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Abstract
A method is presented to simplify the determination of solutions of certain optimal
control problems which commonly arise in natural resource management and bioeco-
nomic contexts. The method, termed the resource-value balance method, essentially
leverages an equivalent formulation of the original optimal control problem and, as
described, in certain cases the method obviates the need for classical tools from opti-
mal control theory, such as the Pontryagin Principle. Indeed, in these cases the method
reduces the original problem to one solvable with elementary calculus techniques. Fur-
ther, the solution provided by the resource-value balance method is shown to equal the
singular solution of an associated (and more commonly considered) input-constrained
optimal control problem, providing insight into the nature of singular control in this
context. The theory is illustrated with examples from bioeconomics.

Keywords Bioeconomics · Natural resource management · Optimal control theory ·
Optimal harvesting · Pontryagin Principle · Singular control

Mathematics Subject Classification 37N40 · 49K15 · 49N90 · 91B76 · 93C28
1 Introduction

The problem ofmaking decisions which lead to desirable outcomes arises in almost all
scientific, social, and economic disciplines, including natural resource management
and conservation. The importance of sustainably managing natural resources is well
known, has garnered much attention, and nowadays forms one the central pillars
of bioeconomics, a wide-ranging term whose meaning is not universally agreed but
which broadly includes recognising biophysical limits in economic and social sectors;
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see, for instance [9] and the discussion therein. The academic literature of optimal
natural resourcemanagement and conservation is consequently vast, withmonographs
including [6, 8, 26], from a range of academic perspectives. Mathematics, and here
specifically optimal control theory, is one of the key tools for analysing models to
provide both quantitative predictions and underlying insight, affording rational guides
to decision making in natural resource management contexts.

Here, we propose a novelmethod for determining the solution of a family of optimal
control problems, motivated by examples arising in natural resource management and
bioeconomic contexts. Specifically, consider the problem of maximizing

e−δt1E(t1, x(t1)) − e−δt0E(t0, x(t0)) +
∫ t1

t0
e−δt ∂E

∂x
(t, x(t)) b(x(t)) u(t) dt,

(1.1)

subject to the dynamics

ẋ(t) = f (t, x(t), z(t)) − b(x(t)) u(t), (1.2a)

ż(t) = h(t, x(t), z(t)), (1.2b)

where, in general terms, x is a dynamic resource of interest,u is the extraction effort, z is
an auxiliary variable which interacts with the resource, t0 < t1 are fixed times, E is the
value of the resource and the scalar variable t denotes time. We have that b(x(t))u(t)
is the (structured) extraction rate and ∂E/∂x is the marginal value of the resource.
Consequently, the integrand in (1.1) equals the incremental value of the extracted
resource (discounted with rate δ ≥ 0) and, therefore, the integral equals the total
(discounted) value of the amount of resource extracted over the interval [t0, t1]. The
term e−δt1E(t1, x(t1)) represents the (discounted) value in the system at time t1, and
similarly for time t0. As shall become apparent, these terms are essentially included
to eliminate boundary effects.

The standard method of solving the optimal control problem (1.1)–(1.2) is to apply
the Pontryagin Principle; see, for example [7, 22, 25]. This provides a necessary
condition for optimality and asserts that (in the normal case) there exist so-called
co-states λx and λz such that, amongst other properties, the associated Hamiltonian
function

H(
t, (x, z), u, (λx , λz)

) = (
λ�
x λ�

z

) (
f (t, x, z) − b(x)u

h(t, x, z)

)

+e−δt ∂E

∂x
(t, x) b(x) u, (1.3)

is maximized pointwise along an optimal trajectory. The first-order derivative condi-
tion ∂H/∂u = 0 here simplifies to

e−δt ∂E

∂x
(t, x(t)) b(x(t)) = λx (t)

�b(x(t)) ∀ t ∈ [t0, t1]. (1.4)
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In economics, the variable λ�
x has the interpretation of “shadow price” whereas

(∂E/∂x)(t, x(t)) has the interpretation of net price. In the common case that b(x) is
invertible along solutions x of interest, it follows from Eq. (1.4) that the shadow price
should equal the discounted net price for optimality. From an economic perspective,
this is a perfectly sensible (even obvious) optimality condition. We refer the reader
to, for example, [5, Sect. 4.3, p. 102] or [30] for economic interpretations of the
Pontryagin Principle. However, for those other than economics experts, the notion of
shadow price is arguably non-intuitive.

