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Abstract—Quantum computing has been a major priority
for several nations and prominent institutions in their pursuit
of a transformative breakthrough in the fields of computation
and encryption. By using the principles of quantum mechanics,
particularly quantum superposition and entanglement, quantum
computing and quantum machine learning (QML) have the
potential to enhance artificial intelligence (AI) and achieve
quantum supremacy with unprecedented computational power.
However, despite its exceptional learning capabilities, QML-
based applications face several emerging security threats. Unlike
previous studies focused on classical quantum cryptography
and secure quantum communications, this work investigates
adversarial risks in QML-assisted network functions and digital
twin applications. Specifically, we highlight vulnerabilities such
as quantum kernel poisoning, backdoor attacks, and adversarial
noise. Key findings reveal that adversaries can intercept quantum
states in transit, manipulate parameterized quantum circuits
(PQCs), and exploit variational quantum algorithms (VQAs)
through adversarial qubit perturbations. These attacks can
mislead QML-based optimization processes, leading to incorrect
digital twin predictions, faulty resource allocation, or disruptions
in QML-aided network functions. To mitigate these risks, defense
strategies such as quantum-safe cryptography, data sanitization,
adversarial training, defensive distillation, and gradient masking
in quantum circuit design can be employed. However, the key
issue is the absence of robust security solutions for real-world de-
ployment. Future research should examine the trade-off between
adversarial robustness and generative learning performance. Key
areas include quantum state discrimination, secure quantum
federated learning, quantum decoherence control, and secure
quantum semantic communications for real-world deployment.

Index Terms—Quantum machine learning, quantum circuits,
quantum kernel poisoning, quantum adversarial attacks, adver-
sarial defense, 6G quantum networks, semantic communications

I. INTRODUCTION

In the vision of artificial intelligence (AI), quantum com-

puting and quantum machine learning (QML) are anticipated

to emerge as pivotal technologies that facilitate precision

predictive analytics and real-time processing capabilities [1].

Traditionally, key applications of quantum computing have

been in cybersecurity, where quantum algorithms strengthen

encryption, enhance intrusion detection, and enable secure

communication through quantum key distribution (QKD) [2].
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Fig. 1: An example of the role of quantum computing is

to enhance computational capability and accelerate quantum

machine learning algorithms in AI-aided network functions

(e.g., resource allocation). Quantum computing and quantum

machine learning together can accelerate network intelligence

in core functions as well as support massive traffic analysis.

For network optimization, quantum-inspired optimization al-

gorithms provide efficient solutions for large-scale resource

management, traffic routing, and spectrum allocation, espe-

cially in the sixth-generation (6G) networks [1]. In addition,

quantum technologies play a pivotal role in drug discovery and

material science, allowing the precise modeling of molecular

interactions and the design of new materials. Ultimately,

quantum cloud services provide rapid computational power

for intricate tasks, e.g., molecular structure and interaction

simulation, digital twin environment render.

The integration of quantum computing and machine learn-

ing is expected to further enhance these tasks in the coming

years. Figure 1 outlines an overview where AI-aided network

functions and potential applications in 6G, e.g., digital twins,

edge-based service offloading, and resource allocation, can

be enhanced with quantum computing and QML algorithms.

Quantum technologies are implemented using two approaches:

quantum-inspired algorithms on GPU-based servers (hybrid

quantum) and quantum circuit-based algorithms on quantum

computers. While the hybrid approach is feasible with current

AI data centers, the native model remains largely experimental,

with limited platforms like IBM Qiskit available for testing.

The key challenge of applying QML and quantum comput-

ing is quantum error correction and security matters. Quan-

tum errors can propagate across transmission hops, qubit

encoding/decoding, and channel noise, leading to unreliable
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QML predictions or contaminated training data. Shor’s error

correction technique can correct one error in a set of nine

physical qubits by detecting whether a bit-flip or sign-flip has

occurred in the transmitted qubit [1]. However, early research

shows QML is vulnerable to security threats, like hardware

Trojan attacks that alter circuits maliciously [3], [4].

In the literature, there are many other studies about quantum

technologies, such as quantum communication, quantum sens-

ing, and quantum computing [4], [5]. However, measuring the

suitability of quantum computing to meet machine learning

in 6G as well as their security risks has yet to be examined.

