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Abstract: Ensuring the trustworthiness of data used in real-time analytics remains a critical
challenge in smart city monitoring and decision-making. This is because the traditional data
validation methods are insufficient for handling the dynamic and heterogeneous nature
of Internet of Things (IoT) data streams. This paper describes a semantic IoT streaming
data validation approach to provide a semantic IoT data model and process IoT streaming
data with the semantic stream processing systems to check the quality requirements of
IoT streams. The proposed approach enhances the understanding of smart city data while
supporting real-time, data-driven decision-making and monitoring processes. A publicly
available sensor dataset collected from a busy road in Milan city is constructed, annotated
and semantically processed by the proposed approach and its architecture. The architecture,
built on a robust semantic-based system, incorporates a reasoning technique based on
forward rules, which is integrated within the semantic stream query processing system.
It employs serialized Resource Description Framework (RDF) data formats to enhance
stream expressiveness and enables the real-time validation of missing and inconsistent data
streams within continuous sliding-window operations. The effectiveness of the approach is
validated by deploying multiple RDF stream instances to the architecture before evaluating
its accuracy and performance (in terms of reasoning time). The approach underscores the
capability of semantic technology in sustaining the validation of IoT streaming data by
accurately identifying up to 99% of inconsistent and incomplete streams in each streaming
window. Also, it can maintain the performance of the semantic reasoning process in near
real time. The approach provides an enhancement to data quality and credibility, capable of
providing near-real-time decision support mechanisms for critical smart city applications,
and facilitates accurate situational awareness across both the application and operational
levels of the smart city.

Keywords: IoT streaming data; internet of things; stream quality validation; semantic
technology; smart city model; RDF

1. Introduction
The increase in the availability of publicly generated sensor streams from the connected

Internet of Things (IoT) has become the major driver for most smart city innovations. The
IoT Streaming data are usually accessed through the Application Programming Interfaces
(APIs) and remains an essential artefact for driving automation and services even at the

Big Data Cogn. Comput. 2025, 9, 108 https://doi.org/10.3390/bdcc9040108

https://doi.org/10.3390/bdcc9040108
https://doi.org/10.3390/bdcc9040108
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0002-9285-5596
https://orcid.org/0000-0002-7612-9981
https://orcid.org/0000-0002-7687-2652
https://doi.org/10.3390/bdcc9040108
https://www.mdpi.com/article/10.3390/bdcc9040108?type=check_update&version=2


Big Data Cogn. Comput. 2025, 9, 108 2 of 21

lowest granularity level of IoT applications [1]. In the present IoT era, most city planners
will rely on these data to make operational decisions or require such at the application
layer of the smart city model. The concept of a trustable smart city is the term we used to
describe a smart city ecosystem that ensures the reliability and quality of IoT-generated
streaming data to improve service delivery and city infrastructures.

It is evident that IoT streaming data may be impacted by inherent quality problems
such as stream inconsistency (redundancy or outlier) and missing (or incomplete) data [2],
which impact the effectiveness and trustworthiness of smart city systems. Similarly, it is
now becoming evident that the notion of trust can be considered a measure of the IoT
data quality [3,4], apart from its broader use in the context of data privacy and security.
These IoT quality problems can compromise the quality of outputs or accuracy of IoT-based
data-driven decisions and related city services subscribing to them even in real time. For
example, the World Health Organization (WHO) has stressed the importance of real-time
air quality monitoring and data-driven decisions to reduce health-related impacts.

Meanwhile, current approaches to improve the accuracy of sensor readings majorly
involve the use of statistical or probabilistic models [5] and point calibrations [6]. A
probabilistic model such as Machine Learning can extract meaningful insights from streams
but will require initial data storage for model training/learning before such a model can
be applied. It does not support data interoperability requirements for data-driven smart
systems and is unable to provide runtime reasoning as well as simultaneously analyse
data produced from heterogeneous sources [7]. Similarly, the method of point calibrations
can sometimes lead to uncertainties in the accuracy of measurements and the theoretical
understanding of these measurement uncertainties remains unclear [8]. The need for
stronger quality checks with enhanced capabilities for real-time data validation in IoT
systems and to support decision-making processes is now in demand [9].

The aim of this research is to provide a semantic IoT data validation approach that
supports real-time monitoring, data-driven actuation and decision-making processes. This
will enable the deployed smart city monitoring systems, domain expert and city planner
to exploit quality enriched publicly available sensor data produced by IoT networks. The
approach uses semantic technologies such as ontology for knowledge graph as well as
modelling and annotating the IoT data streams. C-SPAQL [10] is used to achieve the
semantic stream querying over aggregated stream windows, while the Jena rule language
is used to develop the semantic forward rules used to achieve a continuous semantic
reasoning process. Currently, the approach is limited in its ability to provide semantic
reasoning support to other serialised RDF data formats, such as the Json_LD, TriG, HDT
and TriX formats.

The main contribution of this work is developing a semantic-driven approach for
identifying poor-quality sensor streams and proposing a software architecture to support
the near-real-time requirements of streams. Other contributions include the following:

1. It introduces a method for the exploitation of semantic technology capabilities to
define the IoT streaming data validation framework.

2. It develops a continuous semantic reasoning technique that layers the semantic stream
processing system with forward rules and serialised RDF data formats for the valida-
tion of missing and inconsistent data streams.

The rest of this paper is structured as follows: Section 2 provides the related work
on IoT data quality and assessment, including the application of semantic technologies
in a smart city. Section 3 describes the semantic approach and the architecture. Section 4
provides the details of the use case in air quality monitoring with the associated experi-
ments involving data collected from IoT sensors. The analysis of the results and relevant
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discussions from the evaluation are presented in Section 5. Section 6 concludes this paper
with the direction for future work.

