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Abstract
1. Particle filters and smoothers are sequential Monte Carlo algorithms used to fit 

non- linear, non- Gaussian state- space models. These algorithms are well placed to 
fit process- oriented models to animal- tracking data, especially in receiver arrays, 
but to date they have received limited attention in the ecological literature.

2. We introduce a Bayesian filtering–smoothing algorithm that reconstructs individual 
movements and patterns of space use from animal- tracking data, with a focus on 
passive acoustic telemetry systems. Within a sound probabilistic framework, the 
methodology integrates the movement process and the observation processes 
of disparate datasets, while correctly representing uncertainty. In a simulation- 
based analysis, we compare the performance of our algorithm to the prevailing 
heuristic methods used to study movements and space use in passive acoustic 
telemetry systems and analyse algorithm sensitivity.

3. We find the particle smoothing methodology outperforms heuristic methods 
across the board. Particle- based maps represent simulated movements more 
accurately, even in dense receiver arrays, and are better suited to analyses of 
home ranges, residency and habitat preferences.

4. This study sets a new state- of- the- art for movement modelling in receiver arrays. 
Particle algorithms provide a robust, flexible and intuitive modelling framework 
with potential applications in many ecological settings.

K E Y W O R D S
animal tracking, movement ecology, passive acoustic telemetry, patter, state- space model, 
utilisation distribution
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1  |  INTRODUC TION

Animal movement shapes ecological processes across biological 
scales (Nathan et al., 2008, 2022). Individual movements reflect be-
haviour, such as foraging (Shaw, 2020), social interactions (Jacoby 
& Freeman, 2016) and habitat preferences (Abrahms et al., 2021). 
Individual movements also underlie emergent patterns of space use 
that shape population dynamics (Morales et al., 2010), ecosystem 
functioning (Riotte- Lambert & Matthiopoulos, 2020) and interac-
tions with humans (Rutz et al., 2020).

Technologies for animal tracking have advanced dramatically in 
recent decades (Nathan et al., 2022). Some technologies, such as 
satellite transmitters, record individual locations (or proxies thereof) 
through time. Others, such as passive acoustic telemetry, depend 
on receiver arrays that record detections when animals move within 
range (Matley et al., 2022). These are important solutions for animal 
tracking, especially in aquatic ecosystems where satellite tracking is 
limited (Hussey et al., 2015).

Passive acoustic telemetry is widely used to study the movements 
of aquatic animals (Matley et al., 2022; Whoriskey et al., 2019). This 
technology comprises acoustic receivers that listen continuously 
for individual- specific acoustic transmissions from tagged animals. 
When animals move within receiver detection ranges, detections 
may be recorded (depending on transmission distance and other 
variables) (Kessel et al., 2014). Unfortunately, receiver detection 
ranges are typically non- overlapping, resulting in detection gaps 
when animal locations are less certain. However, additional devices 
(such as archival depth tags) may continue to collect data during this 
time (Matley et al., 2023).

In passive acoustic telemetry systems, individual movements 
and patterns of space use are most commonly analysed with heu-
ristic approaches (Kraft et al., 2023). The predominant method 
(the ‘COA algorithm’) takes weighted averages of the receiver lo-
cations where detections were recorded as ‘relocations’ for util-
isation distribution (UD) estimation (Simpfendorfer et al., 2002; 
Udyawer et al., 2018). Other approaches treat the receiver array 
as a network, with nodes defined by receivers and edges de-
fined by sequential detections. For example, the RSP methodol-
ogy smooths interpolated ‘relocations’ along the shortest paths 
between receivers (Niella et al., 2020). However, there remains 
little research on how well heuristic methods represent patterns 
of space use (i.e. method ‘performance’) and the circumstances in 
which they can be usefully applied (Lavender et al., 2023).

Recent studies have encouraged a more process- orientated per-
spective that encapsulates the movement and measurement pro-
cesses that generate observations (Hostetter & Royle, 2020; Lavender 
et al., 2023; Whoriskey et al., 2019). State- space models formalise this 
perspective by coupling a process model of the unobserved move-
ment process to an observation model of the measurement process 
that connects movements to observations (Patterson et al., 2008). 
Yet fitting state- space models is challenging. In the case of satellite 
telemetry, the Kalman filter is often used within a (linear) state- space 
modelling framework to refine location estimates and reconstruct 

movements, under the assumption that process and measurement er-
rors are Gaussian (Jonsen et al., 2020). Particle filters generalise this 
methodology, providing a robust modelling framework that is well- 
suited to movement modelling in receiver arrays.