Here, we give an alternative view of the optimal control problem (1.1)–(1.2), and
particularly the computation of its solution. The approach is termed the resource-value
balance method as it is underpinned by the so-called resource-value balance equation.
This equation, in essence, rewrites (1.1) in a form that is independent of the original
control variable u, and is presented in Theorem 1. Maximizing (1.1) is equivalent
to maximizing this equivalent expression and, as we demonstrate, this latter task is
often simpler than maximizing (1.1) directly. One consequence is that we obtain an
optimality condition which usually has a clear interpretation without using the notion
of shadow price. Moreover, the resource-value balance method provides a natural and
intuitive connection to the solution of maximizing the integral term in (1.1) only, that
is,

∫ t1

t0
e−δt ∂E

∂x
(t, x(t)) b(x(t)) u(t) dt, (1.5)

subject to the dynamics (1.2) and, additionally, an input constraint. The performance
criterion (1.5) appears more commonly across the literature and, from the Pontryagin
Principle, the corresponding optimal controls are so-called bang-singular solutions.
Recall that singular refers to the situation where the derivative of the Hamiltonian
function with respect to the control equals zero. The second main result shows that
the optimal control for the problem (1.1)–(1.2) equals the singular control for the
problem (1.2) and (1.5), and is presented as Proposition 2.

The resource-value balance method, and the insight and connections it affords,
comprise themain contribution and novelty of the presentwork. The study ismotivated
by examples from bioeconomics, and examples are drawn from the texts of Clark [5,
6]. As discussed in Remark 3, there is some overlap between the present results and
Clark’s works [5, 6], although with key distinguishing features. Also, we note that a
similar method has been presented by the authors in [16] in the context of renewable
energy conversion, where the quantity E denotes energy. However, the overlap with
the present work is minimal owing to a somewhat different underlying optimal control
problem and the dynamical systems considered.

The remainder of the paper is organised as follows. After gathering mathematical
notation and conventions, our main results are presented in Sect. 2, and examples
appear in Sect. 3. Section4 contains some concluding remarks.
Notation and conventions For ease of exposition, mathematical notation is kept to
a minimum, and the notation used is standard. The symbols Rn and R

n+ denote n-
dimensional Euclidean space and the nonnegative orthant in R

n , respectively. In
particular, R+ := R

1+ = [0,∞). We assume throughout that the functions E , f , h
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and b in (1.1)–(1.2) are sufficiently smooth to ensure: (i) the existence of all derivatives
taken; (ii) existence and uniqueness of solutions of initial value problems associated
with the differential equations (1.2), and; (iii) existence of at least piecewise con-
tinuous optimal controls which maximize (1.1) subject to (1.2). These smoothness
assumptions may be stronger than required, but are satisfied in the examples we con-
sider, and determining minimal regularity assumptions on the model data so that the
results presented are still valid is not the primary focus.

The variables x , z and u in (1.2) are vector-valued in general, so that f , h and b all
have the appropriate domains and codomains which ensure that (1.1) and (1.2) make
sense mathematically. We shall selectively suppress the arguments of the functions E ,
f and h for brevity and clarity. In a slight abuse of notation, we shall identify constants
with their corresponding constant functions.

Since our examples relate to quantities which are necessarily nonnegative (denoting
abundance and so forth), we recall some terminology and an invariance result related to
positive dynamical systems. We refer the reader to [1, 17, 20] for further background.
First, recall from, for example, [17, Definition 2.1 and p. 13] that a function F :
R+ × R

n → R
n is called essentially nonnegative if, for all t ≥ 0, Fi (t, x) ≥ 0 for

all x ∈ R
n+ with xi = 0, for all 1 ≤ i ≤ n. We recall that a nonempty set M ⊆ R

n is
called positively invariant with respect to the differential equation

ẋ = F(t, x(t)), (1.6)

if x(t) ∈ M for all t ≥ 0whenever x(0) ∈ M . Second, it follows from [17, Proposition
2.2] that if F is essentially nonnegative, continuous in x and piecewise continuous
in t , then R

n+ is positively invariant with respect to the differential equation (1.6).
Finally, by convention, derivatives of scalar-valued functionswith respect to vectors

(gradients) are identified with row vectors, and the superscript � denotes matrix and
vector transposition.

2 The Resource-Value BalanceMethod

The following theorem is our first main result.