2. Related Work
The importance of the IoT and the relevance of data quality have become major drivers

of big data initiatives and the decision-making process in smart cities. Data collection, data
sharing and integrated systems are part of the major characteristics of such cities. Gaining
access to shared data across various integrated IoT platforms and heterogeneous sensors
becomes even more problematic and increases the chance of erroneous and inaccurate
data [4]. Stakeholders can base their trust on city services using the quality of the IoT
streams and analysis, quality of decisions and discovery of more actionable insights that
can improve the quality of life of its citizens.

2.1. IoT Data Quality Assessment

The notion of data quality has often been considered as a subjective measurement
that depends on the specific IoT domain and relates to the assessment of confidence in
the data provided by the IoT nodes. The continuous increase in the number of connected
IoT devices has made it hard to assess the IoT data quality with common assessment
methods [11]. The assessment of data quality in air quality monitoring by attempting to
improve the efficiency and decisions in smart cities was studied in [12]. By contextualising
the work in the assessment of air quality monitoring project in the Colombian city, they
only provided analytical interpretations of the quality indicators. The main data quality
indicator is associated with uncertainty in measurement. This indicator also conforms to
the one identified by [13]. Some of the dimensions to the indicators include timeliness,
completeness, redundancy, accuracy, etc. Semantically enriched IoT data quality validation
was proposed by [3]. However, the validation employed is limited to an RDF graph based
on SHACL (https://www.w3.org/TR/shacl/ (accessed on 10 April 2025)) and does not
specifically relate to missing or incomplete IoT streams. A more recent approach [14]
focused on applying the semantic framework for enriching the IoT data and using this
with SHACL to perform IoT data quality assessment. The author further advocated for
better IoT data validation with emphasis on missing or incomplete data and duplicated
data, which may differ in another context. Other recent approaches to IoT data quality
assessments mainly focused on the application of blockchain technology [15], artificial
intelligence (AI) [16] and analytical approaches [11].

2.2. IoT Data Quality in the Context of Trustworthy Cities

The IoT has long been regarded as the primary enabler for many technologies im-
plemented in smart cities. Significant emphasis has been placed on the need for error
detection and ensuring the trustworthiness of IoT data streams to support effective decision-
making [17]. Generally, the concept of trust is considered to be broad. In describing the
notion of trustworthy cities, emphasis is placed on extending the definition of trust to
include the degree of confidence in IoT data based on data quality requirements in addi-
tion to privacy and security issues. Furthermore, the definition of trustworthy cities has
previously been attributed to the concept of a safe city [18] and evaluation of trust in AI
application to smart cities [19]. A related study [20] also evaluated the trustworthiness
of the IoT noisy data based on policy rules and the reporting history. The main objective
of trustworthy cities is to seek ways of improving the quality of life while exploiting the
analysis of good quality data collected through connected IoT technologies to make a city
more efficient, safer and reliable in terms of service delivery. This notion of trustworthiness

https://www.w3.org/TR/shacl/
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should now be viewed and align with the quality and reliability of the vast amount of data
that are produced and consumed by the city services.

2.3. Application of Semantic Technologies in Smart City Innovations

Semantic technologies, usually based on the formalism of the Resource Description
Framework (RDF) and ontology, enable smart objects and IoT nodes to interact with each
other in an intelligent manner. These technologies also allow IoT systems to automate
data/information acquisition and enhance the decision-making process [21]. Motivated
by the current challenges relating to data quality issues and supporting decision-making
in smart cities, a recent study [22] considered the use of ontology to facilitate data inter-
operability while relying on a third-party tool for maintaining data quality to develop a
semantic-based framework for data sharing. However, their approach to assessing the
IoT data quality requirements was performed manually and the details of the specific
quality dimensions considered as part of the study were not discussed. Furthermore, the
outstanding success of the application of semantic technology in the context of smart city
innovations confirms its suitability for dealing with interoperability issues [23–25] and the
modelling/annotation [26,27] of sensor readings.

Semantic Technologies in Air Quality Monitoring

The use of semantic technology in air quality monitoring is increasingly becoming
popular, with many approaches applying this to support knowledge representation and
inference [28], semantic reasoning [29] and the integration of real-time data [30]. Recently,
an innovative framework that integrates Complex Event Processing (CEP) and SPARQL
queries for monitoring air quality within smart cities was proposed by [31]. The framework
adopts decision trees to generate rules based on certain air quality parameters, which
facilitates the classification of air quality levels by filtering complex patterns from pollutant
data streams. This was able to produce a more optimised query processing and a decision
support system that can alert stakeholders to air quality conditions. However, consid-
eration for missing or noisy data streams from sensors was not included as part of the
requirement for the proposed framework. Overall, most of the innovations and approaches
continue to exploit the benefits of the semantic technologies in smart city and air quality
monitoring without adequate consideration for quality validation of the data streams used
for maintaining the air quality index.

3. Our Approach
In context of the layered smart city model shown in Figure 1, we considered the emphasis

on city operations such as air quality monitoring (mainly data driven) to be very essential for
exploiting valuable insights from sensed data and effective smart city deployment.

Figure 2 provides an overall view of the approach and its application to the smart city
domain. Heterogeneous sources of raw IoT streaming data are labeled numbers 1 to 5 within
the IoT streams ecosystem.

The goal of the approach and its architecture is presented in two main parts: to
provide a semantic data model to facilitate IoT streaming data annotation and RDF data
representation and the near-real-time quality validation of IoT streaming data relating to
inconsistency and missing/incomplete streams against a known quality index.

In more specific detail, heterogeneous raw IoT streaming data providing certain
context measurements such as temperature, carbon monoxide and so on are generated by
various sensors deployed within the city. The generated IoT streams are processed and
validated for quality requirements and in accordance with the real-time requirements. This
will be made available for subsequent stream subscribers or smart monitoring systems to
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support further actionable decisions. The use of such quality-enriched IoT streams can
change or influence the type of events or actions that will be triggered by other connected
smart systems. In cases where a data anomaly has been detected, actionable decisions are
made and a newly identified data pattern can be used to reconfigure the sensor network to
process a more reliable reading.