The particle filter approximates the distribution of interest with a 
set of discrete samples termed ‘particles’ (Doucet & Johansen, 2009). 
In an animal- tracking context, the filter approximates the (partial) mar-
ginal distribution of the individual's location (s) at time t, given all data 
(y) up to that time [i.e. f

(
st | y1:t

)
]. The process model simulates particle 

movement over the landscape as a discrete- time Markovian walk [i.e. 
st ∼ f

(
st | st−1

)
] and the observation model, together with a resampling 

step, eliminates or duplicates particles in line with the likelihood [i.e. 
f
(
yt | st

)
]. By including multiple observation models, disparate data-

sets can be integrated to refine inferences. Subsequent smoothing al-
gorithms approximate the full marginal distribution of the individual's 
location at time t, given all data from the start (t = 1) to the end (t = T) 
of the time series [i.e. f

(
st | y1:T

)
]. Approximating the joint distribution 

[i.e. sampling individual trajectories from f
(
s1:T | y1:T

)
] is also possible, 

but computationally more expensive.
Particle filters have received limited attention in ecology 

(Andersen et al., 2007; Liu et al., 2019). In the field of acoustic telem-
etry, only one study explored the approach (Lavender et al., 2023). 
That study proposed a two- branch framework for reconstructing 
movements, comprising an acoustic- container (AC) branch algo-
rithm that resolved the possible locations for an individual, given 
the data, and a particle filter (PF) branch algorithm that incorporated 
movement. Different combinations of AC- branch and PF- branch 
algorithms were collectively termed the ‘flapper algorithms’ and 
include the ACPF algorithm (which incorporates acoustic data) and 
the acoustic- container depth- contour (ACDC) PF algorithm (which 
incorporates acoustic and archival data). Here, we simply use the ab-
breviations AC and ACDC as generic labels for inference (particle) 
algorithms that incorporate acoustic or both acoustic and archival 
data (with or without smoothing).

This study develops the use of particle algorithms for movement 
modelling in passive acoustic telemetry systems. Our methodology 
formalises and extends the ‘flapper algorithms’ within a particle fil-
tering–smoothing framework that (i) accounts for movement within 
and between periods of detection, (ii) models the detection process 
and (iii) facilitates the integration of disparate datasets. In a simula-
tion analysis, we validate the approach, analyse method performance 
and explore algorithm behaviour. The results confirm particle algo-
rithms outperform alternatives and represent a new state- of- the- art 
for movement modelling in passive acoustic telemetry systems.

2  |  MATERIAL S AND METHODS

2.1  |  Overview

We formulate a Bayesian state- space model for the state (location) 
of a tagged animal in an acoustic telemetry system. Individual lo-
cations are denoted by s. We consider the two- dimensional vector 
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    |  3LAVENDER et al.

s =
(
sx , sy

)
, where sx and sy are continuous. The movement process 

is represented as a regular series of steps from time t = 1 to t = T,  
each of duration Δt, by f

(
s1:T

)
, where f  is a probability density 

function. Contingent upon the individual's location, observations 
(y), such as detections, are recorded at regular or irregular inter-
vals. The objective is to infer the locations of the animal, using 
our knowledge of the movement process and the observations. 
Here, we formalise a model for this objective and a sampling algo-
rithm. In Sections 1–5 in Data S1, we provide algorithmic details 
for mathematical and non- mathematical readers. For a notational 
summary, see Table S1.

2.2  |  Model

2.2.1  |  Objective

Our objective is to derive the joint probability distribution f
(
s1:T | y1:T

)
 

of a tagged individual's possible trajectories from the start to the 
end of the time series, accounting for the movement process and 
the observations. Using Bayes' theorem, the joint distribution can 
be expressed in terms of a prior (the movement process) and a likeli-
hood (the observation process):

2.2.2  |  Movement process

The expression f
(
s1:T

)
 represents movement. We model f

(
s1:T

)
 as a 

discrete- time Markovian process

where f
(
st=1

)
 is a probability density function of the individual's start-

ing location and f
(
st | st−1

)
 is the probability density of moving from 

st−1 → st. A simple model for f
(
st | st−1

)
 is a restricted two- dimensional 

random walk, in which the location st is given by

where d and � are independently distributed random variables that 
represent step lengths and headings, subject to boundary conditions 
(i.e. land). Here, we use a Gamma step- length distribution based on 
pre- defined shape (k) and scale (�) parameters and a truncation interval 
defined between zero and mobility:

where mobility is the maximum distance the individual can move in one 
time step. For the heading, we use a uniform distribution:

We assume that the prior can be parameterised by combining 
available datasets (from field observations, fine- scale positioning, 

video footage, accelerometery, laboratory studies and other 
sources), literature and expert knowledge of studied species and 
related taxa.

2.2.3  |  Observation process

Joint likelihood
The term f

(
y1:T | s1:T

)
 denotes the joint likelihood. This measures the 

probability of the observations given the locations of the individual 
(s1:T). We assume the observations, conditional on s1:T, are independ-
ent and express f

(
y1:T | s1:T

)
 as the product of the likelihood from 

each time step:

Observations may include acoustic records and ancillary data, 
such as depth measurements. Acoustic observations comprise de-
tections, which are explicitly recorded, and non- detections, which 
are implicitly known for each t (assuming Δt exceeds the transmis-
sion interval). We use y(A) to denote an M × T matrix of acoustic ob-
servations, where M is the number of receivers, and y(D) to denote a 
row vector of depth observations (from 1, . . , T). Both sets of obser-
vations form the dataset y =

{
y(A), y(D)

}
. The combined likelihood at 

time t is given by

where y(A)
t

 is a column vector of acoustic observations at time t and y(D)
t

 
is the depth observation.