Theorem 1 Consider the cost function (1.1) subject to (1.2). We have the following
“resource-value balance” equation:

e−δt1E(t1, x(t1)) − e−δt0E(t0, x(t0)) +
∫ t1

t0
e−δt ∂E

∂x
b(x(t)) u(t) dt

=
∫ t1

t0
e−δt

(
− δE + ∂E

∂t
+ ∂E

∂x
f (t, x(t), z(t))

)
dt . (2.1)

Proof To establish (2.1), the fundamental theorem of calculus yields that

e−δt1E(t1, x(t1)) − e−δt0E(t0, x(t0)) =
∫ t1

t0

d

dt

(
e−δt E(t, x(t))

)
dt . (2.2)
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Invoking the dynamics (1.2a), and the product and chain rules for differentiation, we
now compute that

d

dt

(
e−δt E

) = e−δt
(

− δE + ∂E

∂t
+ ∂E

∂x
ẋ
)

= e−δt
(

− δE + ∂E

∂t
+ ∂E

∂x

(
f (t, x, z) − b(x) u

))
. (2.3)

Inserting Eq. (2.3) into Eq. (2.2), and rearranging the resulting expression yields (2.1).

�

It follows from Eq. (2.1) that the original problem of maximizing (1.1) subject
to (1.2) is equivalent to maximizing the right-hand side of (2.1), namely,

∫ t1

t0
e−δt

(
− δE + ∂E

∂t
+ ∂E

∂x
f (t, x(t), z(t))

)
dt, (2.4)

subject to (1.2)which, note, does not involve the control u. We now change perspective
and view x in (2.4) as the control variable; z subject to the differential equation (1.2b)
as a state variable, and; u as being determined in terms of x and z via (1.2a). This is
not restrictive, indeed, in the usual case that b(x) is invertible along a maximizer x
of (2.4), u is uniquely determined by

u(t) = b(x(t))−1( f (t, x(t), z(t)) − ẋ(t)
)
. (2.5)

In many problems z is, in fact, absent. From this perspective, determining the optimal
initial condition x(t0) is part of the optimization problem.

We call the process of maximizing (2.1) via maximizing (2.4) the resource-value
balance method. Before discussing the method further, we comment on the resource-
value function E . From knowledge of ∂E/∂x , the integrand in (1.1), the function E is
determined uniquely up to a function of t , that is, with E0 a fixed anti-derivative of E
with respect to x , all anti-derivatives are given by E = E0 + ε(t) for some function ε.
The objective (1.1) compared to that for E0 then changes by e−δt1ε(t1) − e−δt0ε(t0),
which is a constant. Therefore, the choice of anti-derivative does not alter the maxi-
mizer and, consequently, there is choice of an additive constant in the definition of E .

To proceed, consider the following two exhaustive cases.
Case 1: z is absent. Now f (t, x, z) = f (t, x) and the function (2.4) to be

maximized is subject to no differential equation constraints. Therefore, maximiza-
tion is achieved by pointwise maximization of the integrand which, appealingly, may
often be achieved by elementary algebraic or calculus methods. In other words, for
given t ∈ [t0, t1], it suffices to maximize:

x �→ −δE(t, x) + ∂E

∂t
(t, x) + ∂E

∂x
(t, x) f (t, x). (2.6)

This to-be-maximized function often has a natural interpretation, as shall be discussed
in several of the examples considered. The first-order (derivative) necessary condition
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for the maximization in (2.6) is:

− δ
∂E

∂x

�
+ ∂2E

∂x∂t

�
+ ∂2E

∂x2
f (t, x) + ∂ f

∂x
(t, x)� ∂E

∂x

�
= 0. (2.7)

Developing (2.7) further requires additional information of E and f , and is done in
the examples considered later.

Case 2: z is present. Now the function (2.4) to be maximized involves the dynamic
state-variable z and, hence, the Pontryagin Principle is suitable. Suppressing function
arguments, the Pontryagin Principle yields that there should exist a co-state λ = λz

such that, for all t ∈ [t0, t1], the Hamiltonian function

x �→ e−δt
(

− δE + ∂E

∂t
+ ∂E

∂x
f
)

+ λ�h,

is maximized, the first-order condition for which is

e−δt
(

− δ
∂E

∂x

�
+ ∂2E

∂x∂t

�
+ ∂2E

∂x2
f + ∂ f

∂x

� ∂E

∂x

�)
+ ∂h

∂x

�
λ = 0, (2.8)

and the co-state equation

− λ̇(t) = e−δt ∂ f

∂z

� ∂E

∂x

�
+ ∂h

∂z

�
λ(t), λ(t1) = 0, (2.9)

holds. The transversality final-state condition λ(t1) = 0 from (2.9), when substituted
into (2.8) gives

(
− δ

∂E

∂x

�
+ ∂2E

∂x∂t

�
+ ∂2E

∂x2
f + ∂ f

∂x

� ∂E

∂x

�)∣∣∣
t=t1

= 0, (2.10)

which can be interpreted as a necessary “destination curve” in (x, z)-space for the
optimal state and associated auxiliary variable to reach.