Application Layer

End-User Layer

Analytics Layer

Data Centre/Operation Layer

Connectivity Layer

Figure 1. Smart city layered Model (Adapted from [32]).

Figure 2. Overall approach in smart city context.

The purpose of this research is to provide the semantic stream quality validation
architecture for IoT streaming data. The architecture is primarily based on two different
technologies: the RDF stream processing system and the window-based semantic stream
reasoning system. These two technologies have been carefully outlined and integrated into
a three-layer architecture presented in Figure 3. It implements the second stage in the overall
approach in the smart city context: the semantic stream validation/processing system.
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Figure 3. Proposed semantic IoT streaming data validation architecture.

The proposed bottom-up layered architecture consists of the streaming layer, match-
ing layer and reasoning layer. It is necessary to note that the architecture is positioned
between the lowest connectivity layer (comprising various sensors and IoT devices, lever-
aging connectivity infrastructure such as Bluetooth, LTE, 5G, or other communication
technologies, which are owned and operated by public or private entities) and the upper
application layer (which implements various industry-specific and horizontal applications)
of the smart city model. The following sections describe the details of each layer of the
proposed architecture.

3.1. Streaming Layer

The focus of this layer is to semantically pre-process the heterogeneous IoT streaming
data and their temporal aspects while enriching the streams with the appropriate metadata.
The layer typically consists of the semantic stream query and Semantic Annotation Engine.
The Semantic Annotation Engine contained in Figure 4 uses a lightweight ontology model
(called SmartSUM ontology), which we developed from the ontology re-engineering process
that consists of two base ontology models (ssn/sosa ontology [33] and Time ontology [34]
enhanced with other relevant entities associated with stream quality dimensions and smart
space entities. SmartSUM ontology represents an ontology that provides the semantic
description and relationships between IoT data and related concepts within the IoT network.
It is also required for maintaining the interoperability of the heterogeneous IoT data streams
and smart devices. Both ssn/sosa ontology (a modular framework using SOSA at its
core that describes sensors, actuators, measurement capabilities, observations, related
procedures, observed features, features of interest and deployments) and Time ontology
are separate ontology models previously developed by other researchers to, respectively,
model the semantic sensor network and time measurements. These models are especially
required to form the foundation for the development of SmartSUM ontology to achieve a
consistent and reusable ontology model. The description of the taxonomy including the
various concepts considered during SmartSUM development are discussed in the next
section: Ontology Reuse and Re-Engineering for SmartSUM Construction.
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Figure 4. Semantic IoT streaming data generation.

Raw IoT streaming data are admitted into the architecture after it has been successfully
transformed by the semantic stream generation (see Figure 4) for the appropriate indexing
of streams. This process is enhanced by the hash table within the Hash Map module. The
Hash Map module mimics a data structure that is based on key–value pairs automatically
generated to maintain the distinct identification of each annotated IoT streaming datum.
This provides the initial elimination of repeated or redundant IoT stream instances caused
by overlapping streaming windows of raw streaming data. It is achieved by defining a
unique key for each semantic stream at this stage of the process.

The semantic stream generation process starts by initially combining all the related sen-
sor data from different sensor nodes into a single unified view through the data integration.
The data streams will then be semantically annotated and converted to unique RDF stream
data using the SmartSUM ontology. The resulting RDF streams represent a triple-encoded
representation describing an unbounded, ordered sequence of evolving IoT data. The
equivalent RDF stream is achieved with the support of the Semantic Annotation Engine
by further annotating serialised RDF data with individual timestamps. The engine relies
mainly on the vocabularies from SmartSUM ontology to define the semantic streaming
data. The semantic streaming data (also called quadruple statements) as defined by [10]
are triple representations with timestamps representing the raw streaming data:

· · · (Sk, Ok, Pk, Tk), (Sk+1, Ok+1, Pk+1, Tk+1) · · · (1)

The semantic representation of the streaming data in Equation (1) is necessary to
facilitate the semantic query of multiple quadruple statements.

The semantic stream query registers a continuous stream query that can process
serialised IoT streaming data as they are produced by the Stream Annotation/Generation
Engine. The stream query is based on C-SPARQL [10], used for runtime multiple selection
and the ordering of semantic IoT streaming data over a continuous sliding window. C-
SPARQL, previously built as an extension of the SPARQL query language, was developed
to simplify the continuous querying of RDF streams and executed over a continuous stream
window. To speed up the query processing, a caching method is introduced within the
query processing module. This approach to querying semantic streaming data supports
multiple and parallel selections of RDF representations of the IoT streaming data. The
output of the query in the form of semantic streams is received in the matching layer of the
architecture for further processing.

Ontology Reuse and Re-Engineering for SmartSUM Construction

The combined ssn/sosa ontology with the Time ontology formed the basis for the
ontology re-engineering and reuse process [35,36] during the construction of the SmartSUM
ontology. As a lightweight ontology, SmartSUM facilitates the semantic enrichment of
raw sensor data streams by defining a structured vocabulary for annotating quadruple
RDF statements—each representing a sensor observation with a subject, predicate, object
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and timestamp. The ontology provides the semantic backbone for the Stream Annotation
Engine, which transforms heterogeneous sensor readings into standardised RDF streams
that are interoperable and machine-understandable. The SmartSUM ontology currently
contains an additional 144 new concepts with 59 object properties and 42 data properties,
which are missing from the base models. It is used for the semantic annotation of IoT
streaming data and facilitating the RDF data serialisation. The ontology re-engineering
process is used to facilitate the enhancement by identifying missing domain features and
representing them as new concepts (subclass with properties) to the base ontology model.
During the ontology reuse process, all the related base ontological models are linked
together through a method of ontology alignment. The approach to ontology alignment
is considered a classification issue that can be resolved through the ontology concept
mapping [37]. For specific measurement concepts Mx and My defined within the base
ontology X and Y, the alignment between the two concepts can be defined as follows:

R = {(Mx, My) ∈ Mx × My | Mx ≡ My} (2)

Assuming Mx and My are defined within the same ontology in any of the ones chosen
for reuse purpose, then Mx ≡ My as defined by Equation (3) is not satisfied. Therefore, Mx

from ontology X can be aligned with the closest concept My in Y ontology. For instance, both
concepts SSN:Output in SSN ontology are the same as SOSA:Result in the SOSA ontology.

