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Abstract
1. State- space models are a powerful modelling framework in movement ecology 

that represents individual movements and the processes connecting movements 
to observations. However, fitting state- space models to animal- tracking data can 
be difficult and computationally expensive.

2. Here, we introduce patter, a package that provides particle filtering and smooth-
ing algorithms that fit Bayesian state- space models to tracking data, with a focus 
on data from aquatic animals in receiver arrays. patter is written in R, with a per-
formant Julia backend. Package functionality supports data simulation, prepara-
tion, filtering, smoothing and mapping.

3. In two examples, we demonstrate how to implement patter to reconstruct the 
movements of a tagged animal in an acoustic telemetry system from acoustic de-
tections and ancillary observations. With perfect information, the particle filter 
reconstructs the true (unobserved) movement path (Example One). More gener-
ally, particle algorithms represent an individual's possible location probabilistically 
as a weighted series of samples (‘particles’). In our illustration, we resolve an in-
dividual's (unobserved) location every 2 min during 1 month and use particles to 
visualise movements, map space use and quantify residency (Example Two).

4. patter facilitates robust, flexible and efficient analyses of animal- tracking data. 
The methods are widely applicable and enable refined analyses of space use, 
home ranges and residency.

K E Y W O R D S
Bayesian inference, movement ecology, package, particle filter, passive acoustic telemetry, 
state- space model
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1  |  INTRODUC TION

The field of movement ecology has expanded in recent decades 
(Nathan et al., 2008; Rafiq et al., 2021). Electronic tagging and 
tracking technologies are used to track animals across the globe, 
providing a ‘panoramic window’ into their lives (Hussey et al., 2015). 
In aquatic environments, satellite tracking has reconstructed the 
migrations of air- breathing animals (Hays & Hawkes, 2018), archi-
val geolocation has revealed the transoceanic movements of pelagic 
fish (Block et al., 2005) and passive acoustic telemetry arrays have 
been established to track acoustically tagged animals from local to 
continental scales (Matley et al., 2022). This accumulation of animal- 
tracking data is outpacing the development of modelling methods 
and software packages for analysis (Rafiq et al., 2021).

State- space models (SSMs) have emerged as a powerful model-
ling framework for animal tracking (Patterson et al., 2008). An SSM is 
a hierarchical representation of a process- observer system in which 
the evolution of an unobserved (‘latent’) state (s) through time (t) is 
imperfectly observed, generating ‘noisy’ observations (yt ). Discrete- 
time SSMs for animal- tracking data model the movement process 
f
(
st | st−1

)
 by which an animal's state (typically, location) evolves 

through time (t ∈ {1, … , T}) and the observation processes f
(
yt | st

)
 

connecting movements to observations. The SSM thus forms a for-
mal statistical framework within which it is possible to estimate the 
unobserved states of an animal that are of interest, while accounting 
for movement properties (including speeds and barriers) and obser-
vation processes (such as detectability). However, fitting SSMs can be 
challenging and computationally expensive (Patterson et al., 2008).

Particle filters are flexible Monte Carlo algorithms used to 
fit state- space models (Doucet & Johansen, 2009). In an animal- 
tracking context, a particle filter approximates the distribution of 
possible locations of an individual with a set of weighted samples 
termed ‘particles’ (Lavender et al., 2025a). A movement model sim-
ulates possible locations of the individual (i.e. st ∼ f

(
st | st−1

)
) and 

observation model(s) weight particles in line with the probability of 
the observations (i.e. f

(
yt | st

)
). By resampling particles in line with 

the weights, we duplicate particles that are compatible with the 
data and eliminate incompatible particles. The result is an approx-
imation of the distribution of the individual's location at each time 
step, given the preceding data (i.e. the partial marginal distribution, 
f
(
st | y1:t

)
 ). Particle smoothers and samplers are extensions that ap-

proximate the full marginal (f
(
st | y1:T

)
) and the joint (f

(
s1:T | y1:T

)
)  

distributions, respectively (Doucet & Johansen, 2009). Compared 
to alternative SSM- fitting methods for animal- tracking data, advan-
tages of particle algorithms include their flexibility, scalability and 
the ease with which they can be intuitively understood. In the eco-
logical literature, a handful of particle filtering routines have been 
developed, including for fish geolocation over coarse spatial scales 
(Liu et al., 2019). However, existing routines are relatively special-
ised, computationally intensive and require user expertise.