For example, the study in [5] proposes entanglement swapping

protocols for quantum switches to enhance fidelity and reduce

latency, while the authors in [1] explore quantum-inspired

optimization for 6G networks. However, the security risks in

the QML algorithms for AI-aided network core functions and

related applications beyond QKD are not discussed.

Unlike prior studies on secure quantum communications and

classical security in quantum-hybrid machine learning [6], [7],

this work focuses on adversarial attacks against QML-based

6G core functions and applications. The article also provides

new insights into the challenges and potential solutions to

mitigate these threats. Additionally, we explore the remaining

challenges and emerging security research directions in QML-

based optimization algorithms. The next section provides a

brief overview of QML’s role in 6G networks and details its

potential vulnerabilities with relevant application examples.

Finally, we examine two typical quantum adversarial attacks

and summarize defense strategies, open challenges, and future

research directions.

II. A GLANCE OF QML FOR 6G NETWORK INTELLIGENCE

AND STANDARDIZATION EFFORTS

The key insight of quantum computing lies in its exploita-

tion of quantum parallelism, a fundamental property where

four qubits (|0⟩ , |1⟩ , |+⟩ , |−⟩) can exist in a superposition of

states, enabling simultaneous computation of multiple possibil-

ities. Quantum computers use superposition qubits to encode

data, which can hold more information than binary bits.

Theoretically, a classical computer with N bits handles up

to N calculations at once, while a quantum computer can

process up to 2N calculations simultaneously. For instance,

a quantum computer with 32 qubits can store and process

an amount of information roughly equivalent to 232 bits (512
megabytes of classical data) simulationally. In December 2024,

Google has introduced a 105-qubit chip that it claims can

solve a problem in five minutes, which would take the world’s

fastest supercomputers 10 septillion years to complete [8].

An exciting conclusion is that grouping multiple physical

qubits into a logical qubit significantly lowers the error rate,

improving exponentially with more qubits. Depending on the

error correction method, a single logical qubit requires 1,000

to 10,000 physical qubits. Practical quantum computing may

require thousands of logical qubits, which, in turn, would

necessitate millions of physical qubits [8]. However, this has

yet to be realized for now.

Fifty years ago, few could have predicted today’s level

of computing advancement. Achieving thousands of logical

qubits in quantum computers may take as long as the clas-

sical supercomputer evolution. In the coming years, quantum

computing will significantly enhance network traffic process-

ing (e.g., terabits per second) and solve complex problems

exponentially faster than classical systems. QML leverages

entanglement, enabling highly interconnected processing for

quantum neural networks (QNNs). This could lead to supe-

rior performance in 6G high-density networks by efficiently

handling massive connectivity, real-time communication, and

heterogeneous environments. In fact, there are many QML

algorithms to exploit quantum computing power, such as

quantum support vector machines (QSVMs) and quantum con-

volutional neural network (QCNN) algorithms [9]. Quantum

generative models, like QGANs and quantum transformer-

based models [6], leverage quantum annealing to efficiently

sample complex distributions for tasks such as synthetic data

generation and image classification. Generally, unlike classical

ML, QML operates on qubits and circuit classifiers rather than

bits and network layers. As noted in [10], QML outperforms

classical ML in tasks like factorization, cryptographic random

generation, and clustering, enabling exponential speedups in

search and optimization. This suggests that QML can deliver

superior performance when properly defined for specific tasks.

In 6G, clustering is a critical task that enhances the process-

ing of massive, dynamic data, crucial for digital twins, holo-

graphic telepresence, semantic communications, and large-

scale orchestration. Quantum computing and QML can en-

hance these 6G applications by improving resource alloca-

tion, service load prediction, and system optimization for

greater efficiency. There are ongoing efforts in standardizing

QML for AI and 6G, such as IEEE P3117, ETSI ISG-QKD,

and ISO/IEC JTC 1/SC 42, which explores AI in quantum

computing contexts or QKD [1]. Additionally, initiatives like

the Quantum Internet Blueprint by ITU-T and NIST’s Post-

Quantum Cryptography Standardization provide insights into

integrating QML into secure and efficient 6G network opera-

tions.