The hierarchical concept diagram in Figure 5 represents the taxonomy of concepts
that describes the major concepts involved in the construction of the SmartSUM ontology.
The ontology is mainly developed from concepts that are specific to IoT streaming data
and smart environment/spaces. The hierarchical relationships allow for concepts to be
described as either superclass or subclass. The major concepts from the upper ontological
model are used directly and extended where applicable to avoid unnecessary ambiguity
among the concepts and to achieve a reusable lightweight model. New domain-related
concepts not found within the upper ontology models are explicitly created as either a
superclass or subclass in the concept hierarchy.

The namespace adopted by the SmartSUM ontology model is known as SMARTSPACE.
For instance, to re-engineer and reuse the upper ontology for the ontology construction,
SmartSUM extends the SOSA ontology by organising the concept SMARTSPACE:Hub
as a subclass of SOSA:Plat f orm. This means SMARTSPACE:Hub is a kind of platform
for hosting other sensors, actuators, controllers and other smart space systems. The
SMARTSPACE:DoorActuator, SMARTSPACE:VoiceRecognition and SMARTSPACE:
Controller are all subclasses of SSN:System, enabling the proper identification of what qual-
ifies as a system and differentiating it from other concepts. Furthermore, the SOSA:Sensor
enables the definition of any object that can respond to stimulus. A sensor detects in-
puts and produces certain outputs. Therefore, both SMARTSPACE:PhysicalSensor and
SMARTSPACE:VirtualSensor are a subclass of SOSA:Sensor in the concept taxonomy.
The SMARTSPACE:PhysicalSensor represents the hardware-based sensors (such as tem-
perature sensor, camera, pressure sensor, etc.), while the SMARTSPACE:VirtualSensor
concept is for non-hardware-based or software-based sensors (such as a crowd and feelings)
captured within the space. Finally, SOSA:FeatureO f Interest is used as a superclass for
concepts such as SMARTSPACE:Temperature, SMARTSPACE:CO2, SMARTSPACE:NO2.
The SMARTSPACE:SensorReading ⊆ SOSA:ObservableProperty is a concept that de-
scribes various sensor readings from various properties, such as temperature, pressure,
humidity, Benzene, etc. Each of the readings is associated with SMARTSPACE:Timestamp,
which happens to be a subclass of TIME:TemporalEntity.
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Figure 5. Abstract concept description of SmartSUM model.

3.2. Matching Layer

This layer consists of modules that support the semantic processes in the streaming
layer and reasoning layer of the architecture. The entry point to the matching layer is
the RDF serialiser, which is responsible for converting the RDF stream into alternative
RDF data. The choice of serialised data formats is determined by its compatibility with
C-SPARQL. Alternative RDF formats supported by the architecture include the Turtle (.ttl),
Notation3 (.n3), RDF/XML (.rdf ) and N-Triple (.nt) formats. Other serialised formats such
as JSON_LD, NQuads, RDF/JSON and HDT are outside the scope of this work and may
not be suitable for the proposed domain ontology. The RDF serialiser module use the RDF
schema derived from the SmartSUM ontology to convert the streams into RDF serialised
data formats. The importance of the RDF serialiser module is to provide an encoding
that will enhance the expressiveness of the semantic validation of the IoT streaming data.
The output of the module is transferred to the RETE Network module, which contains
the RETE network as specified by [38], α-Instance Matcher and β-memory. The RETE
module maintains a static directed graph pattern that maintains the conditions for incoming
semantic streams to ensure only completed triples are allowed to progress to the next phase
of the semantic process.

The RETE network is known for its ability to support real-time consistency validation
and incremental pattern matching. The RETE network is required to maintain the state of
the current semantic process and compute partial results for future use without the need to
re-process the request when new semantic streams are received by this module.

The (α-)Instance Matcher forms part of the RETE network and relies on the pseudo-
code for the stream Instance Matcher defined by Algorithm 1 to check whether each
semantic stream (serialised RDF statement) conforms to the predefined RDF schema for all
the semantic streams. Any of the semantic streams that violate the matching process (e.g., a
missing object node from each quadruple statement) are classified as an identity stream and
are immediately isolated from the current window by pushing them to the identity stream
manager that contains static methods for excluding such streams from the sliding window.
Otherwise, the output is received by the β-memory of the RETE network, which forms an
intermediate memory that interfaces with the upper reasoning layer for further semantic
reasoning and inference process.
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Algorithm 1 Stream Instance Matcher

1: Inputs:
2: K: a fixed literal value
3: t′, t′′: are initial and current timestamps respectively
4: LS: a set of triples with individual timestamp
5: M: previous triple in n − 1th position
6: N: a current triple in nth position
7: ω: a current streaming window with set of triples
8: W: Aggregate streaming windows
9: α−memory, β−memory: are separate temporary memory

10: procedure READ(M, N)
11: for each M and N in α−memory do
12: if N = LS ∈ ω and ω ∈ W then
13: Load M and N into α−memory
14: Decompose M and N into triple pattern
15: M = (sM, pM, oM, tM)
16: N = (sN , pN , oN , tN)
17: end if
18: end for
19: end procedure
20: procedure MATCH-PRUNE(N)
21: do
22: Check match conditions:
23: sM = sN , oM = oN , tM = tN
24: if
25: N = M and N(t′) = M(t′)
26: N = ∅
27: N = K then
28: Remove N from α−memory
29: else
30: Set β−memory to N
31: end if
32: while t′ < t′′ and N ∈ ω
33: Proceed to the next N
34: end procedure

