to-
peer network. Any peer has the right to notify any legitimate
error or bug in the smart contract. Besides, we also open the
scope of the upgradeable smart contract not for error or bug
fixes, but LEAGAN also allows to include a verified change in
the form of any program condition or statement in the smart
contract. Thus, LEAGAN becomes a novel generic framework
for blockchain upgradeable smart contracts. Any peer (change
requester) requesting a change broadcasts a change request
message in the blockchain network. The other peers in the
blockchain network verify the signature of the requester and
the change request. We segregate the smart contract com-
position into three parts: business, data, and status. We can
also add the term contract to each of them to maintain the
notion of automated transactions. In an upgradable smart
contract scenario, the logic contract contains the business logic

TABLE II

SUMMARY OF IMPORTANT SYMBOLS AND THEIR DEFINITIONS
Symbol Definition
Reqc,, Change request by user u
Sigr Signature of a requester w
e Error
t Timestamp
M A message
M’ A modified message
H Hash family
HGen Probabilistic Polynomial Time (PPT) generator
H FEval Polynomial time hash evaluation
H(M) Synonymous to H Eval
IncH Incremental hash function

h Calculated hash value

Integers to represent the powers

m The changes in a message

C Collision-free compression function
3

K

index value for a series
Keccak-256 construction

S Original contract statement

S’ Updated or changed statement to be included in
the logic contract

Addrey, Byte code address of updated contract

(mutable), the data storage holds the contract’s state and data
(immutable), and the status contract tracks the version and
update status (mutable) of the logic contract. When an upgrade
occurs, the logic contract is updated while the data storage
remains unchanged, and the status contract records the new
version; this ensures continuity and transparency, i.e., non-
halt deployment. Once the signature and the change required
parameters are verified, LEAGAN uses an incremental hash to
update the business logic in the smart contract. At the same
time, LEAGAN uses a revision control system to manage
the versions of the smart contract and updates the address
of the business logic in the data storage. This mechanism is
integrated directly into the LEAGAN framework, functioning
as part of the smart contract system rather than as a separate
application. It is designed to seamlessly operate within the
blockchain environment, ensuring that updates are decentral-
ized and transparent. We discuss all the details of the above-
mentioned functionalities in Section III-B.

B. Functionalities

In this paper, we assume that the basic functionalities of a
smart contract are the same as those of our proposed LEA-
GAN. Therefore, we discuss only those functionalities, which
denote LEAGAN to be novel and efficient for blockchains. The
functionalities include change request verification, incremen-
tal hashed updates, version management through a revision
control system, and non-halt redeployment.

1) Change request verification: A peer u in a blockchain
notifies an error or bug by broadcasting a change request
Req.,, that contains the signature Sigr of the requester w,
the error e, the required change c, and the time stamp t.
Once Req,,, is received by the peers in the network, the peers
verify the signature by using the public key available in the
blockchain network. After the signature verification, the other
request parameter, such as timestamp, error, and the required
change, is verified. Timestamp verification helps avoid a replay

Blockchain

Verification

Signature verification

Y

Change verification

Change request

Smart

Non-halt redeployment

Business logic and version connection

Verified change

contract

Change
requester

Status
{Mutable}

A

Data storage
{Immutable}

Business logic
{Mutable}

Y

Smart contract

Version management

Revision control
system

a1epdn |ejuswalou|

Incremental hash to update the
change in business logic

Fig. 1. System model for proposed LEAGAN framework

of the request; error verification and change verification help
in the transparency of the smart contract update. We use ¢ to
denote the index of the number of users or peers requesting a
smart contract change, and where j is an indexing parameter
used for verification of the signature in the change request. We
need to compare the index values in order to avoid the problem
of self-validation of the signature. The maximum value of u;
can be the number of peers online and requesting the requests
at a time. We summarize the process in Algorithm 1.

2) Incremental hashed updates: Incremental hash functions
are commonly used to update a hash value by changing
a message from M to M’. These are calculated from the
existing hash value of M and without starting the calculation
from scratch. Thus, in contrast to conventional hash functions,
incremental hashes are faster and more resource-efficient. In
LEAGAN, we apply incremental hash for memory checker.
Here, we first describe the fundamentals of incremental hash
and then show the application of incremental hash in LEA-
GAN.

a) Fundamentals of incremental hash: Incremental hash
uses two functions: HGen and H Ewval as shown in [20].
Following the definition in [20], H is a family of hash func-
tions consisting of two functions (HGen, H Eval). HGen is
a Probabilistic Polynomial Time (PPT) generator that takes
inputs of 1% 1% andl™ and outputs a string H. HFEwval

Algorithm 1 Verification process in proposed LEAGAN
Input: Req. : Siggr,t,e,c
Output: verified Req.,,

_—
1: u; : broadcast Reqc,, : Sigr,t,e,c
2: for j=0ton—1do

3wy # u, : verify (Sigr)

4. if verify (Sigr) == TRUE then
5: verify(t, e, c)

6: if verify (t,e,c) == TRUE then
7: Return Regq,,, verified

8: else

9: Abort Reqc,,

10: end if

11: else

12: Abort Reqc,,

13: end if

14: end for

is a polynomial time hash evaluation algorithm that takes
H and a message M € B," as inputs and outputs a
k bit string called the hash of M under H. In particu-
lar, H(M) and HFEval(H, M) are synonymous. Incremen-
tal hash uses an update algorithm IncH for H with run-
ning time 7'(,,) if Vk,b,n,VH € [HGen(1¥,1°,17)],Vj €

1,2,..,n,and ¥ m € By. If h = HEval(H, M), then it is
the case that IncH(H, M, h, (j,m)) halts in T'(k,b,n) steps
with an output equal to HEval(H, M < j,m >). The proof
of collision-freeness of this incremental hash and its security
analysis is available in [20].

b) Incremental hash definition for LEAGAN: Our method
uses the Chaining-based Incremental Hash Function (PCIHF)
as defined in [21].

e HGen: We use C for a collision-free compression func-
tion with n-bits input and a k-bits random output string.
Using C, we obtain a series of intermediate hash values
for i € [1,n — 1], so that the following equation holds:

hli] = C(mli]|ml[i + 1]), (D

where m[i] is a bit in the input message to C. To ensure
the overall system’s security and efficiency, a modular
addition operation is beneficial as a combining operator.
This is associative, commutative, and invertible in a
particular group. The hash function is also parallel and
incremental. We fix the length of the final hash value H
to L in the generalization. We can calculate the final hash
value as follows:

H =" hlil(mod 2" + 1), 2)

where 7 € [1,n — 1].
Though the above generalization applies to HGen, it
is applicable to all hash functions. For the simplicity
of the implementation, we follow the hash functions
for Ethereum Virtual Machine (EVM), i.e., Keccak-256
construction (K).

e HFEwal: HEval takes three inputs: the hash function h[i],
the target message M;, and the data to be updated M,,.