III. VULNERABILITIES AND POTENTIAL ATTACKS IN

QML-ASSISTED 6G NETWORKS

This section highlights security threats to 6G QML-based

networks, focusing on emerging adversarial attacks on hybrid

QML models. Adversarial attacks can be classified into two

fields: (1) attacks against QML-based 6G core functions (phys-

ical layer and network layer) and (2) adversarial attacks against

QML-based 6G applications (application layer). The common

principles of the attacks are to target (1) data embedding and

quantum state observation (qubit manipulation), (2) learning

policy during training (gradient decent), or (3) compromising

the pre-trained deployment models with circuit tampering. We

detail several typical vulnerabilities against QML models and

potential attacks as follows.

A. Vulnerabilities of quantum state observation

Generally, an adversary could intercept quantum states in

transit within a quantum communication system, such as quan-

tum key distribution (QKD). For instance, in intercept-resend
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Fig. 2: A simple quantum attack procedure for asset prototyp-

ing using quantum learning optimization and potential QML-

based 6G digital twin applications. A small perturbation (a

special set of quantum states) is added to the target prototype

to trigger false virtual prototype generation.

and zero-error attacks [11], an eavesdropper splits the pulse

train, measures quantum states in real-time, and resends them,

altering the properties. This tampering introduces discrepan-

cies that could disrupt the intended communication or create

openings for further attacks, e.g., time-shift attack, manipu-

lation of local oscillator reference. An example is the BB84

QKD protocol. If an eavesdropper observes and retransmits

quantum bits, legitimate parties may detect a higher error rate

in the quantum channel, signaling interference, and detector-

blinding attack [11]. Advanced adversaries can use bright light

pulses to minimize detection, exploiting this vulnerability for

stealthy attacks in data poisoning.

B. Vulnerabilities of quantum learning optimization

Currently, quantum learning optimization algorithms, such

as quantum approximate optimization algorithm (QAOA) and

quantum teaching-learning-based optimization (QTLBO), are

key to leveraging quantum computers for solving optimiza-

tion problems. However, the algorithms are susceptible to

unique vulnerabilities due to the inherent nature of the hy-

brid quantum-classical optimization process. One significant

vulnerability is the susceptibility to adversarial perturbations

in the parameter landscape. In quantum-enhanced versions

of variational quantum algorithms (VQAs), adversaries can

manipulate noise or perturb circuit parameters, steering opti-

mization toward suboptimal solutions [12]. As illustrated in

Fig. 2, slight modifications to the input data—crafted in QML

model—could cause the algorithm to misclassify data, even

if the perturbations are imperceptible in classical terms. Like

in computer vision, adversaries can implant backdoor triggers

in QML models via adversarial samples, embedding environ-

mental patterns (e.g., metal surface gloss and temperature)

in quantum states. With a hidden backdoor, the QML model

functions normally but fails under specific conditions (e.g.,

misclassifying 7 as 9, as shown in Fig. 2), risking flawed

simulations or prototyping.

C. Vulnerabilities of parameterized quantum circuits

Parameterized quantum circuits (PQCs), a cornerstone of

the variational quantum algorithms (VQAs), are prone to

manipulation due to their dependence on trainable parameters

that govern quantum gate operations. Malicious parameter

perturbations can disrupt optimization, causing incorrect or

adversarial outputs. In quantum neural networks (QNNs), an

adversary with access to the parameter initialization could

subtly inject noise or bias into the parameters, steering the

training process toward a suboptimal. Another example is

tampering a quantum autoencoder can make it discard key

data while preserving adversarial patterns [3]. Additionally,

PQCs rely heavily on gradient-based optimization. An attacker

could exploit vulnerabilities in gradient computation—known

as “vanishing or exploding gradients”—by designing input

states or circuit configurations that destabilize the training pro-

cess. This risk is particularly severe in cloud-based quantum

computing platforms, where shared quantum resources and

classical interfaces provide multiple entry points for potential

attacks on parameterized circuits.

Vulnerabilities in quantum circuit compilation are also un-

trivial. Generally, the compilation translates high-level quan-

tum programs into low-level, hardware-specific gate sets, en-

suring their successful execution on quantum devices. Leading

providers like IBM, Rigetti, and D-Wave offer proprietary

compilers such as Qiskit, QuilC, and Ocean, while third-party

tools like Orquestra and tKet enhance these capabilities [4].