Acoustic observations
The acoustic likelihood expresses the correspondence between 
acoustic observations and latent locations. We denote a detection 
at receiver k as y(A)

k,t
= 1 and non- detection as y(A)

k,t
= 0. We assume 

detections are Bernoulli distributed and express the probability of 
the observation y(A)

k,t
∈ {0, 1} at receiver k as:

Detection probability (p) is modelled as a function of covari-
ates. A simple model for p is a logistic function of the distance 
between the receiver's location 

(
rk =

(
sx;k , sy;k

))
 and transmitter 

(s), that is

where h( ⋅ , ⋅ ) is a distance function; α and � are parameters; and � is the 
detection range (Lavender et al., 2023). We assume these parameters 
can be set from range tests, expert knowledge and literature (Kessel 

(1)f
(
s1:T | y1:T

)
∝ f

(
s1:T

)
f
(
y1:T | s1:T

)
.

(2)f
(
s1:T

)
= f

(
st=1

) T∏

t=2

f
(
st | st−1

)
,

(3)st =
(
sx,t−1 + dt cos�t , sy,t−1 + dt sin�t

)
,

(4)dt ∼ Truncated Gamma(k, �, 0,mobility),

(5)�t ∼ Uniform( − �,�).

(6)f
(
y1:T | s1:T

)
=

T∏

t=1

f
(
yt | st

)
.

(7)f
(
yt | st

)
= f

(
y
(A)

t
| st

)
f
(
y
(D)

t
| st

)
,

(8)f
(
y
(A)

k,t
| st

)
= pk,t

(
st
)y(A)

k,t
(
1−pk,t

(
st
))1−y(A)

k,t .

(9)pk,t
�
st
�
=

⎧
⎪
⎨
⎪
⎩

�
1+e−(𝛼−𝛽×h(st , rk))

�−1

if h
�
st , rk

�
<𝛾

0 otherwise

,
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4  |    LAVENDER et al.

et al., 2014). Where data are available, spatiotemporal variation in de-
tection probability is easy to model with detection parameters that 
vary over space (st , rk) or time (t).

The combined probability of all acoustic observations is the 
product of independent probabilities from each receiver:

where k indexes over operational receivers at time t.

Depth observations
The depth likelihood expresses the correspondence between each 
depth observation y(D)

t
 and the latent location. An example model for 

the probability density of y(D)
t

 is

where zt =
(
�deep

(
st
)
+�shallow

(
st
))−1. This model requires y(D)

t
 to 

be within an envelope around the bathymetric depth b
(
st
)
 defined 

by the shallow and deep depth- adjustment functions, �shallow
(
st
)
, 

�deep
(
st
) ≤ b

(
st
)
. These functions capture observational uncertainty 

and spatially explicit bathymetric uncertainty and can be tailored to 
species with different lifestyles: for benthic species, observations 
must be close to the seabed, which can be enforced by small errors 
(
𝜀shallow

(
st
)
, 𝜀deep

(
st
)
≪ b

(
st
))

; for pelagic species, observations may 
occur in the water column, which is permitted by larger �shallow

(
st
)
 val-

ues. As for the acoustic observation model, ancillary observation mod-
els should be parameterised from available datasets, expert knowledge 
and literature.

2.3  |  Sampling algorithm

2.3.1  |  Filtering

We have formulated a model for the joint distribution of the individual's 
locations, given all data [i.e. f

(
s1:T | y1:T

)
]. We now outline a sampling 

algorithm. The target of our inference is location; we assume static pa-
rameters are known. For inference, we begin with the simpler, partial 
marginal distribution f

(
st | y1:t

)
. This is recursively represented as

The particle filter approximates f
(
st | y1:t

)
 as a sum of N weighted 

samples, termed ‘particles’, that is,

where � is the Dirac delta function, w denotes normalised weights 
(
∑
i

wi = 1) and i  indexes particles, which represent possible locations for 

the individual. This is a recursive procedure (derived from Equation 12) 
that at each time step comprises three stages:

• Simulation (movement). We simulate particles, following 
Equations (2–5). Initial particles are sampled from a probability 
distribution, such as a uniform distribution, via si,t=1 ∼ f

(
st=1

)
. At 

subsequent time steps, we simulate particles from the movement 
process, that is si,t ∼ f

(
si,t | si,t−1

)
, using a movement model, such 

as a random walk (Equation 3).
• Weighting (observation). Particles are weighted in line with the 

likelihood, that is wi,t ∝ wi,t−1f
(
yt | si,t

)
, following Equations (6–11).

• Resampling. Periodically, weighted particles are re- sampled. This 
procedure eliminates unlikely particles and duplicates likely ones.

The time complexity of the particle filter is (NT) (Doucet & 
Johansen, 2009).

The end result is a set of particles (location samples) from f
(
st | y1:t

)
 

that represent an individual's possible locations at each time step, given 
all preceding and contemporary data. Theoretically, a small number of 
particles (N ≈ 1000) is sufficient to approximate a two- dimensional dis-
tribution, of the kind described here, but in practice many more particles 
may be required to ensure that sufficient particles remain ‘alive’ at each 
time step to approximate f

(
st | y1:t

)
; that is, to achieve convergence.

2.3.2  |  Smoothing

Particle smoothing re- weights particles from the filter to approxi-
mate the full marginal, f

(
st | y1:T

)
 (Doucet & Johansen, 2009). The 

two- filter smoother uses N particles (si,t) from a forward filter run 
(with weights wi,t) and N particles ( s̃j,t) from a backward run (with 
weights w̃t,j) to obtain a set of smoothing weights (w̃j,t∣T):

For each particle s̃j,t, these weights effectively sum over all pos-
sible movements from the preceding particles on the forward filter. 
The distribution f

(
st | y1:T

)
 is approximated as a weighted sum of 

smoothed particles:

The time complexity of smoothing is (N2T
)
 (Doucet & 

Johansen, 2009). However, typically only a subset of the particles 
required for a successful run of the filter is required for an effective 
approximation of f

(
st | y1:T

)
.