Algorithm 2 Example of logic contract updates
1: contract ContractLogicl is
2: state variable: uint value
3 function initialize()
4 begin
5 value < 0
6: end function
7
8
9

function updateValue(uint x)
begin
value < value + x

0: end function
11: end contract
12: Modified logic contract example
13: contract ContractLogic?2 is
14: inherits: ContractLogicl
15: function updateValue(uint x)

—

16: begin
17: value < value + x + 20
18: end function

19: end contract

c) Incremental hash in LEAGAN: As stated earlier, LEA-
GAN follows a data separation method for smart contract
updates. Thus, the LEAGAN framework separates the smart
contract into two parts: a business logic contract or logic
contract and a data storage contract or storage contract. The
logic contract address is stored in the storage contract, and
the storage contract must be configured with the logic contract
address at the time of deployment.

LEAGAN exploits the utility of the data separation method
and shows that the configured address in the storage contract
is updatable as required with the help of the incremental hash.
Note that the storage contract update or upgrade means a
change in the memory address of the logic contract. For this,
we create two logic contracts to experiment with LEAGAN:
ContractLogicl and ContractLogic2 - as shown in Algo-
rithm 2. Within the implementation, ContractLogicl is the
first to be implemented, whereas Contract Logic2 contains an
update from ContractLogicl, that is, value+ = 20. As per
the traditional approach, each logic contract should have sep-
arate deployment addresses in the blockchain of Addrcy, and
Addrcy, respectively. These addresses are calculated using
the deployer address (sender) and the number of transactions
this account sends (nonce). The deployer address and the
nonce are Recursive Length Prefix (RLP)-encoded [23] and
hashed with Keccak-256 [22]. Thus, calculating the hashed
value (address) for each update in the logic contract uses
the same approach and starts from scratch. It is admissible
for different smart contract deployers; however, for the same
deployer and the same smart contract, the classical approach
of address generation consumes a significant amount of time
and resources, leading to more overhead in the blockchains.
Therefore, LEAGAN uses incremental hash for the updates
in the smart contracts from the same deployer to reduce the
time and space complexity. We summarize the process in
Algorithm 3, and where we assume that the original statement
in the contract is S and the updated or changed statement to be
included in the logic contract is S’. To obtain the deployment
address of the changed or upgraded smart contract (Addrcy,),
we calculate the bytecodes of S and S’. Along with this, we
calculate the intermediate hash value y. Finally, we use H Eval
to calculate the deployment address, using y, Addrcr, and B’.

Algorithm 3 Incremental hash in LEAGAN
Input: S, S’
Output: Addrep*

1: y = hy Hase ho Base ... Hase hn

2: B = bytecode(S)

3. B/ = bytecode(S")

4: Addrcr, = K(RLP(address||nonce)
5. h = HEwval(y, Addrcr, B)

6: H= Yy Hose h

7: AddTCL/ =H

8

: Return Addrcr

Address update: In our LEAGAN framework, each up-
date to the smart contract, whether it is an addition, modifica-
tion, or deletion, produces a new hash. This new hash is then
incrementally combined with the previous one, representing

the prior version of the contract. This process creates a unique
identifier for the current version of the contract. The hashed
value is then used to determine the address of the updated
contract on the blockchain. As a result, each version of the
contract has a distinct address derived from its unique incre-
mental hash. This ensures the traceability and immutability of
the validated changes.

It should be noted that the process of calculating the
incremental hash and determining the address of the current
version of the smart contract is decentralized and performed
by all nodes in the blockchain network. Each node then
independently verifies the correctness of the incremental hash
and the resulting contract address during the validation of
transactions. This process ensures all nodes reach a consensus
on the contract’s current state and corresponding address. The
decentralized nature of this process enhances the security and
integrity of the smart contract execution on a blockchain as
no single entity or separate application has control over the
update process. Instead, it relies on the collective agreement
of all participating nodes in the network.

3) Version management: The use of incremental hash
assists in managing versions and their traceability is
a transparent way in the blockchain framework. Each
incremental hash is a version of the originally deployed
smart contract. We then apply the concept of Revision
Control System (RCS) in version management for resource
utilization [24]. This is illustrated in Figure-2 that shows that
the storage contract and logic contract Vj; (a generalized
smart contract combining these two parts) -and which are
deployed in the blockchain address. A change or modification
or upgrade occurs in V7 ; leads to logic contract V; 5 to Vi .
However, to update the logic contract address, we only use
the modified parts for an incremental hash calculation to
resolve the new smart contract address. This helps to reduce
the overhead and consumption of time and resources.

a) Version dimensionality: The literature shows that the
existing smart contract upgradeable frameworks are one-
dimensional. It means that once a smart contract is upgraded
to a new version, it cannot be reverted to a previous version.
This one-directional nature implies that the upgrade process
is linear - and when changes are made and the contract is
deployed, the earlier version becomes inaccessible. This can
pose challenges for developers and users, and any issues or
bugs introduced in the new version may require the previous
versions to work around or to provide a reference. LEAGAN
solves this using the RCS, and where every version is in-
crementally hashed to the upgraded version. As a result, the
history of upgrades is accessible on-chain.

b) Storage space utilization: In LEAGAN, the integra-
tion of the RCS allows for efficient storage space utilization
through the concept of incremental hashing. When a smart
contract, such as logic contract V1.1, needs to be upgraded,
RCS focuses on identifying and storing only the modified
portions of the contract, rather than redeploying the entire
contract. For example, if V1.1 is modified to create V1.2,
RCS calculates an incremental hash based on the changes
made. This hash serves as a version identifier, allowing the

Smart contract

deployed
Blockchain
address
Modification Modification
A
—>

storage . L .
contract Log;tlt—ic%r;tlr act Modified logic Modified logic
original ve?sion contract contract
version

Vi1 V1.2 V1i.n

Deployed smart contract

Incremental-hash based new logic contract
address updated in storage contract

Fig. 2. RCS in proposed LEAGAN

new contract version to reference the original contract, while
incorporating only the differences. This method significantly
reduces the amount of data stored on the blockchain as it
avoids redundancy. By using this technique, LEAGAN min-
imizes storage requirements and bandwidth consumption, as
only the changed segments are logged. Additionally, develop-
ers can efficiently track versions as the blockchain maintains
a transparent history of changes through incremental hashes.
This leads to a more resource-efficient blockchain environment
and enables better scalability while maintaining the integrity
of the contract versions.