Given n represents the number of triples in a sliding window ω, the worst-case
time complexity of Algorithm 1 is estimated as O(n). This linear complexity ensures
that instance matching can scale efficiently with increasing stream sizes, provided that
the number of triples per window remains bounded (e.g., 10 min slices). In terms of
applicability to the IoT context, the algorithm is highly suitable for fog-level deployments
in smart cities, where moderate computing power is available and responsiveness is critical.
This is due to its low computational overhead and reliance on basic memory structures
(e.g., hash tables and β-memory). Furthermore, its stateless design also supports the
parallel processing of windows, enabling real-time anomaly detection in high-throughput
environments (e.g., traffic congestion sensors or air pollution monitors).

3.3. Reasoning Layer

The reasoning layer consider a reasoning approach that can support the definition of
domain rules (with forward rules), as this is currently missing in the existing semantic-
based reasoners. It consists of the rule base, inference manager and inference graph
modules. The layer access-serialised RDF data formats from the matching layer through the
β − memory. The rule base stores a set of stream quality validation rules defined by domain
experts, which are defined using some set of known data quality indicators (e.g., using a
government-approved scale for the air quality index). The rule is used to filter inconsistent
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IoT streaming data from streaming windows. The rules can be modified and apply to suit
specific patterns of data distribution for the purpose of checking stream anomalies. The rule
manager in the inference manager module facilitates the implementation of the rule pseudo-
code described in Algorithm 2 by the domain experts for validating semantic streams for
consistency checks. The rule can combine several relevant and related conditions to arrive
at a conclusion and for semantic inference. It enforces the rule and constraints on domain-
specific conditions defined by the domain experts. Similarly, given m to be the number of
rule conditions and n the number of semantic statements per window, the computational
complexity of Algorithm 2 is defined as O(m · n). This is considered valid and overall
remains computationally manageable since the number of rules m is typically small and
domain-specific (e.g., 3–5 rules per pollutant type), and each stream window is temporally
bounded. Algorithm 2 will be most appropriate for cloud-level or high-capacity fog
deployments, where slightly higher reasoning latency (e.g., sub-second) is acceptable in
exchange for richer semantic inference.

Algorithm 2 Semantic Rule for Consistency Check

1: Definitions:
2: C1, C2, C3 · · ·Cn: are set of rule conditions.
3: X: Specific measurement value of the target triple with associated timestamp.
4: ϕ: Represents the nth triple value with associated timestamp.
5: ∧: ’AND’ logical operator connecting statements and rule conditions.
6: ∆: Set of comparison operators for IoT measurement timestamps
7: procedure CONSISTENCYCHECK(C1, C2, C3, . . . Cn)
8: Rule Mode := “forward”
9: if

10: Conditions: (
11: Condition 1:
12: C1 = {(?x namespace:p ?K) ∧ (?x namespace:q ?xTimeStamp) ∧ (lowerBound < x

< upperBound)} ∧
13: Condition 2:
14: C2 = {(?y namespace:p ?K) ∧ (?y namespace:q ?yTimeStamp) ∧ (lowerBound < x

< upperBound)} ∧
15: Condition 3:
16: C3 = {(?z namespace:p ?K) ∧ (?z namespace:q ?zTimeStamp) ∧ (lowerBound < x

< upperBound)} ∧
17: . . .
18: Condition N:
19: CN = {(?ϕ namespace:p ?K) ∧ (?ϕ namespace:q ϕ TimeStamp) (lowerBound < ϕ

< upperBound)} )
20: ∧
21: Comparison of corresponding Timestamp:
22: ∆ ( ?xTimeStamp, zTimeStamp) ∧
23: ∆ ( ?xTimeStamp, zTimeStamp) ∧
24: . . .
25: ∆ ( ?xTimeStamp, ϕTimeStamp) then
26: Annotate value X as literal string: (?x namespace:p ’ X-literal string’ )
27: end if
28: end procedure

The reasoning unit adopts a continuous reasoning approach by layering each sliding-
window session of the stream query with rules defined by Algorithm 2 and stored in the
rule base. In practice, Algorithm 2 runs over a sliding window by executing the consistency
rule over each semantic stream query window that contains the current snapshots of the
semantic streams. The reasoning process is further enhanced with BIND or SCHEMABIND

calls on the sliding windows to ensure there is no information loss during the continuous
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reasoning process. The purpose of the reasoning is to produce new knowledge about
streams by a method of semantic inference that is facilitated by the inference graph module
while also taking into consideration the time component of the data.

The continuous validated output and semantically inferred knowledge produced
by the inference graph component of the architecture persisted as RDF statements on
the knowledge graph (KG) to support new semantic inferences. Finally, the IoT stream
subscribers (which could be in the form of software agents or smart applications) and
other smart monitoring systems as indicated in Figure 2 can continue to consume the
quality-enriched data streams from the reasoning layer to support actionable decisions at
the smart city application level.

4. Use Case and Experiment
The architecture proposed in the previous section has been prototyped as a software

implementation applicable to a smart city scenario. We have demonstrated the feasibility
of the proposed approach in attempt to evaluate the effectiveness in terms of accuracy
and its efficiency in terms of the performance and response to real-time requirements. It is
anticipated that the full implementation of the proposed architecture will cover edge, fog
and cloud computing layers to support the semantic reasoning and real-time validation of
IoT streaming data.