2.4  |  Mapping

Particles can be used to reconstruct movements and map space use. 
For mapping, we suggest the ‘probability- of- use’ metric (P), which 

(10)f
(
y
(A)

t
| st

)
=

∏

k

f
(
y
(A)

k,t
| st

)
,

(11)f
�
y
(D)

t
� st

�
=

⎧
⎪
⎨
⎪
⎩

zt if b
�
st
�
−�shallow

�
st
�≤y

(D)

t
≤b

�
st
�
+�deep

�
st
�

0 otherwise

,

(12)f
(
st |y1:t

)
∝

(

∫ f
(
st-1 |y1:t-1

)
f
(
st | st-1

)
dst-1

)
f
(
yt | st

)
.

(13)f
(
st | y1:t

)
≈
∑N

i
�
(
st − si,t

)
wi ,

(14)w̃j,t∣T ≈ w̃j,t

∑N

i
f
(
s̃j,t | si,t−1

)
wi,t−1.

(15)f
(
st | y1:T

)
≈
∑N

j
�
(
st − s̃j,t

)
w̃j,t∣T .
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    |  5LAVENDER et al.

represents the probability that an individual is located in a given lo-
cation at a randomly chosen time. This can be calculated across a 
grid as a weighted average of the particles in each cell:

where I  indexes grid cells, Ii,t is the grid cell of particle i  at time t, �I,Ii,t 
is the Kronecker delta and w∗

i,t
 is the weight of that particle at time t 

(either wi,t, w̃j,t or w̃j,t∣T). Particles may be derived from the filter [ap-
proximating f

(
st | y1:t

)
] or the smoother [approximating f

(
st | y1:T

)
], 

which is more expensive but produces refined maps of space use. In 
practice, PI is sensitive to grid resolution and we suggest computing 
PI across a fine grid followed by kernel smoothing (see Section 6 in 
Data S1).

2.5  |  Simulations

2.5.1  |  Software

We developed the patter R package and the Patter.jl backend to 
implement the methodology (Lavender et al., 2024a). Here we il-
lustrate and evaluate algorithm performance and sensitivity by simu-
lation, using R, v.4.3.1 (R Core Team, 2023). Code is available online 
(Lavender et al., 2024b).

2.5.2  |  Study systems

In all simulations, we considered a 100 km2 rectangular area 
and a 10 × 10 m bathymetric grid. Within this area, we consid-
ered two hypothetical ‘study systems’ defined by distinct move-
ment and observational processes, for a hypothetical benthic 
animal and acoustic and archival data (Figure S1; Table S2). (Two 
study systems were considered to validate the robustness of 
our simulations to the parameters characterising any one sys-
tem.) Both movement processes were defined by a discrete- time, 
continuous- space Markovian random- walk model (Equations 2–
5), with the individual taking a ‘step’ up to ‘mobility’ metres in 
length every 2 min, over a 2- day period (Table S2). The detec-
tion process was binomial, with detection probability declin-
ing logistically to zero by � metres from receiver(s), following 
Equation (9) (Table S2). The archival observation process was 
uniform and constant across all simulations (Table S2). In each 
system, we simulated 20 acoustic arrays with 10, 20, … , 100 re-
ceivers, arranged randomly or regularly (Figure S2; Table S3). In 
each system and for each array, we simulated 30 realisations of 
the movement process (30 movement paths) and 30 correspond-
ing realisations of the observation processes (30 acoustic and 
archival datasets). We only considered the simulated paths and 
observations between the first and last detection and simula-
tions which generated >10 detections.

2.5.3  |  Performance

We compared patterns of space use exhibited by simulated paths to 
those reconstructed from simulated observations by two heuristic 
algorithms (COAs and RSPs) and our AC and ACDC particle algo-
rithms (including filtering and filtering–smoothing implementations). 
For simulated paths, ‘true’ patterns of space use were generated by 
fitting kernel UDs to path coordinates using cross- validation. These 
UDs were compared against the UDs generated from each algorithm, 
visually and with standard error metrics: mean bias, mean error, root 
mean square error, Spearman's rank correlation coefficient and the 
index of agreement. The main text focuses on mean error (ME), 
which distinguished algorithms most effectively. However, all met-
rics told similar stories. For details, see Sections 7 and 8 (Data S1) 
and Table S4.

2.5.4  |  Sensitivity

For a subset of arrays, we analysed particle algorithm sensitivity. The 
purpose of this analysis was to investigate how patterns of space use 
change if static parameters in the movement and observation mod-
els (such as �), which are assumed known, are overly restrictive or 
flexible. To investigate algorithm sensitivity, we compared UDs for 
simulated paths to those reconstructed by particle filtering–smooth-
ing algorithms with mis- specified movement (k, �, mobility ) and 
acoustic observation (�, � and �) parameters, qualitatively and with 
ME (Figure S3; Table S5). This analysis reveals the extent to which 
patterns of space use are sensitive to selected parameters and which 
parameters should therefore be prioritised in data- collection efforts.