In the special simplifying case that

δ = 0,
∂E

∂t
= 0,

∂h

∂t
= 0, and

∂ f

∂t
= 0, (2.11)

so that, in particular, E(t, x) = E(x), two further consequences are afforded. First,
the destination curve (2.10) reduces to

(∂2E

∂x2
f + ∂ f

∂x

� ∂E

∂x

�)∣∣∣
t=t1

= 0. (2.12)
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Second, the Hamiltonian is constant along the optimal trajectory: that is, there exists
a real constant d such that

∂E

∂x
f + λ�h = d. (2.13)

If z is scalar valued, and hence the function h is as well, then Eq. (2.13) may be solved
for λ. Therefore, λ may be eliminated from (2.8) to obtain

(∂2E

∂x2
f + ∂ f

∂x

∂E

∂x

�)
h + ∂h

∂x

�(
d − f � ∂E

∂x

�)
= 0.

If, additionally, x is scalar valued and ∂h/∂x is not identically equal to zero, then we
obtain a necessary condition for the optimal state and auxiliary variable, namely, that
they are level curves of the function:

(x, z) �→
(∂2E

∂x2
(x) f (x, z) + ∂ f

∂x
(x, z)

∂E

∂x
(x)

) h(x, z)
∂h
∂x (x, z)

− f (x, z)
∂E

∂x
(x). (2.14)

Whilst the value of the level, denoted d above, may be determined by evaluating (2.14)
at any t ∈ [t0, t1], including t = t0 which gives d in terms of the initial data x(t0)
and z(t0), recall that determining x(t0), and hence the value of the level, are part of
the optimization problem in the resource-value balance method. Developing (2.10)
and (2.14) further requires bespoke information on E and f . Observe that this method
obviates the need to determine the co-state variable λ.

As a further specialisation ofCase 2, consider the situationwherein an equilibrium
solution is sought, that is, f and h are independent of t , and (constant) x and z are
such that

0 = f (x, z) − b(x)u and 0 = h(x, z). (2.15)

This situation arises in maximum sustainable yield (MSY) approaches; see, for
example [28] and the references therein. Again for simplicity imposing (2.11), the
to-be-maximized function

(x, z) �→ ∂E

∂x
f ,

is now subject to the (algebraic) constraint h(x, z) = 0, and is a problemwhichmay be
solved via Lagrangemultipliers. Assuming that x and z are scalar valued for notational
simplicity, we arrive at the first-order condition

∂2E

∂x2
f + ∂E

∂x

∂ f

∂x
+ θ

∂h

∂x
= 0,

∂E

∂x

∂ f

∂z
+ θ

∂h

∂z
= 0, h(x, z) = 0, (2.16)

for Lagrange multiplier θ . Assuming that ∂h/∂z 
= 0, then θ may be eliminated
from (2.16) to yield
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∂h

∂z

∂2E

∂x2
f + ∂h

∂z

∂E

∂x

∂ f

∂x
− ∂E

∂x

∂ f

∂z

∂h

∂x
= 0, h(x, z) = 0, (2.17)

that is, two equations in the two unknowns x and z. Once (2.17) is solved, then the
(constant) optimal controlu is determinedby (2.15) asu = b(x)−1 f (x, z).Herewe are
assuming that u is feasible (typically meaning u ≥ 0 for natural resource management
scenarios) and additional inequality constraints such as b(x)−1 f (x, z) ≥ 0 may be
required to enforce this. In this case, a more general optimization framework such
as the Karush-Kuhn-Tucker (KKT) conditions (see, for instance [3, Sect. 5.5]) for
inequality-constrained optimality are required. This situation is beyond the scope of
the present work and not considered further.

2.1 An Alternative Optimization Criterion

Here the relationship between the resource-value balancemethod formaximizing (1.1)
subject to (1.2) and maximizing (1.5) (recall, the integral term in (1.1) only), subject
to the dynamics (1.2) and the control constraint

umin ≤ u(t) ≤ umax (componentwise inequality) t0 ≤ t ≤ t1, (2.18)

is explored. In (2.18) the constant vectors umin and umax are given. It is this latter
problem which occurs more frequently across the optimal control literature. The next
result is the second main result of the current work.

Proposition 2 Let (P1) denote the optimal control problem of maximizing (1.1) subject
to (1.2), and let (P2) denote the optimal control problem of maximizing (1.5) subject
to the dynamics (1.2) and the control constraint (2.18).

A critical control of (P1) is precisely a singular control of (P2).