Here, we introduce patter, a package that provides particle fil-
tering and smoothing algorithms for animal- tracking data, motivated 

by our research in acoustic telemetry systems. patter is written 
in R (Lavender, 2024a) and integrates a Julia backend, Patter.jl 
(Lavender, 2024b). Julia is a programming language that combines 
the ease of use of an interpreted language like R with the speed 
of a compiled language like C++ (Bezanson et al., 2017). patter in-
cludes routines for simulation, data preparation, particle filtering, 
smoothing and mapping. These routines extend the acoustic te-
lemetry and animal- tracking package ecosystems (Joo et al., 2020; 
Kraft et al., 2023). In the context of passive acoustic telemetry, pat-
ter is unique in the provision of routines that reconstruct individual 
movements and patterns of space use within a coherent probabilistic 
framework. The routines enable refined analyses of space use, home 
ranges and residency.

2  |  METHODOLOGY

2.1  |  Model formulation

The statistical methodology is described in Lavender et al. (2025a). 
This section provides a summary.

2.1.1  |  Posterior

We consider a Bayesian state- space model for the state of a tagged 
animal; that is, the joint distribution f

(
s1:T | y1:T

)
, where st =

(
sx , sy

)
 

denotes the state (a two- dimensional location in our examples), yt 
denotes observations and t ∈ {1, 2, … , T} indexes time steps. The 
joint distribution is proportional to the product of a prior (the move-
ment process) and the likelihood (the observation process), that is, 
f
�
s1:T � y1:T

�
∝ f

�
st=1

�
f
�
yt=1

�� st=1
� ∏T

t=2
f
�
st

�� st−1
�
f
�
yt

�� st
�
.

2.1.2  |  Prior

The prior comprises a probability density distribution of the animal's 
initial location (f

(
st=1

)
) and a movement model (f

(
st | st−1

)
). A simple 

model for f
(
st | st−1

)
 in the two- dimensional case is a discrete- time 

random walk, where st =
(
sx,t−1 + dt cos�t , sy,t−1 + dt sin�t

)
 and d 

(step length) and � (heading) are independently distributed random 
variables, restricted by boundary conditions (e.g. land).

2.1.3  |  Likelihood

The likelihood measures the probability of the observations given 
the latent states (st). In an acoustic telemetry system, observations 
may include acoustic measurements at each of M receivers (an M × T 
matrix, y(A)) and ancillary measurements, such as depths (a row vec-
tor, y(D)). By way of example, here we consider a combined dataset 
y =

{
y(A), y(D)

}
 and the likelihood f

(
yt | st

)
= f

(
y
(A)

t

||| st
)
f
(
y
(D)

t

||| st
)
.
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    |  3LAVENDER et al.

2.1.4  |  Acoustic measurements

The likelihood of the acoustic measurements at time t (y(A)
t

), which 
comprise detections (1) or non- detections (0) at each operational 
receiver (i.e. y(A)

k,t
∈ {0, 1}), can be modelled using the Bernoulli prob-

ability mass function, f
�
y
(A)

t

��� st
�
=

∏
kpk,t

�
st
�y(A)

k,t
�
1−pk,t

�
st
��1−y(A)

k,t  
(assuming independence). We typically model detection probability, 
p, as a function of the distance between the receiver (at location 

rk) and transmitter (at s), such as 
pk,t

�
st
�
=

⎧
⎪
⎨
⎪
⎩

�
1+e−(𝛼−𝛽×�st−rk�)

�−1

if ∣ st− rk ∣ <𝛾

0 otherwise , 
where α and � are parameters and � is the detection range.