3  |  RESULTS

3.1  |  Performance

In the visual analysis of UDs, heuristic methods were consistently 
outperformed by particle algorithms (Figure 1; Figure S4). In the 
sparse arrays (with 10 receivers: Figure 1a–l), COAs concentrated in 
specific areas and poorly represented underlying patterns, irrespec-
tive of receiver arrangement (e.g. Figure 1a vs. Figure 1b). RSP maps 
also misplaced hotspots, concentrating them around receivers, but 
by smoothing the connections between receivers, they better rep-
resented those transitions and exhibited lower ME (e.g. Figure 1c). 
Particle algorithms suggested more nuanced patterns (e.g. Figure 1d,e). 
Maps based on particles from the filter [approximating f

(
st | y1:t

)
] were 

relatively diffuse, but more accurately placed hotspots away from re-
ceivers, resulting in an ME similar to RSPs (Figure S4). Smoothed par-
ticles [approximating f

(
st | y1:T

)
] produced more refined maps, with 

lower ME than RSPs in both random and regular arrays (Figure 1d–f,j–l).  
Compared to the AC algorithm, the ACDC algorithm suggested more 
precise patterns of space use (Figure 1e,k; Figures S2 and S4).

(16)PI =
1

T

∑

i,t

�I,Ii,t w
∗

i,t
,
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6  |    LAVENDER et al.

In the dense arrays (with 100 receivers), all algorithms rep-
resented underlying patterns more effectively (Figure 1m–x; 
Figure S4). For the COA algorithm, there was a clear influence of 
receiver arrangement, with heavy fragmentation (and high ME) in 
the random array (Figure 1n) and smoother patterns (and lower 
ME) in the regular array (Figure 1t). RSPs behaved similarly in the 
two array designs, broadly capturing but over- smoothing simulated 
movements (Figure 1o,u). Accordingly, the COA maps were worse 
than RSP maps in the random array (Figure 1r) but marginally better 
in the regular array according to ME (Figure 1x). Particle algorithms 
performed more effectively in both array designs, producing accu-
rate maps that closely correspond to those for the simulated path 
(Figure 1p–r,v–x). Differences between maps from the filter and 
smoother were limited (Figure S4).

In illustrated arrays (with 10 or 100 receivers), a consistent 
ranking of algorithms emerged from repeated simulations of 
the same data- generating processes (Figure 2; Figure S5). In the 

sparse arrays (with 10 receivers), the COA algorithm generally pro-
duced the highest ME (occasionally even exceeding a null model) 
(Figure 2a,b). RSPs and particle algorithms produced overlapping 
but lower MEs (Figure 2a,b). In general, the particle filter produced 
similar (AC) or lower (ACDC) MEs compared to RSPs. Smoothing 
for both AC and ACDC algorithms resulted in lower MEs. In the 
dense arrays (with 100 receivers), ME was consistently lower 
(Figure 2c,d). In the dense, random array, the COA algorithm pro-
duced the highest MEs (Figure 2c). RSPs performed better but 
were outperformed by all particle algorithm implementations 
(Figure 2c). In the dense, regular array, COAs performed more 
effectively and marginally better than RSPs, but both were out-
performed by the particle algorithms (Figure 2d). In both random 
and regular dense array designs, particle smoothing lowered ME. 
Maps from the ACDC algorithm exhibited lower ME than those 
from the AC algorithm, but this effect was limited. This result is 
expected in regions with a smooth bathymetry (as simulated here), 

F I G U R E  1  Utilisation distributions (UDs) reconstructed by different algorithms in selected array designs for a hypothetical study system. 
Four designs with 10 or 100 receivers in random or regular arrangements are shown. For each array (row), the estimated UD for the portion 
of the simulated path between the first and last detections is shown, alongside comparable UDs generated by the COA, RSP and particle 
filtering–smoothing algorithms (AC and ACDC). Lines mark home ranges (and contain 95% of the probability density volume). Points mark 
receivers. The detection range was 750 m. Bar plots show relative mean error (ME). Algorithm superscripts identify selected algorithm 
implementations (of which there were nine in total), following Table S4. Panels correspond to the first simulated study system. For the full 
figure, see Figure S4.
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    |  7LAVENDER et al.

which effectively spreads out the locational information provided 
by depth observations. These patterns were borne out by alter-
native error metrics (Figure S5) and across all simulated arrays 
(Figure 2e,f; Figure S6).

Out of 1181 performance simulations, only one AC and one 
ACDC simulation failed to converge with the selected number of 
particles on the first implementation. Run time (per time step) for 
the filter averaged 0.011 s for AC (5000 particles) and 0.045 s for 
ACDC (30,000 particles). Wall time for smoothing (1000 particles) 
averaged 0.237 s per time step (Figure S7).