4) Non-halt deployment: Generally, it is believed that a
smart contract cannot be changed once deployed. Existing
research identifies that the proxy contract concept involves an a
changeable implementation contract (business logic), whereas
the proxy contract (address and storage) is non-changeable.
However, we observe in the existing proxy-based smart con-
tracts that the memory address of the new implementation
contract must be updated in the proxy contract. This means
that a proxy contract is also changeable, which contradicts
the claim of the immutability of proxy contracts or storage
contracts. In LEAGAN, we first introduce the concept of
a status contract, which contains the addresses (changeable)
of all the logic contracts. We extend Figure 2 to show the
concept of status contracts in Figure 3. In this figure, we show
how the immutability of the storage contract is maintained
in the presence of our new status contract. A user then
deploys a storage contract with its address uint value and the
address of the status contract addrstatcontr. When the storage
contract is invoked with a triggered condition, it calls the
StatusContract(). The status contract contains wint value
that points to the address of the storage contract, status contract
code (conditions for executing various logic contracts based
upon their modification status, and addresses of the logic
contract versions. The dashed arrows from the status contract
to the logic contract versions denote the respective pointer.

For the conditions of the status contract, we use two values
of 0 and 1. We consider 0 as the last modified version of a logic

uint value;

If (V4 4_status =0)
execute ();
gas_limit();

else

return (nullified V4 4);

If (V4 ,,_status =0)
execute ();
gas_limit();

else

return (nullified V4);

}

pragma solidity 20.7.0;
contract StatusContract {

pointer . .
e » Modified logic

contract
\ZK

A

z

Fig. 3. Status contract in proposed LEAGAN

contract, whereas 1 represents the changes already made. As
all the versions’ addresses are available in the status contract,
it is easy for traceability and accountability. Thus, the feature
of a status contract adds novelty to LEAGAN. Moreover, this
status contract helps maintain the immutability of the storage
contract (proxy contract in proxy-based methods) and avoids
any halts in the smart contract execution. We include a novel
feature in the status contract, i.e., the gas limit function for sub
calls gas_limit(). A gas limit denotes the threshold value of
gas required for a smart contract transaction execution. This
helps to balance the supply and demand of the gas in the
network.

IV. SECURITY ANALYSIS

In this section, we discuss the security features within LEA-
GAN, first discussing the attack circumstances and providing
the security notions of LEAGAN against attacks.

A. Attack circumstances

Attack circumstances (AC) are the situations or events in a
threat model, where an adversary A attempts to manipulate the
system’s normal functioning. We consider the following attack
circumstances to prove the security strength and the resistivity
of our proposed LEAGAN:

[unitvalve Jej-oer-- B2 oot valve] |
unit value unit value ; . Modified logic
addr_statcontr Addresses of -1~ Pointer . contract
Call StatusContract () logic contractsf-{- Vi
Storage contract Status contract |
Deployed smart contract :
E pointer Modified IOgiC
R EREEE > contract
V1.n

e ACI: In general upgradeable smart contracts consider the

storage contract to be immutable. When we develop a
new version of a logic contract, the new deployment
address needs to be updated in the storage contract. An
adversary A is then able to exploit this feature to include
a malicious address (Addr;,) of the new logic contract
CL', which, in turn, executes a malicious program for
the logic contract. Thus, smart contract outputs wrong
transfers. Mathematically, we can provide the following
interpretation for this AC as:

A : deploy(CL') = M(Addrer) = Addrdt,, (3)

where deploy(CL’) is the deployed address and M is
malicious function run by A to generate the malicious
address.

e AC2: The re-entry attack is one of the most concerning

attacks in smart contracts, and where storage contract
generally calls to the logic contracts (externals). An
adversary A exploits the external calls and forces the
contract to execute and call back itself using a fall-back
function. Thus, executing the code reenters the contract
leading to recursive calls. Following ACI, the attacker
can carefully construct a contract at an external address
that contains malicious code in the fallback function and

attempts to drain funds from the smart contract using the
withdraw function.

e AC3: A smart contract execution on the Ethereum
blockchain platform requires a gas fee - and which is used
for the incentives for validators (miners). The price of gas
is time-based and is determined by supply, demand, and
network capacity. Gas griefing is an attack where a user
sends the amount of gas required to execute the target
smart contract, but not enough to execute subcalls.

o AC4: The distributed characteristics of the Ethereum plat-
form make it almost impossible to ensure a synchronous
time on every node. An adversary .A uses asynchronous
timestamp values to craft a logical attack against any logic
contract. This problem further leads to stale contract calls.

o ACS5: An adversary A attempts to search for a collision
for the Keccak algorithm as it is the core component used
in our incremental hash (PCIHF).

B. Security solutions by LEAGAN

In this part, we discuss the security solutions provided by
LEAGAN to mitigate the previously mentioned ACs:

o Solution for ACI: LEAGAN uses version management
without deleting the old logic contract address; rather,
all the new versions of the logic contract are stored in
the status contract. This new concept makes the storage
contract separate and perfectly immutable. We also use 0O
and 1 to avoid redundancy among the upgradeable logic
contracts’ versions and mitigate the problem of stale -
invalidated due to versioning - logic contract calls. All the
processes of status contracts in LEAGAN are transparent,
and thus, avoids any memory manipulation problems.

o Solution for AC2: LEAGAN updates the contract’s state
in the proposed concept of status contract rather than
the traditional storage contract. A further time-locking
mechanism is applicable. We keep this discussion for
future scope. However, we can use Slither, Mythril, and
Securify to check for the presence of the different types
of re-entrancy vulnerabilities.

o Solution for AC3: LEAGAN proposes to use a gas limit
in the status contract. When a smart contract is called
LEAGAN executes the storage contract that calls the
status contract. In the status contract for each sub-call,
we provide a gas limit. This helps miners decide on
the execution of the transaction validation without any
ambiguity regarding the gas fees for calls and sub-calls.
Thus, we can mitigate the problem of gas griefing and
keep the detailed discussion on gas_limit() for future
scope.

o Solution for AC4: LEAGAN controls the version man-
agement using the flag values of 0 and 1, rather than
using the timestamps. Thus, timestamp-based calling to
a contract or subcontract is not allowed in LEAGAN, and
thus, timestamp-based attacks are eradicated.

o Solution for ACS: Existing literature shows that PCIHF
is not only universal one-way but also collision-free [21].
We choose Keccak-256 as the randomizer and the mod-
ular addition operator as the combining operator. Keccak

instances with a capacity of 256 bits offer a generic
security strength level of 128 bits against all generic
attacks, including multi-target attacks. Keccak’s security
proof allows an adjustable level of security based on
a capacity (c) and providing c¢/2-bit resistance to both
collision and pre-image attacks [22].
The above discussion shows that our proposed LEAGAN is
efficient in terms of security and provides a solution to some
critical attacks in smart contracts.