2.1.5  |  Depth measurements

A simple model for the likelihood of a depth observation is:

where zt =
(
�deep

(
st
)
+�shallow

(
st
))−1. This requires y(D)

t
 to be within a 

window around the bathymetric depth b
(
st
)
. The window's width is de-

fined by the shallow and deep depth- adjustment functions, �shallow
(
st
)
 , 

�deep
(
st
)
≤ b

(
st
)
. These functions capture observational uncertainty (i.e. 

tag accuracy and the accuracy of the bathymetric measurement) and can be 
tailored for different species (depending on how much time they spend near 
the seabed). For benthic species, small errors (𝜀shallow

(
st
)
, 𝜀deep

(
st
)
≪ b

(
st
)
)  

only permit observations close to the seabed; for pelagic species, larger 
�shallow

(
st
)
 values permit observations in the water column.

2.2  |  Inference

2.2.1  |  Filter

For inference, we begin with the partial marginal distribution, 
f
(
st | y1:t

)
. Particle filters approximate f

(
st | y1:t

)
 as a sum of N 

weighted particles, that is, f
�
st � y1:t

�
≈
∑N

i=1
�
�
st − si,t

�
wi, where � 

is the Dirac delta function, w denotes normalised weights and i  in-
dexes particles. We perform inference for the latent states, assuming 
static parameters (in the movement and observation models) can be 
specified using supporting datasets, domain expertise and literature. 
Starting with an initial set of particles sampled from the prior (i.e. 
si,1 ∼ f

(
s1
)
), the filter iteratively simulates particles via the movement 

model (i.e. si,t ∼ f
(
si,t

|| si,t−1
)
), weights particles in line with the likeli-

hood (via wi,t ∝ wi,t−1f
(
yt | si,t

)
) and resamples particles accordingly.

2.2.2  |  Smoother

Particle smoothers re- weight filtered particles to approximate 
the full marginal, f

(
st | y1:T

)
. The two- filter smoother uses N 

particles (si,t) from a forward filter (with weights wi,t) and N particles 
( s̃j,t ) from a backward filter (with weights w̃t,j). The distribution 
f
(
st | y1:T

)
 is approximated as a sum of re- weighted particles via 

f
�
st � y1:T

�
≈
∑N

j=1
�
�
st − s̃j,t

�
w̃j,t∣T, where the smoothed weights 

for each particle s̃j,t represent a summation over all possible 
movements from preceding particles on the forward filter, that is, 
w̃j,t∣T ≈ w̃j,t

∑N

i=1
f
�
s̃j,t � si,t−1

�
wi,t−1. We use samples from f

(
st | y1:T

)
 to 

map utilisation distributions (Lavender et al., 2025a). Sampling from 
the joint distribution, f

(
s1:T | y1:T

)
, is more expensive and beyond the 

scope of this contribution.

3  |  PACK AGE

patter supports data input, algorithms and mapping (Figure 1).
For data input, patter provides sim_*() functions for de novo sim-

ulation or accepts real- world datasets.
Particle algorithms are implemented by pf_*() functions. 

Filtering and smoothing are implemented via pf_filter() and pf_
smoother_two_filter(). We provide movement models and methods 
that evaluate the likelihood of acoustic and depth observations, 
but algorithm components can be customised as required. The 
main output is a data.table of particles. The core routines use 
Patter.jl. JuliaCall implements the coupling between the patter and 
Patter.jl packages (Li, 2019). Movement and observation models 
are multithreaded and designed for numerical stability. We antic-
ipate that most users will prefer the R front end, but Patter.jl can 
also be used directly.