As quantum computing advances, more third-party compilers

with improved optimization may emerge. However, reliance

on untrustworthy sources could pose security and privacy

risks, potentially compromising sensitive data or introducing

unexpected software vulnerabilities.

D. Vulnerabilities in the era of computer-vision-based QML

In computer-vision QML, such as QCNN, adversarial data

can be embedded during training and activated by specific

triggers, like a unique image on a prototype surface. For

example, an adversary can introduce small perturbations to

quantum sensor or IoT data to induce misclassification [13]

(Type 1⃝ of Fig. 3). Suppose the current car object reading is

encoded as a qubit state |ψ⟩ = α |0⟩+β |1⟩, where α and β are

normalized values of the car position and speed. The adversary

may introduce a small perturbation (backdoor trigger, δα, δβ),

resulting in |ψ′⟩ = (α+ δα) |0⟩+ (β + δβ) |1⟩. The adversary

may also try to exploit adversarial attacks in the computer

vision domain, e.g., fast gradient sign method (FGSM) or

projected gradient descent (PGD), and adapt for quantum

classifiers. In quantum reinforcement learning (QRL), attack-

ers can induce overconfidence by intercepting state copies,

exploiting quantum state instability to manipulate digital twin

decision-making [12]. This can misclassify robotic actions

in manufacturing, causing defective products or production

stoppages, and in aerospace, it can distort flight simulations,

leading to flawed designs or unsafe training.

Attackers can exploit model inversion attacks in QML-based

physical-to-virtual synchronization by leveraging information

leakage from quantum hardware or zombie nodes. Using

Grover’s search algorithm, they can amplify the probability

of reconstructing sensitive input data or the learning model

with high accuracy (Type 2⃝ in Fig. 3). In industrial DT ap-

plications, this could enable reverse engineering of proprietary
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Fig. 3: An illustration of three types of adversarial threats

in QML-based 6G networks highlights the roles of hackers,

zombie nodes, and compromised staff in injecting adversarial

noise, introducing false weights, and hijacking QML models.

manufacturing processes or expose confidential data, leading

to privacy risks and intellectual property theft.

Finally, model poisoning attacks occur when compromised

staff inject false weights into quantum federated learning

during aggregation to corrupt the model’s learning process.

The QML compromise attacks aim to replace the deployed

model with a malicious one during the deployment (Type

3⃝ in Fig. 3). In 6G applications, such as digital twins,

model poisoning can lead to the digital replica making incor-

rect predictions, severely impacting real-world processes like

manufacturing or autonomous steering. Further, an attacker

could poison the training data of a smart grid, causing it

to mismanage energy distribution and lead to blackouts. In

industrial digital twin applications, altered models could lead

to incorrect machinery operations, resulting in safety hazards.

IV. EXAMPLE OF ADVERSARIAL ATTACKS AGAINST

QML-BASED 6G RESOURCE ALLOCATION

Fig. 4 illustrates a white-box adversarial perturbation at-

tack targeting QML-based 6G resource allocation models,

implemented on open-source quantum-inspired real-time op-

timization techniques for 6G networks [1]. Accordingly, the

quantum circuit model is poised with a trojan gate, adversar-

ial perturbation in subcircuits integrated into regions of the

model with limited error detection capabilities. The natural

presence of noise and decoherence in quantum systems masks

these perturbations, making it difficult to attribute errors to

malicious interference and enhancing the stealthiness of the

attack. The original QML model for resource allocation uses

deep reinforcement learning (DRL) with a variational quantum

eigensolver (VQE) and parametrized quantum policies. It

incorporates Hamiltonian components and leverages a Qiskit

runtime estimator to enhance prediction accuracy in classical

optimizers. The dataset is derived from the source provided

in [14]. The quantum superposition state space ρ includes

CQI(Channel Quality Information), PMI(Precoding Matrix In-

dicator), CRI(CSI-RS Resource Indicator), SSBRI(SS/PBCH

Resource Block Indicator), CSI-RS-ResourceList, CSI-RS-

ResourceMapping. There are 16 features (time, cc, pci, earfcn,

rsrp, pl, cfo, dl mcs, dl snr, dl turbo, dl brate, dl bler, ul ta,

ul mcs, ul buff, ul brate, ul bler in [14]), which are converted
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Fig. 4: An illustration of a simple QML architecture shows

classical features being transformed into quantum states

through qubit encoding, where an adversarial attack on param-

eterized circuits is employed to mislead measurement results,

disrupting QML-based resource allocation.

into a 24-dimensional Hilbert space for 4 qubits using one-hot

amplitude encoding [12], e.g., |ψ⟩ =
∑2

4

k=0
αk |k⟩. The action

consists of resource block assignment {0,1} per user request.