V. PERFORMANCE EVALUATION

In this section, we first describe the implementation strategy
for LEAGAN, including the network model and the required
technical attributes for reusability. We also define the evalu-
ation metrics important for measuring performance, followed
by the detailed results and comparative analysis.

A. Implementation

a) Hardware and software requirements: To analyze the
practicality of LEAGAN, we conduct the experiments on a
system with the following specifications: an Intel Core i7-
12700K processor with 12 cores (eight performance and four
efficiency cores) and 20 threads, operating at a base clock
speed of 3.6 GHz with a boost clock of 5.0 GHz. The system
had 16 GB of DDR4 RAM running at 3,200 MHz and a 1 TB
NVMe SSD for high-speed storage. The operating system used
was Ubuntu 22.04 LTS (64-bit). The experiments use a local
Ethereum test network (Ganache CLI) to simulate real-world
blockchain interactions. These specifications were chosen to
ensure a balanced evaluation of LEAGAN’s resource efficiency
under realistic and modern computing environments.

b) Proposed framework requirements: We use Ethereum
to observe LEAGAN'’s behavior, evaluate its performance,
and show the implemented network model in Figure 4. This
includes essential components for implementing LEAGAN in
the implementation process. These include Solidity, Web3.js,
Infura.io, Ethereum Networks, Cloudflare’s Ethereum Gate-
way, Ganache CLI, Solc, and Metamask.

Figure 4 illustrates the implementation flow of LEAGAN on
Ethereum. The process begins with smart contracts written in
Solidity and compiled into bytecode using Solc. This bytecode
is then deployed on the Ethereum blockchain via Web3.js,
and interfacing with Infura.io or Ganache CLI for network
connectivity. During execution, Metamask acts as a wallet for
managing transactions. The Ethereum Virtual Machine (EVM)
ensures uniform contract logic execution across nodes. LEA-
GAN incorporates a status contract for version management
and uses incremental hashing to optimize updates. This setup
integrates tools like Cloudflare’s Ethereum Gateway for secure
communication and ensures a seamless and efficient contract
execution pipeline. In Table III, we summarize the functioning
of the above-mentioned components in implementing LEA-
GAN.

¢) Methodology and deployment: The implementation
of LEAGAN on Ethereum involves a coordinated interaction
among the components mentioned in Table III:

Solidity is used to write the smart contracts, which are
then compiled into bytecode using Solc (Solidity Com-
piler). We deploy the bytecode on the Ethereum network
via Web3.js; it is a JavaScript library that facilitates
interaction between the client-side application and the
Ethereum blockchain.

Ethereum Virtual Machine (EVM) ensures that the smart
contract logic runs consistently across all Ethereum
nodes, making LEAGAN’s behaviour deterministic and
secure across the network.

Infura.io provides a scalable, remote connection to
Ethereum nodes and enables LEAGAN to interact with
the Ethereum network without running a full node.
Cloudflare’s Ethereum Gateway ensures secure and reli-
able communication with the Ethereum blockchain, act-
ing as an intermediary that optimizes data transfer.
Ganache CLI creates a local Ethereum environment for
testing and debugging before deploying contracts on the
mainnet and simulates the blockchain, allowing develop-
ers to perform tests in a controlled environment.
Metamask serves as the user’s Ethereum wallet, en-
abling transaction management and interaction with the
deployed LEAGAN contracts.

JSON-RPC is a Remote Procedure Call (RPC) protocol
used to interact with the Ethereum network. JSON-RPC
enables communication between the client-side applica-
tion (using Web3.js) and the Ethereum node, such as
those provided by Infura.io or Ganache CLI. Through
JSON-RPC, Web3.js sends requests to the Ethereum
node to perform operations such as deploying contracts,
querying blockchain data, and sending transactions.

TABLE III
TOOLS USED IN THE EXPERIMENTATION AND THEIR PURPOSE
Tool used Purpose
Solidity Smart contract programming language for
Ethereum.
Web3.js It is a JavaScript library. It enables web browsers

and Node.js to read and write to the Ethereum
blockchain. Solidity-based smart contracts are
executable using JSON RPC from Web3.js.

Infura.io It is an API for simple Ethereum network access

through HTTP and WebSockets.

Ethereum Gateway

Ethereum The Ethereum Main Network (a.k.a Homestead)
Networks is considered to be the production environment.
Cloudflare’s It is a free API for accessing the Ethereum Main

Net.

Ganache CLI

It is a command line interface for running a
locally hosted instance of Ethereum. We can
start up a blank Ethereum blockchain, or a fork
of a public network’s blockchain on your local
machine.

Solc

It is a Solidity compiler

Metamask

This facilitates the invocation of Ethereum smart
contracts from a web page.

B. Evaluation metrics

e Throughput: We define throughput based on the number

of transactions successfully written on the blockchain.
Generally, Ethereum provides 10-12 transactions per sec-
ond (TPS).

Gas consumption: Gas is the computational effort re-
quired to execute specific operations on the Ethereum
network. Each Ethereum transaction requires computa-
tional resources to execute; thus, each transaction requires
a fee to utilize the resource. We use gasleft() function
twice (once at the beginning of the transaction startGas
and once at the end of the transaction) in solidity for
the measurement of gas consumption. The mathematical
expression is given below. We use Equation 4 at the
beginning to measure the initial gas and Equation 5 at
the end to measure the overall consumption.

startGas = gasleft() 4)
gasused = startGas — gasleft(); (5)

We measure the gas consumption concerning the number
of blocks varying from 10 to 100, assuming each block
has an equal number of transactions. This involves mea-
suring the average gas consumption of all the frameworks
under consideration. Note that we specifically calculate
the gas consumption for operations related to contract
updates. The gas consumption measurement includes the
transaction fees for the main calls and the associated
sub-calls involved in updating the smart contracts. The
experimental results for gas consumption thus focus on
the operations directly related to contract updates, such
as deploying new contract versions, interacting with the
status contract, and managing incremental updates.
Contract decision and update accuracy: We introduce
the contract decision and update accuracy Acc feature to
measure the accuracy of the updates in the upgradeable
smart contracts. We measure this metric using:

Ace, Acey
N, N,
where Acc,, represents the number of accurate updates,
N, denotes the total number of updates, and Accy
denotes the number of accurate decisions from the smart
contract in the presence of updates.