4.1. Use Case and Dataset

The proposed use case has been contextualised in the estimation of an urban pollution
monitoring scenario in the city of Milan. The dataset [39] was collected from a monitoring
campaign in the urban centre of the Italian city, specifically at a busy main road in Milan.
This was performed as a collaborative effort between Pirelli Labs and the Lombardy
Regional Environmental Protection Agency (ARPA), as part of a year-long study to evaluate
sensor accuracy under urban conditions and in response to variable factors, like seasonal
shifts and decisions on traffic levels. The use case considered processing the quality
requirements of heterogeneous sensor streaming data to effectively enhance data-driven
decision support systems in the context of smart city innovations. In particular, it addressed
the operational decision-making that focuses on knowing when to reduce the carbon
monoxide concentration in the air to sustain a cleaner environment in an attempt to realise
one of the pillars of the IBM smart city model [40].

The dataset has been made available to support research on air quality and pollution
management in dense urban areas. It contains 9358 chemical sensor instances that include
measurements of benzene (C6H6) concentrations and other pollutants, like carbon monox-
ide (CO), Nitrogen Oxides (NOx) and Nitrogen Dioxide (NO2). The sensors were deployed
in significantly polluted areas marked on the map in Figure 6. Each sensor is programmed
to record data at hourly intervals. The data reflect real-world environmental variability,
including missing values, outliers and duplicated timestamps—conditions commonly en-
countered in large-scale IoT deployments. Missing data points are assigned a placeholder
value of −200 to indicate their absence within the affected data points. Instances of incon-
sistent values are recorded as duplicated values with the same timestamp as the previous
interval of sensor reading. Furthermore, values found outside the defined range of the air
quality index (AQI) are also tagged as an erroneous reading.
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Figure 6. Map of sensor deployment at busy main road in Milan.

4.2. Data Stream Processing and Technologies

We like to emphasise that the data used for the experiments are constructed based on
real-world data from the one described in Section 4.1. At the data preprocessing stage, the
data are grouped and identified based on the relevance of the measured phenomena and
their categorisation as an air pollutant. Similarly, all the data affected by cross-sensitivities
and sensor drifts are excluded from the choice of candidate data points. Each value of the
sensor readings has been simulated and aligned with the specific timestamps using the
C-SPARQL Engine (https://github.com/streamreasoning/CSPARQL-engine (accessed on
10 April 2025)), a notable java-based stream processing system. In order for each stream
to be annotated with a semantic description, the Jena library (https://jena.apache.org/
download/#apache-jena-binary-distributions (accessed on 10 April 2025)) has been used
to access the SmartSUM ontology, which also represents the base ontology model for
transforming each sensor reading into an equivalent RDF stream (quadruple statements).

From the implementation perspective, the streaming layer represents the edge layer
that captures fine-grained IoT streaming data relating to air quality measurements. Com-
munication at this layer will be established through the MQTT (https://activemq.apache.
org/components/classic/documentation/mqtt (accessed on 10 April 2025)) and CoAP
protocols (https://github.com/open-coap/java-coap (accessed on 10 April 2025)), and
the data are converted to RDF streams. To understand the effect of the semantic process,
each RDF stream is reconstructed. This is achieved via the C-SPARQL Engine for the
construction of instances of the semantic streams. Each stream selection is achieved with
the equivalent semantic query. Figure 7 shows a sample C-SPARQL query for the stream
selection over a continuous streaming window for a duration of 10 min with a maximum
sleep time of 2 min between successive query executions. This approach to stream manage-
ment adheres to the requirement for continuous data stream processing and real-time query
execution across the streaming windows. Flexible data delivery between the layers of the

https://github.com/streamreasoning/CSPARQL-engine
https://jena.apache.org/download/#apache-jena-binary-distributions
https://jena.apache.org/download/#apache-jena-binary-distributions
https://activemq.apache.org/components/classic/documentation/mqtt
https://activemq.apache.org/components/classic/documentation/mqtt
https://github.com/open-coap/java-coap
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framework is managed by Apache camel (Available: http://camel.apache.org/ (accessed
on 10 April 2025)), which is a lightweight data transfer framework.

Figure 7. Sample stream construction with timestamps.

The matching layer implements the native Jena RIOT API (https://jena.apache.org/
documentation/io/rdf-output.html (accessed on 10 April 2025)) while relying on the
background SmartSUM model to serialise the RDF streams received from the streaming
layer into the four identified RDF serialisation formats. The implementation of this layer
represents a fog layer deployed with the capability to validate and enrich each instance
of a stream to produce the quadruple statement before pushing to the cloud layer. A java
programming class was implemented to achieve the instance matching in Algorithm 1 with
emphasis on the quadruple statement pattern stored in the embedded triple store (RDF
graph loader as static RDF graph). The algorithm uses a pattern-matching logic to flag
incomplete streams in near real time. Each quadruple statement is discriminated once there
is evidence of an incomplete data value or non-conformity with the defined schema, and
the object node of the quadruple statement is labelled as a literal string.

The implementation of the reasoning layer allows for semantic stream management
pipelines to be maintained via cloud processing, enabling flexible querying and integration
with other smart city platforms. Stream ingestion has been achieved by referencing the
C-SPARQL query engine and facilitated via the ActiveMQ broker and Java Message Service
(JMS). The knowledge base integration allows for the serialised RDF streams to be matched
with static ontology (such as SSN/SOSA) to enrich the context and semantics of the streams.
A consistency check (Algorithm 2) is bound with a C-SPARQL query and allowed to execute
against the sliding-window intervals to collect snapshots of matched streaming data and
compare each statement with the defined rule. Figure 8 shows a sample rule for checking
the availability of inconsistent streams within the streaming windows. The serialised RDF
format of the semantic IoT streaming data in each current sliding window is accessed with
the support of the RDF Application Programming Interface (API). This allows the reasoning
unit to evaluate the snapshot of each semantic stream against the predefined rule in the
rule base, thereby enabling continuous inference. The entire reasoning approach has been
facilitated with the use of the Jena library (http://jena.sourceforge.net/ (accessed on 10
April 2025)) and its corresponding subsystems.

http://camel.apache.org/
https://jena.apache.org/documentation/io/rdf-output.html
https://jena.apache.org/documentation/io/rdf-output.html
http://jena.sourceforge.net/
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Figure 8. Sample reasoning rule for inconsistent carbon monoxide readings.