Here a critical control of (P1) is one such that the derivative of the Hamiltonian
function H with respect to the control variable equals zero, and the conditions of the
Pontryagin Principle are satisfied. A singular control of (P2) is also a control such
that ∂H/∂u = 0 and the conditions of the Pontryagin Principle are satisfied, but here
the additional input constraint (2.18) is present. Informally, this is the situation where
pointwise maximisation of the Hamiltonian does not, by itself, determine the control
in terms of the state and co-state.

Proof of Proposition 2 We invoke the Pontryagin Principle for (P1) and (P2). The
dynamics (1.2) and HamiltonianH as in (1.3) are equal for both problems, for co-state
variables λx and λz . Consequently, the co-state equations for both problems coincide
as well.

We express H as

H(
t, (x, z), u, (λx , λz)

) = (
λ�
x λ�

z

) (
f (t, x, z)
h(t, x, z)

)
+

(
e−δt ∂E

∂x
(t, x) − λ�

x

)
b(x) u

= (
λ�
x λ�

z

) (
f (t, x, z)
h(t, x, z)

)
+ ∂H

∂u
u. (2.19)

123



Applied Mathematics & Optimization            (2025) 91:59 Page 9 of 29    59 

A critical control for (P1) corresponds to the condition that ∂H/∂u = 0. For problem
(P2), in light of (2.19), pointwise maximisation of the Hamiltonian with respect to u
gives the following condition for optimal control u∗:

(u∗(t))i =

⎧⎪⎨
⎪⎩
umax,i (∂H/∂u)i > 0

singular (∂H/∂u)i = 0

umin,i (∂H/∂u)i < 0.

In particular, the (any) singular portions of u∗ for (P2) occur precisely when ∂H/∂u =
0. The proof is complete. 
�

Proposition 2 is not a deep result, but is, we contend, both useful and instructive.
As already mentioned, the resource-value balance method pertains to solving problem
(P1), and in particular, how the problem (P1) may be simplified. Then, problem (P1)
is connected to the more-commonly studied problem (P2) via Proposition 2. The
upshot is that maximizing (1.1) gives an intuitively simpler (and, hence, arguably
superior) method of determining the singular control/state of (1.5). We do note that
since Proposition 2 invokes the Pontryagin Principle, it provides necessary conditions
formaximisers which are not sufficient in general. However, in the presence of suitable
convexity assumptions (see, for example, the Mangasarian sufficiency conditions in
[25, pp. 105–106]) the necessary conditions are sufficient. Moreover, as shown above,
problem (P1) reduces to a pointwise maximization problem in the case that z is absent,
and the Pontryagin Principle is not required. Finally, we comment that in the case that
the maximizer of (1.1) is constant, as is the case in several examples considered, then
it follows that each component of the optimal bang-singular control of (1.5) takes (at
most) three values.

Some last commentary is in order, recorded as a remark.

Remark 3 Whilst to the best of the authors’ knowledge, the resource-value balance
equation andmethod (Theorem1) or the connection between optimal control problems
(Proposition 2) are novel, there is some overlap of ideas related to simplifying solving
optimal control problems in natural resourcemanagement contexts between the present
work and those of Clark [5, 6] (and earlier papers such as [4]). These techniques are
dotted around [5], including the derivation of [5, Eq. (2.16), p. 40] via the Euler–
Lagrange equations, in [5, pp. 326–327] via integration by parts, and in [5, Sect. 2.7]
which invokes Green’s Theorem. The generality of Theorem 1 via the inclusion of
the auxiliary variable z and the (potentially) time-varying functions f and h arguably
distinguishes the present contribution from these earlier works.

3 Examples

We apply the resource-value balance method of Sect. 2 to three examples from bioeco-
nomics. By way of notation, (us, xs) shall denote a critical trajectory to (1.1), subject
to dynamics (1.2), with corresponding zs if included. Further, (u∗, x∗) shall denote
an optimal trajectory to the alternative problem (1.5), subject to dynamics (1.2) and
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control constraint (2.18). With this notation, the conclusion of Proposition 2 may
be expressed as (us, xs) is the (any) singular state/control portion of (u∗, x∗), hence
explaining the choice of notation. We comment that for (us, xs) to be feasible as part
of an optimal trajectory of (1.5), (1.2) and (2.18) requires that there are t ∈ [t0, t1]
such that umin ≤ us(t) ≤ umax.