In the context of smart contract frameworks, an accurate
update refers to a scenario where the updated contract
logic is correctly executed without causing transaction
failures, halts, or incomplete transactions. For example,
if a decentralized finance contract is upgraded to include
a new feature for calculating interest, an accurate update
would ensure that all relevant sub-calls (like check-
ing user balances, applying interest rates, and updating
records) are correctly executed without errors and the
final state reflects the intended logic. On the other hand,
an inaccurate update would lead to issues such as failed

Acc =

(6)

transactions or incorrect outcomes. For instance, if the
same decentralized finance contract update overlooks a
critical sub-call that verifies user eligibility for interest,
it could lead to inaccurate results, such as applying

To evaluate the performance of LEAGAN, we consider
some important attributes: Transactions per second (TPS),
gas consumption, contract decision and update accuracy, and
resource utilization.

Local Development Environment

Ethereum
Dev node

Solidity

Smart Contracts

ik

10010101
01010100
0001

Solc

Byte code

Fig. 4. Implementation model for LEAGAN

interest to ineligible accounts. This causes the system to
make misleading decisions, such as incorrectly reporting
account balances or failing to execute subsequent trans-
actions.

o Complexity analysis: We analyze the overall algorithm
and compute the time complexity and space complexity to
show and validate the enhanced features of our proposed
LEAGAN.

e Resource ufilization: We measure resources in three
dimensions: CPU, storage, and disk utilization. CPU
utilization measures the percentage of processing power
the system uses during the execution of smart contract
update operations. This can be mathematically measured
by programming the scripts to initialize at an invoke of an
update operation till the complete smart contract has been
updated. It evaluates the computational efficiency of the
proposed framework. Disk Input-Output (I/O) refers to
the percentage of reading and writing operations required
during smart contract update operations; this metric is
essential to understand the I/O overhead introduced by
the framework. Storage utilization evaluates the amount
of blockchain storage space consumed by smart contract
update operations. Efficient storage utilization indicates
reduced redundancy and better scalability.

C. Experimental results

We have mentioned earlier that LEAGAN is the first up-
gradeable/mutable smart contract framework to exploit the
potentials of incremental hash, a revision control system,
a novel status contract, and decentralized verification. The
existing literature shows some frameworks in the direction
of upgradeable smart contracts; however, most frameworks
focus on proxies. Therefore, we choose three existing concepts
of upgradeable smart contracts: i) Proxy-based [10], ii) Dif-

Ethereum
node

Ethereum
node

Ethereum node

Ethereum Virtual Ethereum blockchain

Machine (EVM)

Ethereum
node

Ethereum
node

ferentiated code-based [18], and iii) Auto-update based [19].
The proxy-based approach uses a proxy contract to separate
logic and storage, enabling upgrades by redirecting calls to
new logic contracts. However, it suffers from proxy selector
clashes, storage issues, and access control vulnerabilities,
making it a widely used but flawed solution. The differ-
entiated code approach interprets updates by storing only
the modified logic, reducing redeployment overhead. While
efficient, it neglects storage optimization and traceability. The
auto-update approach leverages machine learning for anomaly
detection and secure updates, but its narrow focus on logging
systems and high computational overhead limit scalability.
These baselines highlight LEAGAN’s ability to address stor-
age, traceability, and resource optimization comprehensively.
Though the concepts of internal methodologies differ among
the selected state-of-the-art models, we evaluate the algorithms
using the same parameter settings as our proposed LEAGAN.
Throughout the experiments, we have executed overall 200
updates with a chain of 100 blocks; this gives an update
rate of 2. The updates include access control modifications,
logic refinement, external contract integration, bug fixing,
and exception handling. Note that an average update rate
of 2 means that two update transactions occur per block;
it does not imply that each block exclusively contains only
update transactions. Other transactions, such as token transfers,
contract interactions, and data read/writes, also exist in the
blocks, which are characterized by typical blockchain activ-
ities, including financial transfers, state updates, or calls to
contract functions.

1) Throughput evaluation: We know that blockchains face
scalability issues. Therefore, we compare the throughput based
on the smart contracts in the blockchain frameworks. We pro-
cess overall 100 blocks and compare the average throughput
for all the models. We show the obtained results in Figure 5.

From the figure, we observe that our proposed LEAGAN
shows stable outputs of throughput with an average TPS value
of 23.36. The other models of [10], [18], [19] show average
TPS outputs of 17.37, 17.69, and 14.94, respectively. This
shows that the proposed LEAGAN is 27.3% better in terms of
throughput on average. We obtained this enhanced throughput
by using incremental hash, which has low complexity and
faster computation. Besides, our new smart contract config-
uration helps us achieve such throughput.

35 T T : T
Proposed LEAGAN —6—
Proxy [10]
30 b Differentiated code [18] —&—
Auto-update [19] —@—
2 s —e—9 — o —
= I
= q
3 e
5 20
> \
[e]
:'C: 15 \‘L\
(0]
[0
10
3: \qp\
5
0

10 20 30 40 50 60 70 80 90
Number of blocks

100

Fig. 5. Throughput comparison

2) Gas consumption evaluation: We show the gas con-
sumption results of our proposed LEAGAN and other frame-
works in comparison in Figure 6. The average gas consump-
tion values for [10], [18], and [19] are 27452, 25963, and
32278, respectively. In LEAGAN, the measured gas consump-
tion averages ~ 22,947 gas per transaction, which is 24.5%
better as compared to the existing frameworks in gas con-
sumption on average. This reduction is achieved by optimizing
token transfers, contract calls, and subcalls. ERC-20 token
transfers, involving balance updates in storage, typically con-
sume ~ 41,000 — 46,000 gas in conventional models. How-
ever, LEAGAN minimizes these costs by batch-processing
updates and reducing redundant state modifications. Addi-
tionally, contract interactions, particularly calls and delegate
calls, are optimized through the status contract mechanism,
eliminating unnecessary storage writes. Calls within LEA-
GAN, including external contract interactions (CALL opcode)
and state modifications (SSTORE), consume 2,600-7, 000
gas per operation. Given the 40,000 gas limit, LEAGAN
operates within a safe execution margin (~ 22,947 gas),
preventing transaction failures while maximizing efficiency.
From Figure 6, we observe that the existing frameworks tend
to move towards higher gas consumption, eventually leading
to failure.