3.2  |  Sensitivity

In the sensitivity analysis, severe parameter mis- specification 
caused convergence failures (Figure S8). In the movement process, 
convergence was most sensitive to under- estimation of mobility

, followed by � and k and was insensitive to array design. In the 
acoustic observation model, convergence failures were associated 
with overly steep (deflated �, inflated �), overly shallow (inflated �, 
deflated �) and overly truncated (deflated �) detection probability 
functions, but the latter two types of mis- specification were most 

F I G U R E  2  The distribution of mean error (ME) across simulated arrays. Panels (a–d) show the distribution of ME across 30 realisations of 
the same data generating processes in four example arrays, with 10 or 100 receivers in random or regular arrangements, for nine algorithms. 
ME was calculated from comparison of each simulated path's UD (within the duration defined by the first and last detection) and the 
corresponding UD reconstructed by an algorithm. Boxplot width is proportional to the number of successful algorithm implementations. 
Algorithm numbers follow Table S4. Panels (e, f) show the trend in ME across array designs with different numbers of receivers for a subset 
(*) of algorithms. Points mark ME values for specific comparisons and smoothers show the trend in expected ME. All panels correspond to 
the first simulated study system. For full details, see Figures S5 and S6.
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8  |    LAVENDER et al.

problematic. Overly shallow functions are principally problematic 
because they excessively restrict particle samples from within 
detection containers in the gaps between detections (when the 
influence of � is minimal). In contrast, overly truncated functions 
are principally problematic at the moment of detection because 
the � parameter imposes a hard restriction on the region within 
which particles are sampled (unlike a deflated � or inflated � value). 
These effects were generally more common in arrays with more 
receivers. For both movement and observation parameters, con-
vergence failures were more common for ACDC (rather than AC) 
algorithm implementations, with the additional incorporation of 
depth observations effectively enhancing the chances of prior–
data conflicts when the former is mis- specified.

Within the parameter space compatible with the data, parameter 
mis- specification affected patterns of space use (Figures S9–S14). In 
the movement process, parameter under- estimation produced more 
concentrated patterns (Figures S9–S11). In the observation process, 
steeper detection probability functions (deflated �, inflated �) con-
centrated hotspots around receivers while shallower functions (in-
flated �, deflated �) produced depressions in these areas (Figures S12 
and S13). (This reflects the way that overly shallow functions restrict 
particle sampling within detection containers in the gaps between 
detections, which typically span the majority of a time series.) These 
effects were more noticeable in regular arrays. Under- estimation of 
� concentrated patterns around receivers, but over- estimation had a 
limited effect (Figure S14). This result fits with the weakly truncating 
effect of � in our simulations. In all simulations, ACDC- derived maps 
of space use were more robust to parameter mis- specification than 
AC- derived maps (Figures S9–S14).

Across the simulations, we observed a U- shaped relationship be-
tween ME and the degree of parameter mis- specification, relative to 
the true value (Figures S15 and S16). For movement parameters, ME 
grew more quickly with parameter under- estimation, especially in 
arrays with more receivers (Figure S15). Parameter over- estimation, 
which spreads out the low- probability edges of distributions, pro-
duced smaller increases in ME. In the acoustic observation process, 
ME grew most quickly as detection functions were made shallower 
(inflated �, deflated �) and was greatest in arrays with intermediate 
numbers of receivers (Figure S16). Under- estimation of � also pro-
duced high MEs for the portion of algorithm runs that converged, 
while over- estimation had little influence.

In almost all cases, mis- specified particle algorithms continued to 
outperform heuristic methods in terms of ME (Figure S17).

4  |  DISCUSSION

This study establishes a particle filtering–smoothing methodology 
for movement modelling in receiver arrays. The methodology rep-
resents the movement and detection processes in these systems 
within a probabilistically sound, flexible and intuitive framework. 
The process- based perspective marks a shift from the heuristic 
methods typically used for analysis in passive acoustic telemetry 

systems (Kraft et al., 2023). The particle methodology reconstructs 
movements and patterns of space use within and between periods 
of detection. This produces more accurate maps of space use and 
facilitates analyses of home ranges, site affinity and habitat prefer-
ences. These developments should support research into the move-
ment ecology and conservation of many species (Hays et al., 2019; 
Nathan et al., 2022).

The core conceptual advantage of our framework over heu-
ristic approaches is the process- based perspective, which pro-
duces outputs with a clear statistical and biological interpretation 
(Hostetter & Royle, 2020; Lavender et al., 2023). The representation 
of movement is particularly important. Receiver arrays are often ir-
regular and non- overlapping and ignoring movements or assuming 
direct transitions between receivers in these settings can suggest 
overly restrictive patterns of space use that are unduly influenced 
by array design and for which it is difficult to quantify uncertainty 
(Lavender et al., 2023). Modelling movements also facilitates analy-
ses of residency—not only around receivers, as quantified by exist-
ing indices—but in wider regions of interest (Lavender et al., 2023). 
This is particularly important where arrays are deployed to inform 
conservation measures, such as Marine Protected Areas (Lavender 
et al., 2021a; Lea et al., 2016). Representation of the observation 
processes is also important. In the acoustic telemetry literature, im-
perfect detectability is acknowledged and quantified using range 
tests (Kessel et al., 2014), but it is typically ignored in analyses, which 
can bias inferences (Winton et al., 2018). Ancillary datasets are also 
almost exclusively ignored, despite their potential to refine position 
estimates (Aspillaga et al., 2019; Lavender et al., 2023).