The reward is the number of users who are allocated physical

resource blocks successfully and their data rate.

Fig. 5 summarizes the key results of the reward accumu-

lation and throughput of the system before the attacks and

after the attacks. Accordingly, step size α of the adversarial

perturbation at each step is computed as

δt+1 = δt − α · ∇δL(ρ, δ),

where δt is adversarial perturbation at iteration t, ·∇δL(ρ, δ)
is gradient of the loss function with respect to the adversarial

perturbation, ρ is quantum state of the input data. Fig. 5(a)

shows that a smaller α (0.05) can provide better reward

accumulation but require longer training than that of the

bigger α. Meanwhile, Fig. 5(b) shows that all policy-targeted

quantum adversarial attacks significantly reduce throughput

compared to the no-attack case. The cumulative distribution

function (CDF) indicates up to a 46% performance drop,

with lower throughput values dominating. We found that, like

classical adversarial attacks, quantum projected gradient de-

scent (Q-PGD) employs a stronger iterative approach to refine

perturbations over multiple steps. In contrast, the quantum

fast gradient sign method (Q-FGSM) is a single-step attack

that is faster but less precise. Quantum DRL policies with

parameterized quantum circuits outperform classical learners

in discrete logarithm-based tasks [15]. Due to current quantum

computer implementation limitations, quantum adversarial at-

tacks require significantly more resources and longer execution

times than classical attacks like FGSM. This disparity persists

even when operating on the same cellular network size.

In short, two key findings emerge from our tests. First,

the proposed adversarial attack embeds a Trojan gate and ad-

versarial subcircuits in low-error-detection regions, remaining

stealthy as quantum noise masks perturbations. Second, while

iterative attacks like Q-PGD refine perturbations effectively,

they demand significantly more computational resources than

classical attacks. Preliminary tests on variational quantum

classifiers in IBM Qiskit show that adversarial perturba-

tions cause over 30% classification errors. Meanwhile, quan-
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tum backdoor attacks manipulate models but are weakened

by stochastic quantum fluctuations. Effectiveness is further

constrained by quantum noise (e.g., Pauli errors, thermal

relaxation) and hardware-induced decoherence (e.g., energy

decay, qubit crosstalk). These findings highlight that while

quantum adversarial threats pose significant theoretical risks,

real-world implementations into quantum computers remain

limited by quantum noise, gate fidelity issues, and error rates.

This warrants further investigation, particularly noise-resilient

adversarial strategies. Some promising approaches include

improving surface code efficiency and enhancing embedding

techniques. Other key strategies focus on optimizing physical-

logical qubit grouping, superconducting qubit coherence, pulse

shaping, and quantum kernel algorithms.

V. PROMINENT DEFENSE APPROACHES FOR

QML-ASSISTED 6G APPLICATIONS

Security defense for QML-based 6G applications includes

several prominent approaches: 1⃝ training dataset protec-

tion, 2⃝ quantum adversarial training, 3⃝ quantum defense-

GANs, 4⃝ quantum defensive distillation, and 5⃝ gradient

hiding/masking.

Training dataset protection and sanitization. In QML,

data sources and their integrity during training are critical,

given the existence of data poisoning attacks. To prevent data

contamination and manipulation, quantum-safe blockchain

technologies can be a complement in protecting dataset in-

tegrity when any change to any data source can activate peer-

to-peer verification. Data masking and sanitization [2] can also

improve privacy and quality by anonymizing sensitive data and

removing inconsistencies. Post-quantum-resistant encryption,

like lattice-based and multivariate polynomial cryptography,

strengthens security against quantum threats. These methods

protect blockchain transactions from decryption and tamper-

ing.

Quantum adversarial training. This is the most common

method to build a robust QML model. QML models will

be trained using adversarial examples to increase model per-

formance and reduce the likelihood of attackers exploiting

perturbations to attack. Accordingly, the iterative training

process involves training the model on both clean and ad-

versarially modified data, optimizing for improved robustness.