3) Contract decision and update accuracy: The existing
frameworks do not consider the sub-calls in the smart con-
tracts; this leads to unnecessary transaction halt, incomplete
transactions, and even transaction failure. We show the accu-
racy of the contracts (after updates) in Figure 7. In LEAGAN,
accurate updates are ensured by decentralized verification and

40000 ‘ ‘ ‘ ‘ ‘
Proposed LEAGAN —6— /ID
38000 | Proxy [10]
Differe}&niated cdode []8] —A— /,/ /;
uto-update [19] —@—
36000 P el e /
S 34000 A
2 - "
2 / /
g 32000
2 /./ 'y
S 30000
(2]
& 28000 = .
A
26000 //
24000 R S
y —o6—=6 >—6—
22000
10 20 30 40 50 60 70 80 90 100
Number of blocks
Fig. 6. Gas consumption comparison

tracking through a status contract, which uses flag values
(0 or 1) to denote the freshness of the contract versions.
This mechanism helps LEAGAN to maintain 100% accuracy
by ensuring that only valid and verified logic is used; thus,
LEAGAN prevents the problem of incomplete or inaccurate
updates observed in other frameworks. Moreover, we can see
from the figure that the existing frameworks’ performance for
accurate updates degrades with time due to their inability to
effectively manage sub-calls and track contract updates over
time. As the blockchain grows, outdated or unverified logic
(if not managed) can lead to incorrect executions, causing
transaction failures, incomplete operations, and misleading
decisions, reducing overall accuracy. The figure shows that the
proposed LEAGAN efficiently provides 100% accuracy with
increasing block numbers. The upgrade or update requested
is decentralized verified and separately stored in the status
contract. The status contract further uses flag values of 0
or 1 to denote the freshness of versions of logic contract
references stored in the status contract. Thus, the accuracy of
LEAGAN is optimum. The other frameworks cannot achieve
100% accuracy (marked in green color on the upper limit of
the y-axis); instead, the frameworks start to make misleading
decisions based on the updated smart contract conditions or
parameters.

4) Complexity and resource utilization analysis: We mea-
sure the complexity in two aspects: time and space.
Blockchains are very complex; therefore, any add-on com-
plexity may lead to the system’s failure. We consider a smart
contract update function U = replace(m, dy,), where m is
the modified data, and &, denotes the new hashes of the smart
contract in the blockchain after the update. Therefore, the new
hash A’ is connected to a smart chain becomes as:

b = h+ R(S[i]||S[j]) + Cn(5h). (7

where S[i] is the target logic contract for modification, S[j]
represents subsequent modifications in the logic contract and
updated in the status contract, and R represents the replace
function. The subsequent blocks for j = 0,1,....,.n — 1, C is

100 @ € > S S D S S D ©
95
4
g 9
c
[L\‘
(]
g g5 ‘\"\1\\\
4
> e
§ '\‘\ i“\;
]
Q
<():) 80 \..\‘
75 L Proposed LEAGAN —&— \
Proxy [10]
Differentiated code [18] —A—
20) Auto-update [19] —&—

10 20 30 40 50 60 70 80 90
Number of blocks

100

Fig. 7. Accuracy of smart contract updates

the combiner function, and n is the total number of blocks in
the blockchain. We calculate the total cost as:

Costy = 2(1 —|—p)(Rt + Ct), (8)

where p is the number of blocks following the updatable
smart contract S[i]. The update in the contract is static for
a particular period of time, till the next change is initiated.
Therefore, for k updates in the smart contract, the cost
becomes Costy:

Costy, = Costporgr + k.Costr, 9)

where Costpcorgr is the cost of the first hash with PCIHF.
Costp is static and does not depend on the number of blocks
or transactions. Table IV provides the summarized measure-
ments of complexities calculated for all the frameworks. We
measure the complexities in O notation. In the calculation, 7" is
the number of transactions, and n is the number of updates in a
smart contract. Comparatively, our proposed LEAGAN is less
complex; for each change n, each transaction should execute
the change as shown in Figure 3. Thus, our time complexity
is O(T'.n). Each change n is stored in the status contract;
rather than storing the whole contract separately - LEAGAN
stores only the changed part in the logic contract. Thus, our
space complexity is significantly low and has the value of
O(n). From the experimental analysis of 100 block generation
with our proposed LEAGAN framework, we infer that PCIHF
needs 32ms. Smart contract modification request verifica-
tion requires 320ms, and versioning and RCS combined
require ~ 300ms. Therefore, the overall time requirement
for LEAGAN for the successful implementation of a change
in the smart contract takes ~ 652ms, which is 25% less on
average as compared to the existing upgradeable smart contract
frameworks. Furthermore, to validate one of the contributions,
i.e., reduced storage space, we compare CPU utilization,
Input/Output (I/0) disk space, and storage space requirements
of our LEAGAN in Table V. From this table, we see that in
all the space utilization parameters, our LEAGAN outperforms
the existing frameworks due to the strategic use of PCIHF

and RCS, which reduces the space requirements significantly.
For I/O disk utilization, LEAGAN optimizes data read/write
operations by storing only modified contract logic rather than
full contract redeployments. The average data size per storage
update is ~ 256-512 bytes, depending on the number of
logic contract modifications recorded in the status contract.
Traditional proxy-based models rewrite entire contract states,
consuming ~ 45-50% disk I/O, whereas LEAGAN logs
incremental updates (~ 20-25% disk 1/0). Read operations,
such as querying contract storage (eth_getStorageAt), typically
consume 32-128 bytes per request. Write transactions, involv-
ing new contract version storage and incremental hashing,
remain within 512-1024 bytes per update cycle, ensuring
lower storage costs and efficient blockchain state management.

From the above analysis of LEAGAN, we can comment
that LEAGAN is efficient as an upgradeable smart contract
framework and exploits the benefits of memory consumption
reduction, enhancement of the version management, and se-
curity of the smart contract.

D. Solving the research gaps of SOTA

The proposed LEAGAN framework addresses multiple re-
search gaps identified for upgradeable smart contracts, as
outlined in Table I. LEAGAN overcomes the centralization
risks associated with off-chain trusted deployers by introduc-
ing a decentralized verification mechanism - this ensures that
updates are validated through a transparent voting system by
network peers rather than relying on a single trusted entity.