3.1 Harvesting of a Single Population

Consider the classical problem of optimally harvesting a single population modelled
by a scalar differential equation. This model is discussed in, for example, the texts
[5, Chap. 1] and [24, Sect. 1.6] where a number of bibliographic details given. In a
bioeconomic context, the following optimal control problem is also called theGordon–
Schaefer logistic model [23], although the migration term we consider is not usually
included. The uncontrolled (that is, unharvested) dynamics are assumed to be governed
by the logistic equation

ẋ = r x
(
1 − x

K

)
+ v,

where x denotes local population abundance, the positive constants r and K denote
the intrinsic growth rate and natural carrying capacity, respectively, and v denotes a
migration term. The inclusion of harvesting as a control action leads to the equation

ẋ = r x
(
1 − x

K

)
− qxu + v, (3.1)

where the positive constant q denotes harvesting efficacy, and the control vari-
able u denotes harvesting effort which is nonnegative valued. Equation (3.1) is of
the form (1.2) with

f (t, x, z) = f (t, x) := r x
(
1 − x

K

)
+ v(t), b(x) := qx,

and where the variable z is absent. It is clear that (t, x) �→ f (t, x) − qxu(t) is
essentially nonnegativewhenv(t) ≥ 0,with the upshot that x(t) ≥ 0whenever x(0) ≥
0. Moreover, x is bounded when v is, and so there exists B = B(‖v‖L∞) > 0 such
that the interval [0, B] is positively invariant for (3.1).

Define the resource-value function

E(x) := px + c

q

(
ln(B) − ln(x)

)
x > 0, (3.2)

where the positive constants p and c denote the price per unit harvested and cost per
unit of control effort, respectively. Note that E is independent of t , and the choice of
additive constant available in E ensures that E(x(t)) > 0 along non-zero solutions
of (3.1) from x(0) ∈ [0, B]. The resource-value function E in (3.2) shall appear across
the examples considered, and we revisit it in Sect. 3.4. Presently, the following integral
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in (1.1) is obtained:

∫ t1

t0
e−δt ∂E

∂x
(t, x(t)) b(x(t)) u(t) dt =

∫ t1

t0
e−δt (pqx(t) − c) u(t) dt .

Thus, the terms pqxu and −cu denote the revenue of harvested quantity and cost in
doing so, respectively, over the time interval [t0, t1]. As usual, δ ≥ 0 is a discounting
rate.

To apply the resource-value balance method of Sect. 2, we note that we are in
Case 1 as z is absent. Therefore, the function to be maximized according to (2.6) is
(with δ = 0 and c = 0 first for simplicity of interpretation)

x �→ p f (t, x) = prx
(
1 − x

K

)
+ pv(t).

Since v(t) is assumed to be independent of x , in words, the above condition means that
we want to be in the state x that maximizes the natural growth rate of the population.
In the specific case considered presently of logistic growth, this state is given by xs :=
K/2. The corresponding (constant) optimal control effort us is obtained by substituting
(the constant) xs into the differential equation (3.1) to obtain

us(t) = 1

qxs

(
r xs

(
1 − xs

K

)
+ v(t)

)
− d

dt
xs

= r

2q
+ 2v(t)

qK
. (3.3)

In words, in the absence of harvest cost and discounting, the optimal control effort us
keeps the state at its constant value xs = K/2. Observe that knowledge of v is required
to computeus,whichmaynot be knownwith certainty in practice.Wecomment that the
above conclusions are well-known in the case v = 0; see, for instance [24, equations
(1.45)–(1.47), p. 31].

For general δ, c 
= 0, the first derivative necessary condition (2.7) becomes

− δx (pqx − c) + c
(
r x

(
1 − x

K

)
+ v(t)

)
+ r x

(
1 − 2x

K

)
(pqx − c) = 0,

(3.4)

which is a cubic equation in the variable x . Gathering powers of x together in (3.4)
yields

−2pqr

K
x3 +

(
pq(r − δ) + cr

K

)
x2 + cδx + cv(t) = 0.

Since v(t) ≥ 0 by assumption, there is a single sign change in the coefficients. There-
fore, from Descartes rule of signs, there is at most a single positive root of (3.4),
denoted xs(t). It is clear from the above equality that xs is an increasing function of
v(t). The corresponding optimal control us(t) is again obtained from (3.3).
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For a numerical example we take model data

r = 2, K = q = p = 1, c = 0.125, t0 = 0, t1 = 10, δ = 0,

v(t) = 0.2(1 − cos(0.75t)).

The terms xs and us are computed by solving (3.4) numerically and (3.3), respectively,
and graphs of these functions, along with v, are contained in Fig. 1a.

To illustrate Proposition 2 numerically, we further take

x(0) ∈ {0.4, 0.8}, umin = 0.8, umax = 1.6.