The idea is to mitigate the impact of adversarial attacks by

encouraging models to generalize data patterns and recognize

malicious samples more effectively [7]. As an example in

Section IV and Fig. 5(b), the QML model is trained on both

benign and perturbed states to recognize and correctly classify

benign and perturbed data. Adversarial training can sustain

performance levels comparable to the no-attack scenario, even

when adversarial attacks are present.

Quantum defense-GANs (QuGANs). The QuGAN model

comprises a quantum generator and discriminator, both as vari-

ational quantum circuits. The generator mimics real quantum

data, while the discriminator distinguishes between generated

and real states. The training follows an adversarial minimax

framework with quantum gradient-based optimization. A prac-

tical circuit ansatz ensures universality with sufficient layers,

and the authors in [12] suggest QuGANs may outperform

classical GANs in representation, with applications in quantum

chemistry and cryptography.

Quantum defensive distillation. This approach involves

training a deep neural network (DNN) at an elevated softmax

temperature to generate probability distributions that encapsu-

late additional knowledge about class relationships. These soft

targets are then used to train the same network architecture,

leading to a smoother decision boundary and reduced model

sensitivity to input perturbations. The training decreases the

magnitude of adversarial gradients, hindering the creation of

adversarial examples. In several empirical evaluations on the

classical data, the technique increases the average minimum

input perturbation required for adversarial misclassification by

up to 790% [12]. These findings underscore defensive distil-

lation’s effectiveness in enhancing quantum DNN robustness

without significant computational overhead, making it an ideal

solution for security-sensitive applications.

Quantum gradient aligned adversarial subspace and

masking. Generally, adversarial examples occupy high-

dimensional contiguous subspaces. This facilitates the trans-

ferability across different models, even from distinct architec-

tures like fully connected networks and convolutional neural

networks [2]. The adversarial subspace and masking-based

defense estimate subspace dimensionality, showing that adver-

sarial directions can be orthogonal and abundant. Transferable

examples span substantial subspaces, highlighting their com-

plexity. The model’s decision boundaries are closely aligned

in both adversarial and benign directions, explaining the high

transferability of adversarial examples. The interesting thing is

that defenses like adversarial training do not sufficiently shift

decision boundaries, leaving models vulnerable to black-box

attacks. These findings underscore the complexity of designing

robust machine learning systems and this issue can be a

promising topic in targeting efficient quantum adversarial ro-

bustness. Note that if a defense model can successfully counter

white-box attacks, it can also help reduce the risks associated

with black-box attacks, where the attacker lacks access to hy-

perparameters. Another possibility is to use gradient masking

[2] by designing quantum circuits or cost functions that either

limit the gradient’s sensitivity or introduce randomness. This

can reduce the adversary’s ability to calculate precise updates

for their attack. However, gradient masking may fail when

adversaries exploit model characteristics like non-linearities

5



or correlations or use surrogate models to bypass it.

Among the five defense approaches, quantum adversarial

training is the most effective and practical, as it enhances

robustness by training models on adversarial examples without

requiring excessive computational resources. Similarly, quan-

tum masking is easy to apply and helps obfuscate attack

gradients, though it may slightly degrade model performance.

In contrast, QuGANs and quantum gradient-aligned adver-

sarial subspace methods offer strong defense capabilities but

are computationally expensive and challenging to implement

at scale. Quantum defensive distillation provides moderate

effectiveness but struggles to generalize across diverse attack

scenarios. Overall, we believe that adversarial training remains

the most practical defense, balancing effectiveness and feasi-

bility, while more complex approaches may require further

optimization for real-world deployment.

VI. OPEN CHALLENGES AND FUTURE RESEARCH

DIRECTIONS OF QML SECURITY IN 6G

Many challenges in QML security have not yet been solved.

Several typical challenges are as follows.