LEAGAN resolves scalability and proxy selector clash
issues observed in Comprehensive-Data-Proxy patterns by
employing a status contract that efficiently maps logic con-
tract versions while maintaining immutability in storage con-
tracts, reducing overhead and selector conflicts. Moreover,
the bytecode rewriting complexity and compatibility issues of
EVMPatch are mitigated in LEAGAN by utilizing incremental
hashing (PCIHF) and an RCS; it allows contract modifications
without requiring complete redeployment, which improves
compatibility and reduces debugging overhead.

The lack of modularity in upgradeability mechanisms like
Elysium is tackled by LEAGAN’s data-separation strategy,
where logic, storage, and status contracts are independently
managed. This separation strategy allows for structured and
modular updates. In addition, LEAGAN optimizes the on-
chain verification overhead of four-tier models by leveraging
incremental hashing for contract state tracking to minimize
redundant storage and computational load. LEAGAN ad-
dresses concerns about access control in proxy mechanisms by
using decentralized signature verification and update validation
mechanisms. This ensures governance transparency and pre-
vents single-user control over contract updates. High recom-
pilation problems, as in ATOM, are mitigated in LEAGAN by
storing and updating only modified contract parts using RCS;
this significantly reduces execution time and storage consump-
tion. Differentiated code approaches, which focus on logic
without resource optimization, are enhanced in LEAGAN by
integrating version control and efficient storage mechanisms,
ensuring that updates are applied with minimal blockchain

state bloat. Auto-update frameworks such as LSC, which are
limited in generalizability, are improved upon by LEAGAN’s
flexible status contract architecture; this allows a broad range
of decentralized applications to implement and benefit from
structured contract versioning. All these solution strategies
collectively make LEAGAN a robust and comprehensive solu-
tion for smart contract upgradeability, addressing fundamental
issues of immutability, version management, security, and
computational overhead in blockchain systems.

TABLE IV
COMPLEXITY ANALYSIS

Framework Time complexity Space complexity

Proxy [10] o(r™) o(T™)

Differentiated O(T™) + O(n"™) o(T™)

code [18]

Auto-update [19] O(T.n) o(T)

Proposed LEAGAN O(T.n) O(n)

TABLE V
RESOURCE UTILIZATION ANALYSIS
Framework CPU utiliza- | I/O disk uti- | Average
tion (%) lization (%) storage
utilization(%)

Proxy [10] 32 54 50
Differentiated 35 30 45
code [18]
Auto-update [19] 40 30 38
Proposed 28 25 20
LEAGAN

VI. CONCLUSION

In this paper, we introduce LEAGAN as a mutable or
upgradeable smart contract framework. LEAGAN is the first
smart contract framework to use incremental hash in the data
separation method to reduce the memory overhead of smart
contract changes. Besides, LEAGAN adds novel features,
including status contracts to securely distinguish between
logic contracts and storage contracts. Besides, our proposed
LEAGAN is innovative in the direction of version manage-
ment, where LEAGAN stores only the changes in the smart
contract and avoids restoring the whole contract multiple
times. Security analysis of LEAGAN concludes that LEAGAN
and its internal functions are secure. A thorough set of
experiments is performed in LEAGAN. Experimental analysis
and comparison show that LEAGAN provides 27.3% better
throughput, 24.5% better gas consumption, 100% accuracy,
and 25% less time-consuming. Thus, LEAGAN is a novel and
efficient innovative contract solution for blockchains.

While LEAGAN significantly improves smart contract up-
gradeability, gas efficiency, and version control, it has certain
limitations. LEAGAN may introduce latency in hash compu-
tations for frequent updates. RCS efficiently tracks contract
versions but may require additional storage management tech-
niques to handle long-term scalability. LEAGAN improves gas
consumption; transaction batching and state compression op-
timization could enhance execution speed and cost efficiency.
For future work, we plan to extend LEAGAN capabilities

by integrating automated storage pruning, state compression
techniques, and parallel execution of contract updates, which
can further reduce computation and storage overhead.

ACKNOWLEDGEMENT

This work was supported by the European Commis-
sion under the Horizon Europe Programme, as part of the
project LAZARUS (https://lazarus-he.eu/) (Grant Agreement
no. 101070303).

REFERENCES

[1]1 A. Vacca, A. D. Sorbo, C. A. Visaggio, G. Canfora, A systematic literature
review of blockchain and smart contract development: Techniques, tools,
and open challenges, Journal of Systems and Software, vol. 174, 2021,
pp. 1-19, doi: https://doi.org/10.1016/j.jss.2020.110891.

[2] S. Mathur, A. Kalla, G. Gir, M. K. Bohra, M. Liyanage, A
Survey on Role of Blockchain for IoT: Applications and Techni-
cal Aspects, Computer Networks, vol. 227, 2023, pp. 1-46, doi:
https://doi.org/10.1016/j.comnet.2023.109726.

[3] Leng, M. Zhou, J. L. Zhao, Y. Huang and Y. Bian, Blockchain Security:
A Survey of Techniques and Research Directions, IEEE Transactions on
Services Computing, vol. 15, no. 4, 2022, 2022, pp. 2490-2510, doi:
10.1109/TSC.2020.3038641.

[4] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo and T. Chen, Defining Smart
Contract Defects on Ethereum, IEEE Transactions on Software Engineer-
ing, vol. 48, no. 1, 2022, pp. 327-345, doi: 10.1109/TSE.2020.2989002.

[S] B. Hu, Z. Zhang, J. Liu, Y. Liu, J. Yin, R. Lu, X. Lin, A comprehen-
sive survey on smart contract construction and execution: paradigms,
tools, and systems, Patterns, vol. 2, no. 2, 2021, pp. 1-51, doi:
https://doi.org/10.1016/j.patter.2020.100179.

[6] An Introduction to Upgradeable Smart Contracts, available at:
https://www.quicknode.com/guides/ethereum-development/smart-
contracts/an-introduction-to-upgradeable-smart-contracts/, accessed
on: 20-05-2023.

[7] J. Chen, Finding Ethereum Smart Contracts Security Issues by Com-
paring History Versions, 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 1382-1384, 2020, doi:
https://doi.org/10.1145/3324884.3418923.

[8] S. Meisami & W. E. Bodell III., A Comprehensive Survey of Upgrade-
able Smart Contract Patterns, arXiv:2304.03405v1, 2023, pp. 1-7, doi:
https://doi.org/10.48550/arXiv.2304.03405.