Mapping functions (map_*()) facilitate subsequent anal-
ysis, including the reconstruction of utilisation distributions 
(Lavender et al., 2025a). Routines include map_pou(), which maps 
probability- of- use across a grid; map_dens(), which incorporates 
kernel smoothing; and map_hr_*() functions, which compute home 
ranges.

4  |  E X AMPLES

4.1  |  Overview

We provide two examples using simulated data. Both examples con-
sider the movements of a benthic animal in a hypothetical acoustic 
array spanning a marine protected area (MPA) in Scotland (Figure 2). 
The study area is defined by a 100 × 100 m resolution bathymetry 
grid. We base the grid on real- world data (Howe et al., 2014) but, 
for the purposes of our first example, add some random noise such 
that each cell's depth is unique. Within this region, we tag an animal 
with an acoustic transmitter and an archival depth tag. We imag-
ine that both tags operate at a resolution of 2 min and simulate a 
discrete- time random walk at this resolution over a 1- month period 
(Figure 2b,c). We simulate acoustic and depth observations arising 
from the simulated path and apply our algorithms to these data to re-
construct movements and patterns of space use. In the first example, 

f
�
y
(D)

t

��� st
�
=

⎧
⎪
⎨
⎪
⎩

zt if b
�
st
�
−�shallow

�
st
�
≤y

(D)

t
≤b

�
st
�
+�deep

�
st
�

0 otherwise

,
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4  |    LAVENDER et al.

we simulate observations in such a way that the depth observation 
exactly defines the location of the individual (which is situated on 
the seafloor) (Figure 2d–f). This example will demonstrate that, in 
the absence of uncertainty, the particle filter reconstructs the true 
movement path. In the second example, we simulate observations 

probabilistically and demonstrate the representation of uncer-
tainty in particle algorithms and maps of space use (Figure 2d–f).  
The following sections showcase key functions and arguments 
(Figure 1). Additional arguments are denoted by ellipses. Complete 
code is available online (Lavender et al., 2025b).

F I G U R E  1  Package overview.

F I G U R E  2  A state- space model for animal- tracking data. (a) A study area, including a simulated movement path (coloured by time) and 
acoustic receivers (sized by detection range and coloured by detection(s)/non- detection). (b, c) The components of the random walk used 
to simulate and model movements. (d, e) The observation models used to simulate and model acoustic and depth observations arising from 
the simulated path in the two worked examples; the acoustic observation model is constant, but the depth model differs (see Section 4.1). (f) 
The simulated time series for each example.
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    |  5LAVENDER et al.

4.2  |  Implementation

4.2.1  |  Simulation

We begin with essential initiation:
library(patter)  
library(data.table)  
julia_connect()

Next, we define the study system:

# Define study period  
timeline <-  seq(as.POSIXct("2023- 01- 01 12:00:00", tz = "UTC"),  
                           as.POSIXct("2023- 01- 31 23:58:00", tz = "UTC"),  
                           by = "2 mins")

# Define study site (map: SpatRaster)  
set_map(map)

We simulate an acoustic array (i.e. data.table of receivers). We 
include three receiver columns that represent observation model 
(detection probability) parameters:

moorings <-  sim_array(map,  
                                        timeline,  
                                        .n_receiver = 100L,  
                                        .arrangement = "regular",  
                                        .receiver_alpha = 4,  
                                        .receiver_beta = - 0.01,  
                                        .receiver_gamma = 750)

We then simulate a two- dimensional random walk in this area:

# Define state type for 2D walk  
# (s_t = (s_{x, t}, s_{y, t}), truncated by boundaries)  
state <-  "StateXY"

# Define movement model that updates s_t  
# d_t ~ TruncatedGamma(k, theta, 0, mobility)  
# phi_t ~ Uniform(a, b)  
model_move <-   
  move_xy(dbn_length = "truncated(Gamma(1.0, 250.0), upper = 
750.0)",  
                  dbn_angle = "Uniform(- pi, pi)")