Challenge 1: Universal perturbations for rich quantum

inputs. The adversarial attacks in this work are tailored to

specific input states. However, if input states are inaccessi-

ble, it remains unclear whether universal perturbations can

transform most samples into adversarial examples for quantum

classifiers. Exploring these universal perturbations could offer

important insights into the weaknesses of quantum classifiers

and their implications in practical applications. Additionally,

there seems to be a significant link between adversarial

perturbations in quantum deep learning and the phenomenon

of orthogonality catastrophe observed in quantum many-body

physics. In quantum many-body physics, a small local per-

turbation to a metallic or many-body localized Hamiltonian

alters its ground state. In the thermodynamic limit, this new

ground state becomes orthogonal to the original. Drawing

parallels, adversarial perturbations in quantum learning could

exhibit similar orthogonality behavior, where small changes

cause significant deviations in model behavior. Exploring this

relationship could enhance our understanding of adversarial

learning mechanisms in quantum contexts and shed light

on the fundamental nature of orthogonality catastrophe. This

interdisciplinary investigation may reveal shared principles

between quantum many-body systems and adversarial robust-

ness in quantum machine learning, offering new theoretical

and practical insights. Further, the transferability of quantum

adversarial attacks across different quantum models and tasks

remains poorly explored.

Challenge 2: Trade-off between adversarial robustness

and generative learning performance. In classical adversar-

ial learning, recent advancements [2] demonstrate an inherent

trade-off between adversarial robustness and generalization

accuracy. This result implies that improving a model’s re-

sistance to adversarial attacks often comes at the cost of its

ability to generalize well to unseen data, and vice versa. This

trade-off is rooted in the model’s decision boundaries and the

difficulty of simultaneously optimizing them for robustness

and accuracy across diverse inputs. Extending this concept to

quantum machine learning would involve proving a quantum

equivalent of this theorem, which could reveal similar or

unique trade-offs specific to quantum systems. Such a theorem

could quantify how robustness enhancements affect quantum

models’ generalization in tasks like state discrimination and

process learning. Understanding this trade-off is crucial for

designing balanced quantum learning algorithms and ensuring

their feasibility in real-world applications. This line of investi-

gation could provide fundamental insights into the limitations

and possibilities of quantum adversarial learning, shaping

future research and applications.

Challenge 3: Quantum state discrimination and the con-

centration of measure phenomenon. Adversarial examples

appear to be a fundamental challenge in quantum machine

learning applications involving high-dimensional spaces. This

issue relates to the concentration of measure phenomenon,

where high-dimensional data clusters tightly in a small region,

increasing sensitivity to minor perturbations. Consequently,

even minor modifications to input data can lead to significant

changes in model predictions, creating opportunities for adver-

sarial attacks. This vulnerability extends to various quantum

machine learning tasks, such as identifying separable and

entangled quantum states, Hamiltonian learning, and recon-

structing quantum states through tomography. For example,

in separability-entanglement classification, slight adversarial

perturbations could incorrectly classify quantum states as

either separable or entangled. Similarly, in quantum state

discrimination, these perturbations could lead to errors in

identifying quantum states. In tasks like quantum Hamiltonian

learning and state tomography, adversarial examples could

compromise the accuracy of reconstructed quantum systems.

These findings emphasize the need for robust quantum ML

strategies to counter adversarial threats and ensure reliability

in high-dimensional spaces. Generally, identifying all poten-

tial adversarial perturbations in quantum machine learning

scenarios and devising practical countermeasures remains a

significant challenge.

Challenge 4: Quantum decoherence impacts quantum

adversarial attacks. Controlling quantum decoherence is

challenging due to difficulty in isolating the system from its

environment. Preventing interactions that induce decoherence

is especially hard in large-scale 6G applications like virtual

cities and holographic telepresence. Sources like quantum

gates and physical system properties contribute to decoher-

ence, typically ranging from nanoseconds to seconds at low

temperatures, often necessitating cooling to prevent decoher-

ence. However, time-consuming tasks may render quantum

algorithms inoperable due to qubit state corruption over time.

Optical approaches face shorter timescales, requiring rapid

operations to combat decoherence. The threshold theorem

suggests error correction can suppress errors and decoherence,

albeit at the cost of significantly more qubits. For instance,

Shor’s algorithm for integer factorization necessitates about

107 bits with error correction, compared to about 104 bits

without error correction. In 6G applications, these errors

can propagate through multiple hops of transmission, qubit

encoding/decoding, and quantum channel cleanness, leading to
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Fig. 6: An illustration of 6G and the position of adversarial threats against QML-assisted communication functions.

unreliable predictions. For instance, a digital twin of an energy

grid might use QML to optimize load balancing based on

real-time data encoded in qubits. Quantum noise can corrupt

the qubit states, leading to incorrect load predictions and po-

tential grid failures. Current error correction methods require

significant overhead and are not yet feasible for large-scale

quantum computations. Research into more efficient quantum

error correction and noise mitigation techniques remains an

open challenge.