[9] Ye Liu and Shuo Li and Xiuheng Wu and Yi Li and Zhiyang
Chen and David Lo, Demystifying the Characteristics for Smart
Contract Upgrades, arXiv: 2406.05712, 2024, pp. 1-12, doi:
https://doi.org/10.48550/arXiv.2406.05712.

[10] W. E. Bodell III, S. Meisami, Y. Duan, Proxy Hunting: Understand-
ing and Characterizing Proxy-based Upgradeable Smart Contracts in
Blockchains, 32nd USENIX Security Symposium, 2023, pp. 1829 - 1846.

[11] P. Antonino, J. Ferreira, A. Sampaio, A. W. Roscoe, Specification
is Law: Safe Creation and Upgrade of Ethereum Smart Contracts,
Software Engineering and Formal Methods, Lecture Notes in Com-
puter Science, vol. 13550, Springer, Cham, 2022, pp. 227-243, doi:
https://doi.org/10.1007/978-3-031-17108-6_14.

[12] V. C. Bui, S. Wen, J. Yu, X. Xia, M. S. Haghighi, Y. Xi-
ang, Evaluating Upgradable Smart Contract, IEEE International
Conference on Blockchain (Blockchain), 2021, pp. 252-256, doi:
10.1109/Blockchain53845.2021.0004 1.

[13] M. Rodler, W. Li, and G. O. Karame, L. Davi, EVMPatch: Timely and
automated patching of ethereum smart contracts, 30th USENIX Security
Symposium, 2021, pp. 1289-1306.

[14] C. F. Torres, H. Jonker, R. State, Elysium: Context-Aware Bytecode-
Level Patching to Automatically Heal Vulnerable Smart Contracts,
RAID ’22: Proceedings of the 25th International Symposium on Re-
search in Attacks, Intrusions, and Defenses, 2022, pp. 115-128, doi:
https://doi.org/10.1145/3545948.3545975.

[15] Z. Du, H. Cheng, Y. Fu, M. Huang, L. Liu, Y. Ma, A
Four-Tier Smart Contract Model with On-Chain Upgrade, Secu-
rity and Communication Networks, vol. 2023, 2023, pp. 1-12, doi:
https://doi.org/10.1155/2023/8455894.

[16] M. Salehi, J. Clark, M. Mannan, Not so Immutable: Upgradeability
of Smart Contracts on Ethereum. Financial Cryptography and Data
Security, FC 2022 International Workshops, Lecture Notes in Com-
puter Science, vol. 13412, Springer, Cham, 2023, pp. 539-554, doi:
https://doi.org/10.1007/978-3-031-32415-4_33.

[17] T.Li, Y. Fang, Z. Jian, X. Xie, Y. Lu and G. Wang, ATOM: Architectural
Support and Optimization Mechanism for Smart Contract Fast Update and
Execution in Blockchain-Based IoT, IEEE Internet of Things Journal, vol.
9, no. 11, 2022, pp. 7959-7971, doi: 10.1109/JI0T.2021.3106942.

[18] Y. Huang, Q. Kong, N. Jia, X. Chen and Z. Zheng, Recommending
Differentiated Code to Support Smart Contract Update, IEEE/ACM 27th
International Conference on Program Comprehension (ICPC), Montreal,
Canada, 2019, pp. 260-270, doi: 10.1109/ICPC.2019.00045.

[19] W. Shao, Z. Wang, X. Wang, K. Qiu, C. Jia, C. Jiang, LSC: On-
line auto-update smart contracts for fortifying blockchain-based log
systems, Information Sciences, vol. 512, 2020, pp. 506-517, doi:
https://doi.org/10.1016/j.ins.2019.09.073.

[20] M. Bellare, O. Goldreich, S. Goldwasser, Incremental Cryptography:
The Case of Hashing and Signing, Advances in Cryptology — Crypto
94 Proceedings, Lecture Notes in Computer Science Vol. 839, Springer-
Verlag, Y. Desmedt, ed., 1994, pp. 216-233.

[21] B. M. Goi, M. U. Siddigi, H.T. Chuah, Computational complexity
and implementation aspects of the incremental hash function, IEEE
Transactions on Consumer Electronics, vol. 49, no. 4, 2003, pp. 1249-
1255, doi: 10.1109/TCE.2003.1261226.

[22] National Institute of Standards and Technology, SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions, FIPS PUB
202, 2015, available at: https://csrc.nist.gov/publications/detail/fips/202/
final, accessed on: 10-3-2023.

[23] Recursive Length Prefix (RLP) Encoding,
available at: https://ethereum.github.io/execution-
specs/autoapi/ethereum/rlp/index.html#introduction, accessed on:
05-05-2023.

[24] Don Bolinger, Tan Bronson, Applying RCS and SCCS - From Source
Control to Project Control. O’Reilly, 1995.

AUTHOR BIOGRAPHY

Gulshan Kumar (Senior Member, IEEE) has re-
ceived his Ph.D. degree in Computer Science and
Engineering from Lovely Professional University,
Punjab, India in 2017. He is currently working as
a Postdoc at the University of Padua, Italy and an

Associate Professor at Lovely Professional Univer-
sity, Punjab, India. His current research interests
include cyber-physical systems, blockchain, edge,
and cloud computing, wireless sensor networks, and
optimization techniques.

Rahul Saha (Member, IEEE) has received a Ph.D.
degree in cryptography from Lovely Professional
University, Punjab, India. He is currently working
as an Associate Professor with Lovely Professional
University and also as a Postdoc at the University of
Padua, Italy. His research interest includes network
security, cryptography, blockchain, and DLTs, IoT
security.

Mauro Conti (Fellow IEEE) is Full Professor at
the University of Padua, Italy. His main research
interest is in the area of Security and Privacy. He
is a Fellow IEEE and Senior Member, ACM. He
is a member of the Blockchain Expert Panel of the
Italian Government. He is a Fellow of the Young
Academy of Europe.

William Johnston Buchanan OBE FRSE CEng
PFHEA is a Scottish computer scientist. He currently
leads the Blockpass ID Lab and the Centre for
Cybersecurity, IoT and Cyberphysical at Edinburgh
Napier University. He is a professor in the School of
Computing, Engineering and the Built Environment.
Bill was awarded an OBE in 2017 for services to
cybersecurity, and elected as a Fellow of the Royal
society of Edinburgh (FRSE) in 2024.