For modelling patterns of space use, our results provide a sub-
stantive assessment of the performance of common heuristic meth-
ods and demonstrate the benefits of our statistical methodology. 
We show that the COA algorithm performs poorly relative to alter-
natives across the board. In sparse, irregular arrays, this algorithm 
is sometimes worse than a null model and barely improves with 
receiver number. The widespread adoption of this method and its 
promotion as the centre of a universally applicable analytical frame-
work for passive acoustic telemetry therefore appear misplaced 
(Udyawer et al., 2018). Particularly in irregular arrays, even a simple 
representation of movement, as in RSPs, improves maps of space 
use. In arrays with more receivers, movement- orientated methods 
also improve more quickly than the COA algorithm and continue to 
represent underlying patterns of space use more faithfully. These 
results indicate that, in most real- world settings, the movement 
process contains valuable information and should be represented 
in analyses. Both COA and RSP algorithms were outperformed by 
particle algorithms, especially in irregular arrays. This performance 
difference was increased by the inclusion of the depth observations, 
even in the smooth bathymetric landscape we simulated. Given 
continued improvements in technology and the increasing wealth 
of data collected alongside acoustic detections (Matley et al., 2023), 
this is an encouraging result. The integration of state- space models 
for acoustic detections with ancillary data holds considerable future 
promise.
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    |  9LAVENDER et al.

This is not to say that heuristic methods should be superseded 
by state- space models. Heuristic methods have a track record in the 
literature (Kraft et al., 2023; Udyawer et al., 2018) and conservation 
science (Lavender et al., 2021a; Lea et al., 2016). They are quick to 
apply and may indicate similar patterns of space use to state- space 
models when data are particularly sparse (and all approaches strug-
gle) or dense (and the prior's contribution is dampened). Performance 
can also be improved by tuning parameters on a case- by- case basis. 
For these reasons, we maintain that different methods are more or 
less useful in different contexts and caution that analytical standard-
isation, while often valuable, is not always appropriate. Building on 
this study, we call for further research into the utility of alternative 
methods in different settings.

This study unifies and enhances the ‘flapper’ algorithms within 
a formal particle filtering–smoothing methodology (Lavender 
et al., 2023). This methodology integrates the ‘AC branch’ and ‘PF- 
branch’ algorithms within a single, mathematically coherent frame-
work (Lavender et al., 2023). On a practical level, this reformulation 
improves algorithm efficiency and facilitates the integration of dispa-
rate datasets. In the flapper algorithms, AC- branch algorithms were 
required to define the possible locations of an individual, given the 
data, across a grid at each time step, which becomes prohibitively 
expensive with increasing grid size. In the particle filter, particle sim-
ulation and the likelihood evaluations achieve the same objective but 
are restricted to particle locations, which removes the dependence 
on grid size. By recasting the flapper algorithms in their entirety as 
a particle methodology, we can also start to exploit advanced de-
velopments in this field. The refinement of patterns of space use by 
coupling filtering and smoothing demonstrates the potential in this 
area. This innovation also links movement modelling in acoustic te-
lemetry systems to the handful of particle algorithms developed for 
animal tracking in other systems and suggests potential refinements 
(such as two- filter smoothing) that may support applications in those 
systems (Andersen et al., 2007; Liu et al., 2019).

Our methodology is related to existing state- space model-
ling studies in the acoustic telemetry literature (Alós et al., 2016; 
Hostetter & Royle, 2020; Pedersen & Weng, 2013). The main 
differences are the formulation of the sub- models (which is 
system- specific), the incorporation of ancillary data and the infer-
ence method. For example, Alós et al. (2016) and Hostetter and 
Royle (2020) fit state- space models to acoustic observations using 
Just Another Gibbs Sampler (JAGS). In theory, this approach bene-
fits from data- driven parameter estimation and directly samples the 
joint distribution, f

(
s1:T | y1:T

)
. However, JAGS often explores cor-

related distributions inefficiently and can be prohibitively expensive 
in real- world settings. In contrast, the particle filtering–smoothing 
methodology targets the simpler distribution f

(
st | y1:T

)
 but can be 

orders of magnitude faster (Lavender et al., 2024a).
There are practical challenges to the use of particle filters. The 

main biological challenge is the formulation of the movement and ob-
servation sub- models. In a state- space modelling framework, these 
models must be explicitly defined—unlike heuristic methods, where 
movement capacities and observational processes are enveloped by 

‘tuning parameters’ or considered at the interpretation stage (Niella 
et al., 2020; Simpfendorfer et al., 2002). Model parameterisation is a 
related challenge. While it is possible to infer model parameters and 
locations jointly via Bayesian inference or maximum likelihood, in a 
particle filtering context, this is computationally expensive. In sparse 
receiver arrays, the information available to parameterise these mod-
els is also limited. The present formulation of our filter, therefore, 
requires parameters to be specified a priori from available datasets, 
expert knowledge and/or literature. For example, in a study of move-
ment patterns in a Critically Endangered skate (Dipturus intermedius), 
we integrated information from previous studies and literature to 
parameterise our models (Lavender et al., 2021a, 2021b, 2025). The 
movement model was informed by analyses of movement rates be-
tween receivers and vertical activity, plus hydrodynamic modelling 
of flow velocity and information in the literature for related species 
(from accelerometery, satellite tracking, flow tank experiments and 
trawl footage). In the absence of direct measurements, these studies 
helped to bound our expectations for movement rates. For other 
species, such as lake trout (Salvelinus namaycush), fine- scale posi-
tioning studies, accelerometer measurements and swim- tunnel cali-
brations are available (Blanchfield et al., 2023). Observation models 
also require parameterisation a priori. Acoustic observation models 
benefit from in- situ range tests, plus a wide literature on detection 
probability informed by theoretical considerations and manufac-
turer guidelines (Kessel et al., 2014). Accordingly, in our skate re-
search, we drew on these information sources to set the detection 
probability model (Lavender et al., 2025). Observation models for 
ancillary datasets should be parameterised similarly.