Besides addressing the mentioned challenges, there are also

several promising future research directions, as follows.

1. Exploring vulnerabilities of specific quantum machine

learning models in specific applications and corresponding

defense. QML models, such as QGANs, QNNs, quantum

transformers, and QRL, drive advancements in 6G appli-

cations. These include service offloading, spectrum sharing,

beam steering, multimedia processing, UAV trajectory plan-

ning, and space-ground communications. Investigating the

variations of attacks on these learning models represents a

valuable point for research. For example, in service offloading,

QRL models rely on quantum state encoding to represent

dynamic tasks, network resources, and congestion conditions.

Adversaries can introduce signal perturbations that mislead

task prioritization and resource allocation, resulting in sub-

optimal offloading decisions. In spectrum sharing and beam

steering, QRL models rely on quantum states for channel

estimation and spatial configurations, making them vulnerable

to subtle manipulations. This can mislead decision-making,

causing improper spectrum allocation or beam misdirection,

requiring quantum-specific adversarial defenses. The topic of

QML in these 6G applications is still in its early stages of re-

search, leaving significant opportunities for further exploration

and development.

2. Vulnerabilities of quantum federated learning for 6G

distributed computing infrastructure. In large-scale 6G net-

works (as illustrated in Fig. 6), integrating federated learning

in hierarchical multi-tier and multi-tenant systems enhances

service flexibility. This benefits QML-based 6G applications

like virtual factories and cities. Quantum federated learning

allows decentralized entities to train models collaboratively

without sharing raw data, preserving privacy. This is crucial for

diverse end-to-end devices and quantum sensors handling non-

IID data. For instance, automotive manufacturers could work

together to improve QML models for vehicle performance

monitoring, sharing only model updates instead of sensitive

proprietary sensor data. Developing efficient federated QML

models and addressing their vulnerabilities in the 6G meta-

verse and digital twins is a promising research area. This is

especially important due to the high costs of quantum comput-

ers and large-scale data centers. From a security perspective,
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vulnerability transitioning from classical federated learning

to quantum federated learning introduces new attack vectors

that exploit quantum superposition and parallelism. Identifying

vulnerabilities and developing secure collaborative learning

mechanisms are crucial for reliable distributed services. Key

areas include post-quantum blockchain, distributed ledgers,

and quantum physical unclonable functions for end-to-end

devices.

3. Exploring vulnerabilities and defenses in quantum

semantic communications. Quantum semantic communica-

tions, which leverage quantum mechanics to enhance the

transmission and interpretation of meaning in data, present

a new method to meet the demands of 6G networks. A key

vulnerability is quantum states’ sensitivity to environmental

noise in entanglement and superposition during qubit encoding

(as illustrated in Fig. 6). Semantic encoding in QML models

is vulnerable to attacks during training or channel inference.

Adversarial poisoning could corrupt the quantum datasets or

models used to train semantic parsers, causing wrong qubit

measurement, misinterpretations, or biases in the transmitted

meaning or encoding. This could disrupt critical applications

such as digital twins or autonomous systems relying on precise

semantic understanding. Further research on this matter and

robust error-correction code techniques for defense is then a

promising topic.

VII. CONCLUSION

QML offers significant potential for accelerating machine

learning and enhancing 6G core functions. However, this study

highlights emerging security threats. Two key lessons learned

are as follows. First, QML inherits adversarial vulnerabilities

from classical ML, while novel threats like quantum trojans,

model inversion attacks, and deployment poisoning can dis-

rupt QML-assisted 6G services. Second, QML remains in

its early stages, with practical quantum computers not yet

fully realized. Security challenges include mitigating quantum

noise, improving adversarial robustness, ensuring scalability,

preserving data privacy, and managing decoherence. Another

major issue is the lack of security solutions for quantum

deployment, as quantum noise, quantum decoherence, and

quantum hardware flaws often undermine theoretical perfor-

mance. Future research should address QML vulnerabilities in

6G, enhance secure quantum federated learning, integrate post-

quantum blockchain, and develop secure quantum semantic

communications for real-world deployment.
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