4.3. Experiments

The experimentation process was designed to evaluate the efficiency and accuracy
of the proposed semantic-based IoT streaming data validation architecture under realistic
smart city conditions. It focused on reconstructing the raw streaming data produced from
the physical sensor nodes described in Section 4.1 at different experimental runs.

4.3.1. Simulation Setup

The experimental setup was simulated on a single node running on a multiple pro-
cessor computer (Pentium Core (TM) i7-4770 CPU @ 3.40 GHz–16 GB RAM). The Java
Virtual Machine (JVM) was configured with an initial heap size of 1024 MB and a maximum
of 2048 MB. The entire software stack, including semantic processing, rule-based valida-
tion and stream management, was implemented using the Java programming language.
The libraries and tools used during the experiments include Apache Jena (for ontology
access, RDF serialisation and semantic reasoning), Apache camel for stream orchestration
and inter-layer communication, ActiveMQ with JMs for real-time stream delivery and
C-SPARQL to simulate the real-time querying.

4.3.2. Data Reconstruction and Preprocessing

Sensor observations based on raw sensor data from the Milan air quality dataset were
pre-processed to simulate real-time streaming behaviour. The data preprocessing stage
starts by filtering irrelevant sensor readings before using the Java program to reconstruct
and align the sensor values with the corresponding timestamps to reflect the true hourly
observations. Data quality anomalies in the form of missing values (−200), inconsistent
duplicates (repeated readings with identical timestamps) and out-of-range values (outside
the acceptable AQI range) were injected under controlled simulated conditions. The
observations were categorised by pollutant type (e.g., CO, NOx and NO2) and converted
into RDF quadruple statements using the SmartSUM ontology. Each RDF stream instance
was annotated with temporal metadata for compatibility with semantic stream processing.
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4.3.3. Experiment Design

Two main experimental runs were conducted, which differ in duration and stream
query configurations. The first experimental run was based on a 72 h simulation with a
1 min streaming interval and 10 min query window. The second experimental run was
varied to consider a 120 h simulation with a 4 min streaming interval and 20 min query
window. In both cases, semantic stream queries were executed at regular intervals with
a 2 min sleep duration between executions to emulate real-time continuous processing.
Each run involved the validation of the semantic streams using all four RDF serialisation
formats (N3, RDF/XML, Turtle and N-Triple). Poor-quality streams were introduced at
consistent intervals to evaluate detection sensitivity. The choice of the durations for the
query executions caters for an extreme case of a reduced time interval for sensors and IoT
streaming data generation within the smart city context. During the reasoning process
of the experiments, we based our domain expert knowledge on verified values of sensor
readings and the established relationships between carbon monoxide (CO) and Nitrogen
Oxides (NOx)/Nitrogen Dioxides (NO2), which is defined as inversely proportional, while
the relationship between (NOx) and (NO2) is directly proportional [41]. The reasoning rule
specifically compares the current CO reading with a possible range of consistent values
with timestamps, which was determined by the city planner as a certified safe level in
quality index. The semantic validation process from the experiments produced a total of
7,657,016 inferred quadruples in the two experimental runs.

5. Results and Discussion
The performance evaluation of the semantic stream validation architecture focused

on two core metrics, accuracy in detecting incorrect RDF streams and the reasoning time
required for stream validation, across multiple RDF serialisation formats. Four widely
used RDF formats—N-Triple (NT), Notation3 (N3), RDF/XML and Turtle—were examined
under two streaming configurations involving 1 min and 4 min intervals, each with differing
query window durations. Figures 9 and 10 present the experimental outcomes across
350 validation cycles. Each validation cycle contains an average of 36 quadruples resulting
from several streaming windows, and they were processed by the semantic stream quality
validation approach with the output expressed as a percentage value.

Figure 9. Accuracy of semantic approach over different stream processing intervals.
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Figure 10. Execution times of semantic reasoning approach.

5.1. Accuracy Analysis

The definition of accuracy in our context conforms to the definition provided in [42],
which means identifying the correct and unambiguous sensed values that agree with the
actual value of measurement. Therefore, for each validation cycle,

Accuracy = 1 − TE
QW

(3)

where TE is the number of quadruple statements with one or more incorrect values within
the validation cycles, and QW represents the total quadruple statements produced within
each validation cycle.

The accuracy for both the separate intervals of streaming windows and stream selec-
tion duration was computed using Equation (3).

As shown in Figure 9, the non-visible variations for the N3, RDF and Turtle serialised
formats may be attributed to consistency by close margins in terms of their percentage
of accuracy across the validation cycles. N-Triple consistently demonstrated the highest
validation accuracy, peaking at 100% and stabilising between 98 and 99% across both stream
configurations. This superior performance is largely attributed to the syntactic simplicity
and line-based structure of the N-Triple format, which facilitates efficient parsing and
minimises ambiguity during semantic annotation and validation. Each triple is written on a
single line, which simplifies the stream processing and aligns well with the sliding-window
execution logic of C-SPARQL.

In contrast, the N3, RDF/XML and Turtle formats exhibited comparable accuracy
levels but with less visible fluctuation in the plots due to their close margins. Among these,
N3 slightly outperformed RDF/XML and Turtle in both configurations. The N3 format,
with its concise notation and extended logical expressiveness (e.g., support for formulas and
rules), allows for more compact stream representations, which aids in intermediate memory
management and efficient query execution under constrained computational settings.