# Simulate 2D path (data.table of states)  
# s_t = (s_{x, t- 1} + d_t * cos(phi_t), s_{y, t- 1} + d_t * sin(phi_t)),  
# subject to boundary conditions  
path <-  sim_path_walk(map,  
                                        timeline,  
                                        state,  
                                        model_move, …)

Next, we simulate acoustic and depth observations. This requires 
defining a vector of observation model (ModelObs) structures (which 
hold model parameters) and a corresponding list of data.tables (with 
those parameters). For both examples, we simulate acoustic obser-
vations from a truncated logistic model (for which we provide the 
ModelObsAcousticLogisTrunc structure and the essential parameters 
are defined in moorings). To simulate depths, we consider a simple 
version of the uniform model described previously, as implemented 
by the ModelObsDepthUniform structure, where �shallow

(
st
)
 and 

�deep
(
st
)
 are the constants depth_shallow_eps and depth_deep_eps.

In the first example, we imagine an animal found exclusively 
on the seabed, the depth of which is known exactly, giving 
parameters:

data.table(sensor_id = 1L,  
                  depth_shallow_eps = 0,  
                  depth_deep_eps = 0)

In the second example, we incorporate uncertainty:

data.table(sensor_id = 1L,  
                  depth_shallow_eps = 20,  
                  depth_deep_eps = 20)

For each example, sim_observations() simulates a list of 
observations:

model_obs <-  c("ModelObsAcousticLogisTrunc","ModelObsDepthUni-
form")  
obs <-  sim_observations(timeline,  
                                           model_obs,  
                                           .model_obs_pars = list(…))

where list(…) denotes the parameter data.tables for the relevant 
example.

4.2.2  |  Particle filter

The particle filter is implemented via:

pf_filter(  
  map,  
  timeline,  
  state,  
  xinit,  
  .yobs = list(…),  
  .model_obs  = model_obs,  
  .model_move = model_move,  
  .n_particle = 1e5L,  
  .direction  = "forward", …  
 )
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6  |    LAVENDER et al.

where .xinit (optional) is the simulated tagging location and .yobs 
is the list of datasets for the relevant example. This returns a pf_
particles- class object that includes a data.table of particles and diag-
nostic statistics. In the first example, the filter reconstructs the true 
(unobserved) path. In the second example, we generate a ‘cloud’ of 
particles at each time step, for which we examine particle diagnos-
tics and proceed to smoothing.

4.2.3  |  Particle smoother

Particle smoothing is implemented using outputs from a forward and 
backward filter via

pf_smoother_two_filter(…)

For illustration, we reconstruct the utilisation distribution and 
home range from smoothed particles via map_dens() and map_hr(). 
We also compare time spent in the MPA, estimated from the propor-
tion of particles inside the MPA, to the truth.

This workflow is highly customisable. patter provides cus-
tomisable, built- in structures for selected movement mod-
els (such as random walks) and observation types (such as 
acoustic observations). User- defined structures, for complete cus-
tomisation, are also supported. See the package documentation  
for details.

4.3  |  Results

In our first example, the particle filter reconstructs the simulated 
movement path perfectly (Figure 3a). In the second example, in which 
observations were simulated with error, the particle filter represents 
the individual's possible locations at each time step with a series of 
weighted particles that approximate f

(
st | y1:t

)
 (Figure 3b). The par-

ticle smoother re- weights filtered particles, approximating f
(
st | y1:T

)
 

(Figure 3c). Smoothed particles can be used to map patterns of space 
use, estimate home ranges and quantify residency (Figure 3d). The 
quality of the smoothing depends on the filter. In this case, filter diag-
nostics are adequate (Figure 3e). Total computation time ranged from 
5 to 32 min for examples 1–2 on a 2023 MacBook Pro (Apple M2 Pro, 
32 GB RAM, 12 CPUs).