An optimal trajectory (u∗, x∗) for (1.5) subject to the control constraint (2.18) was
computed in the open-source optimal control toolbox Bocop [27] for x(0) = 0.4 and
x(0) = 0.8. Figure1b and c plot u∗(t) and x∗(t), both against t , for x(0) = 0.4 and
x(0) = 0.8, respectively. In each case, a bang-singular-bang solution is observed,
as expected from the Pontryagin Principle, and the singular part coincides with the
trajectory (us, xs), shown in faint lines, as expected from the resource-value balance
method. Note that the first portion of bang control is determined by the relative size of
x(0) compared to xs(0). Byway of further commentary, recall that the term turnpike in
optimal control problems refers, in broad terms, to the property that for varying initial
conditions and time horizons, optimal solutions remain near a specific steady state for
a substantial part of the time horizon. For optimal control problems in the context of
economics, the turnpike property dates back to the foundational work [10]. For more
background and recent results on turnpikes in optimal control problems, we refer the
reader to, for example, [12, 14]. The connection between turnpikes and dissipativity
has been explored in [15]. In fact, turnpikes with respect to time-varying solutions
(or, more generally, to manifolds) have recently been studied in, for example, [13]
and references therein. Observe in Fig. 1b and c that the optimal states x∗ demonstrate
a so-called exact (time-varying) turnpike property, that is, for a major portion of the
time-horizon x∗(t) is equal to xs(t).

We conclude this section by commenting on further simplifying cases. If v = 0,
then Eq. (3.4) reduces to a quadratic equation in x and has the unique positive solution

cr + pqK (r − δ) + K
((
cr/K + pq(r − δ)

)2 + 8cδ pqr/K
)1/2

4pqr
.

Observe that when δ = 0, the solution above simplifies further to

x† := c + pqK

2pq
= K

2
+ c

2pq
> K/2,

and yields the corresponding optimal control

u† := r
(
1 − x†

K

)
= r

q

( pqK − c

2pqK

)
<

r

2q
.
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Fig. 1 Numerical simulations from Example 3.1. a Graph of xs(t), us(t) and v(t) against t . b, c Graphs of
u∗(t) (dashed line) and x∗(t) (solid line) against t , respectively. Black dotted lines are input constraints,
and faint lines are xs(t), us(t)

These expressions are readily seen to collapse further to K/2 and (3.3), respectively,
when c = 0.Moreover, foru† to be biologicallymeaningful requires that pqK−c > 0.
The upshot is that the presence of a cost of harvesting in the model increases the
optimal population size and reduces the optimal harvesting effort, both by a constant
proportional to the ratio c/p of cost to price per unit harvested.

3.2 An Inshore–Offshore Model

Consider the inshore-offshore model from [5, Eq. (10.48), p. 337], augmented to
include migration terms. Specifically, denote the inshore biomass by x1 and the off-
shore biomass by x2. These are modelled by coupled scalar differential equations with
intrinsic growth rates given by the nonlinear functions f1 and f2, respectively. The
parameter σ > 0 determines movement between the inshore and offshore biomasses.
There are at most two control variables u1 and u2 which denote the harvesting effort
of the inshore and offshore biomasses, respectively, and are both nonnegative valued.
Combined, the dynamics are thus given by
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ẋ1 = f1(x1) + σ(x2 − x1) − x1u1 + v1

ẋ2 = f2(x2) + σ(x1 − x2) − x2u2 + v2.

}
(3.5)

The function

(t, x) �→
(
f1(x1) + σ(x2 − x1) − x1u1(t) + v1(t)
f2(x2) + σ(x1 − x2) − x2u2(t) + v2(t)

)
,

is essentially nonnegative when both f1 and f2 are and vi (t) ≥ 0, so that solutions xi
of (3.5) satisfy x1(t), x2(t) ≥ 0 for all t ≥ 0 whenever both x1(0) and x2(0) are
nonnegative, and u and vi are piecewise continuous. A number of further possible
mild assumptions on the fi yield that nonnegative solutions xi of (3.5) are bounded,
again when the vi are.

Analogously to (3.2), the resource-value function E is defined by

E(x) := p1x1 + c1
(
ln(B1) − ln(x1)

) + p2x2 + c2
(
ln(B2) − ln(x2)

)
, x :=

(
x1
x2

)
,

where the positive constants Bi are upper bounds for xi , and the interpretation of the
positive constants pi and ci is as in Sect. 3.1. Here the harvesting efficacy of both
populations is assumed to equal 1, as compared to the situation considered in Sect. 3.1
where it was represented by q = qi .

The model (3.5) fits the framework (1.2), albeit differently depending on whether
one- or both- of the populations are harvested. These situations are considered sepa-
rately, beginning with the former.