RDF/XML and Turtle, while syntactically richer and more human-readable, intro-
duced slight inconsistencies during high-frequency streaming intervals (notably in the
1 min configuration), likely due to their increased syntactic overhead and multi-line struc-
ture, which require more complex parsing operations during stream instantiation.
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5.2. Analysis of Reasoning Time

In terms of estimating the reasoning time of the four serialised formats, Figure 10
presents the reasoning times across the serialisation formats and configurations. Clearly,
N-Triple initially incurred the highest reasoning time (up to approximately 0.07 s) in the
early cycles of the 1 min configuration, attributed to overhead from processing a larger
number of individual triples (as each line represents a distinct triple without syntactic
compression). However, as the cycles progressed and the system’s caching and memory
structures stabilised, the reasoning time improved and stabilised around 0.05 s. N3 consis-
tently showed the lowest and most stable reasoning time across both configurations. This
suggests that N3 offers a balanced trade-off between expressiveness and parsing efficiency,
aided by its support for logic-based constructs that align with the forward-rule inference
mechanism used in the reasoning layer. RDF/XML and Turtle exhibited gradual increases
in the reasoning time, especially beyond 200 validation cycles in the 4 min streaming
configuration. This can be attributed to the increasing complexity of XML-based parsing
(in RDF/XML) and the nested structure in Turtle, which tend to scale poorly with higher
volumes of streaming data and larger semantic windows. Additionally, these formats
require more memory-intensive parsing operations, which, under longer validation cycles,
may introduce noticeable latency in reasoning tasks.

The graph also indicates varying the query time with interval sleep time plays a
significant role in the semantic reasoning process. The observed variations in accuracy
and reasoning time can be theoretically explained by the computational and syntactic
characteristics of the RDF formats. N-Triple (NT) is the most machine-friendly due to
its minimalistic, line-delimited syntax. Its design prioritises processing speed over com-
pactness or readability, making it ideal for stream-based systems where each statement
is treated independently and parsed in a stateless manner. However, its lack of syntactic
shortcuts leads to redundancy, increasing payload size and processing time under certain
conditions. Notation3 (N3) extends Turtle by supporting logical formulas and inference
rules, which complements the forward-chaining reasoning strategy adopted in the archi-
tecture. Its concise syntax and logic-native structure reduce the parsing time and enhance
performance in rule-based validation contexts. Furthermore, RDF/XML, being a verbose
and hierarchical representation, introduces overhead due to the XML parsing complexity
and namespace handling. It is less suited for rapid stream ingestion unless XML-optimised
parsers or parallel XML processing engines are utilised. Finally, the Turtle serialised format
is more compact than RDF/XML and supports readable RDF expression, but its reliance
on prefixes and multi-line expressions can introduce additional parsing effort, particularly
under large and continuous data streams.

5.3. Implications for Real-World Applications

The results underscore the importance of serialisation format selection based on
application-specific constraints, such as high-throughput, latency-sensitive smart city ap-
plications. The reasoning approach resonates with a similar semantic stream processing
approach based on the use of using an existing reasoner [21] where performance is under
limited computational resources. However, the work did not consider the granularity of
their approach to specific low-level issues in individual IoT streams. On the other hand, our
results show the approach can achieve finer granularity while focusing on individual IoT
streaming data and providing actionable insights related to specific stream quality issues.
It also suggests a better approach to sensor stream reasoning. It further establishes that the
semantic stream processing can still be contained within the interval of IoT streaming data
generation of sensor reads in smart city application scenarios, such as air quality monitor-
ing and smart transportation [7,21]. In addition, the approach reinforces its suitability for
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timely decision-making in smart safety critical applications especially, as a new evolving
era of intelligent-driven smart cities is currently within sight.

6. Conclusions and Future Work
The continuous deployments of sensors and IoT technologies to support the data-

driven decisions and actuation in smart city services has identified the need for integrating
quality-enriched data from heterogeneous sources and managing the quality requirements
of the IoT/sensor nodes. In this paper, we proposed and evaluated a semantic-driven
approach for validating IoT streaming data, aimed at enhancing trustworthiness and
decision-making in smart city monitoring systems. The architecture integrates semantic
stream processing with forward-rule reasoning to detect and isolate inconsistent and
incomplete sensor data in near real time. Through software implementation and simulation
using a real-world dataset from a busy road in Milan, Italy, we demonstrated the practical
feasibility and performance of the approach under urban conditions.

The effectiveness of the proposed approach was validated through a set of controlled
experiments involving RDF stream instances derived from real-world air quality and
pollution sensor data. The semantic validation process successfully identified up to 99% of
incorrect streams across 350 validation cycles, with consistent performance across different
RDF serialisation formats. In particular, N-Triple and N3 formats demonstrated high
accuracy and stability, while reasoning time remained within sub-second ranges, meeting
the low-latency requirements for real-time urban monitoring systems.

Furthermore, the semantic reasoning process exhibited robustness in aligning with
known domain rules, such as inverse and direct relationships between pollutants (e.g.,
CO, NOx and NO2), enabling domain-aware validation and inferencing. This capability
enhances the quality of situational awareness and enables data-driven actions, such as
triggering alerts or recommending traffic or environmental interventions. For example, the
detection of hazardous pollutant levels can support decisions to reroute traffic or activate
pollution control mechanisms in heavily congested areas.

In conclusion, the experimental outcomes substantiate the viability of the semantic
stream validation framework in real-world smart city applications, particularly those
requiring high data fidelity, such as air quality monitoring, traffic management and public
health alert systems. The architecture’s modularity and compatibility with multiple RDF
serialisations ensure interoperability across heterogeneous platforms and ease of integration
with existing urban infrastructure.

Future developments include enhancement of semantic reasoning to support a more
distributed processing and exploring optimisation techniques for NT formats to support
high-frequency queries. This will considerably improve the scalability of the semantic
streaming data validation process, especially in a high computing environment where
constraints on computing resources are highly predominant and inevitable.
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