5  |  DISCUSSION

patter provides a robust, fast and accessible implementation of par-
ticle algorithms for animal tracking, especially with passive acoustic 
telemetry (Lavender et al., 2025a). These algorithms represent the 
movement and observation processes that generate observations, 
including movement capacity, barriers to movement and detection 
probability, within a biologically and statistically sound framework. 
The movement and observation models are fully customisable, mak-
ing the routines applicable in many real- world settings. However, 

F I G U R E  3  Outputs for the first (a) and second (b–e) worked examples. (a) is the movement path reconstructed by the particle filter for 
the first example. The simulated path is recovered perfectly (at grid resolution) because the observations exactly define the individual's 
location. (b, c) show particles and scaled probability densities from the forward filter and two- filter smoother, respectively, at a selected time 
step. (d) maps the pattern of space use over the entire time series using smoothed particles. Core ranges contain 50% of the probability mass 
volume. Estimated residency in the MPA is 37.0% (the true value is 36.3%). (e) shows diagnostics from the forward filter. The minimum value 
of each statistic is shown for every 100 time steps.
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    |  7LAVENDER et al.

understanding the settings in which different methods are more 
or less useful remains an important research area (Lavender 
et al., 2025a).

The patter workflow involves formulating a state- space model 
for the state of a tagged animal and performing inference via particle 
filtering and smoothing. A biological challenge during this process 
is the formulation of the movement and observation submodels. 
Currently, patter requires users to parameterise submodels a priori. 
This is a trade- off between inferential flexibility and computational 
efficiency. We consider the primary purpose of positional animal- 
tracking (e.g. acoustic telemetry) studies to learn about patterns 
of space use, rather than locomotory capacity or observational 
processes (such as detection probability). Other approaches, such 
as accelerometry studies and drift tests of detection probability, 
can provide more detailed information on the latter (especially in 
sparse acoustic arrays). We encourage users to leverage these data, 
alongside domain knowledge and literature, to parameterise models 
(Lavender et al., 2025a). That being said, we recognise that joint in-
ference may be desirable in situations where data are sufficient and 
this is a possible future development. Joint inference is expensive, 
but there are routines, such as Hamiltonian Monte Carlo, that offer 
potential in this regard (Albert et al., 2015).

A key feature of patter is speed. We achieve competitive speeds 
by focusing inference on individual states, targeting marginal (rather 
than joint) distributions and via a performant Julia backend. While 
formal benchmarks are lacking, simple comparisons are instructive. 
Run times for a Python particle filtering application estimating daily 
posterior distributions for demersal fish over a 1- year period are ap-
proximately 1 h (Liu et al., 2019). Other geolocation routines that fit 
hidden Markov models via likelihood approximation typically require 
hours or days to derive daily geolocation estimates over the same 
timeframe (Pedersen et al., 2008). Inference using Markov Chain 
Monte Carlo algorithms (which directly sample static parameters 
and trajectories) is also often expensive. For example, we observed 
that Hostetter and Royle (2020)'s state- space model for acoustic 
detections (T = 150) requires ≈15 h to fit with their JAGS code on a 
standard computer. With our particle filtering–smoothing algorithm, 
the estimation of latent locations in this situation is soluble in sec-
onds. While run times are not directly comparable, it is encouraging 
to see patter achieving speeds sufficient to make particle algorithms 
serious candidates for real- world analyses.

For applied studies, we suggest the use of simulations to guide 
method implementation and interpretation. Particle filters can be 
sensitive to model parameters and tuning settings (such as particle 
number) and system- specific simulations can inform input arguments 
and quantify sensitivity (Lavender et al., 2025a). For an example 
real- world analysis, we direct the reader to Lavender, Scheidegger, 
Albert, Biber, Aleynik, et al. (2025), who analysed acoustic and ar-
chival data from a Critically Endangered elasmobranch to quantify 
patterns of space use and site affinity in a Scottish Marine Protected 
Area. There is much to be learnt from applications in other settings, 
and we welcome community feedback as these developments are 
exploited.
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