Our simulations provide reassurance and guidance to practi-
tioners formulating system- specific sub- models when parameters 
are uncertain. For the movement process, we found that the overly 
flexible movement model outperformed the overly restrictive one 
(in terms of ME), suggesting that some flexibility in the movement 
model may be preferable when parameters are uncertain. For the 
acoustic observation model, in our simulations (with sparse detec-
tions), we found the shape of the detection probability function 
was more important than the detection range, providing the detec-
tion range was large enough. Where data are lacking, we therefore 
recommend focusing data collection efforts on characterising the 
shape of the function and setting the detection range based on 
manufacturer specifications and the literature. That being said, the 
simulations show that even simplified or imperfect representations 
of the processes that generate observations can substantially refine 
maps of space use, while sensitivity analyses help quantify epistemic 
uncertainty. As more data are collected, model inferences can be 
further refined.

Particle degeneracy is a second challenge for particle filtering–
smoothing algorithms (Doucet & Johansen, 2009). Degeneracy oc-
curs when a minority of particles acquire the majority of the weight 
due to the compounding effects of mismatches between the move-
ment and observational models. In the filter, particle degeneracy can 
make convergence hard to achieve with modest (<1 million) numbers 
of particles. During smoothing, particle degeneracy can similarly 
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10  |    LAVENDER et al.

lead to a situation where initial samples are dominated by a few 
particles. Common measures we have implemented to mitigate de-
generacy include increasing particle number, low- variance adaptive 
resampling and two- filter smoothing (Doucet & Johansen, 2009).

Nevertheless, particle degeneracy can remain problematic. In 
this study, almost all simulations successfully converged, but else-
where we have experienced challenges coupling sparse acoustic 
observations with relatively informative archival datasets for ben-
thic species (Lavender et al., 2025). During detection gaps, such 
situations permit a labyrinth of possible routes that particles have 
to explore but ultimately render few of them compatible with the 
data. In these situations, Hamiltonian Monte Carlo (HMC) may be 
a preferable implementation algorithm (Betancourt, 2017). Like 
Gibbs sampling, HMC can be used to sample the high- dimensional 
space of trajectories but uses derivatives to make proposals, which 
is more efficient. HMC can also be used to sample model parameters 
simultaneously (Albert et al., 2015). State- space models for acoustic 
telemetry have yet to exploit HMC and this is a promising avenue 
for further research. However, theoretical and practical hurdles re-
main, including the specification of starting values, the requirement 
for smooth likelihood functions, multimodality and the curse of di-
mensionality. At the current time, estimation of latent locations in 
complex environments with relatively informative ancillary datasets 
therefore remains a hard problem for Bayesian sampling methods 
and alternative approaches may be required (Pedersen et al., 2008). 
However, in many other situations, including the analyses in this 
study, these considerations are less relevant because particles can 
move around available routes more freely (when ancillary data are 
less informative) or are restricted to fewer possibilities (when ancil-
lary data are highly informative).

A third challenge is that Bayesian techniques can be computa-
tionally expensive. The time complexity of the particle filter scales 
linearly with the number of particles [(NT)] but most smoothing al-
gorithms are more expensive [(N2T

)
] (Doucet & Johansen, 2009). 

In dense receiver arrays where particle trajectories are relatively 
constrained, our simulations suggest that particle filtering may be 
sufficient, but in other situations smoothing substantially improves 
maps of space use. In this study, we averaged 0.01–0.05 s per time 
step on the particle filter (with 5000–30,000 particles) and 0.24 s for 
smoothing (with 1000 particles) in single- threaded mode on a stan-
dard personal computer. While further computational optimisation 
remains desirable, these speeds compare favourably with related 
routines for fitting state- space models (Hostetter & Royle, 2020; Liu 
et al., 2019) and make particle algorithms serious candidates for sub-
stantive, real- world analyses (Lavender et al., 2024a).

Looking ahead, we anticipate significant opportunities for con-
tinued theoretical and applied work in this area. There is scope to 
tailor the movement model for different applications through the 
incorporation of three- dimensional states for demersal and pelagic 
species (Aspillaga et al., 2019) and behaviour (Lavender et al., 2025). 
In the representation of the observational processes, one could 
account for random acoustic transmission intervals, if required 
(Hostetter & Royle, 2020) and incorporate diverse datasets, such as 

temperature or salinity (Lavender et al., 2023). The development of 
multi- resolution models that resolve movements at high resolution 
in acoustic arrays and use sparse ancillary observations to model 
larger- scale movements is another important area for future work 
(Pedersen et al., 2008). Joint inference of movement, observation, 
and state parameters may also be desirable in situations where 
prior knowledge is limited and data are sufficient. Our particle al-
gorithms stand to benefit from a growing literature, which includes 
gradient- based methods and other techniques with enhanced con-
vergence properties, as well as novel smoothing approaches (Maken 
et al., 2022). More broadly, significant work remains to investigate 
how we can improve, optimise and apply the suite of existing meth-
ods in different study systems. We point readers interested in apply-
ing our methods to the accompanying software packages (Lavender 
et al., 2024a).
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