3.2.1 Harvesting the Inshore Population Only

Assume that u2 = 0 in (3.5), and so set p2 = c2 = 0 and relabel

p1 = p, c1 = c, u1 = u, x1 = x, x2 = z,

so that (3.5) is of the form (1.2) with

f (t, x, z) = f (t, x) := f1(x) + σ(z − x) + v1(t), b(x) := x,

h(t, x, z) := f2(z) + σ(x − z) + v2(t),

and E now coincides with that in (3.2). We further assume that both f1 and f2 are
logistic, that is,

fi (x) = ri x
(
1 − x

Ki

)
, (3.6)

for constants ri , Ki > 0.
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Since the variable z is present, this example falls into Case 2 of the resource-value
balance method. However, as both x and z are scalar valued with

∂h

∂z
= σ 
= 0,

computing the co-state λ can be avoided in the special case (2.11), if we further assume
that

δ = 0, and v1, v2 are equal to zero (hence constant). (3.7)

Consequently, the necessary conditions from the Pontryagin Principle reduce to an
optimal trajectory (xs, zs) satisfying the destination curve (2.12) at t = t1 and are
level curves of (2.14).

Routine differentiation gives that the destination curve condition becomes

(
pr1

(
1 − 2x

K1

)
+ cr1

K1
+ cσ z

x2
− σ p

)∣∣∣
t=t1

= 0,

which rearranges to the cubic equation

zs(t1) = 1

cσ

(
σ p − cr1

K1
− pr1

(
1 − 2xs(t1)

K1

))
x2s (t1). (3.8)

After calculation, the function for the level curves is

(
pr1

(
1 − 2x

K1

)
+ cr1

K1
+ cσ z

x2
− σ p

)(
r2z

(
1 − z

K2

)
+ σ(x − z)

)

− σ
(
r1x

(
1 − x

K1

)
+ σ(z − x)

)(
p − c

x

)
. (3.9)

The above expression admits some simplification, but seemingly not substantially in
general. In light of the differential equation for z,

ż = r2z
(
1 − z

K2

)
+ σ(x − z) = −r2z2

K2
+ (r2 − σ)z + σ x,

the level curves in the (x, z)-plane are traversed according to sign of the quadratic

− r2z2

K2
+ (r2 − σ2)z + σ x . (3.10)

Since ẋ and ż are bounded, very roughly speaking, the level curve to-be-traversed
depends on the length of the time interval [t0, t1], capturing the time available to reach
the destination curve. The current problem is time-invariant, and so t0 may be chosen
equal to 0.
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In this optimal control problem the initial value z(0) is given, and xs(0) is to be
determined. Thus, we arrive at the following qualitative description of the optimal
state/auxiliary variable trajectory, namely:

1. Begin on a level curve as determined by z(0) and time duration t1 − t0.
2. Traverse the level curve (3.9) according to sign of (3.10).
3. Arrive at the destination curve (3.8) at time t = t1.

For a numerical example, we take model data:

r1 = 1.5, r2 = 2.3, K1 = 1, K2 = 1.5, σ = p = 1,

c = 0.75, t0 = 0, t1 = 2, (3.11)

chosen somewhat arbitrarily to illustrate our results.
Numerical simulation results are plotted in Fig. 2. Sample level curves and the desti-

nation curve in the (x, z)-plane are plotted in Fig. 2a. Panels (b, c) contain level curves
and the destination curve, with optimal trajectories computed in Bocop additionally
plotted, varying by choice of z(0) = 1 and z(0) = 1.5, respectively. As expected from
the resource-value balance method, we see that the optimal curves are level curves
of (3.9) and terminate at the destination curve (3.8). The actual control variable us is
determined (at least numerically) from (xs, zs) from the first equation in (3.5).

3.2.2 Harvesting the Inshore Population Only—Equilibrium Solutions

Still under assumption (3.7), nowassume that a (constant) equilibriumoptimal solution
is sought, so that Eq. (2.15) holds.

Here the constraint h(x, z) = 0 reads

h(x, z) = r2z
(
1 − z

K2

)
+ σ(x − z),

and the first-order condition for optimality becomes, after some simplification,

M(x, z) = c
(
r1x

(
1 − x

K1

)
+ σ(z − x)

)(
r2

(
1 − 2z

K2

) − σ
)

+ (
px2 − c

)(
r1r2

(
1 − 2x

K1

)(
1 − 2z

K1

) − σr1
(
1 − 2x

K1

)

− σr2
(
1 − 2z

K2

)) = 0. (3.12)

With model data (3.11), simulation results are plotted in Fig. 3. Figure3a contains
the zero contours of h(x, z) and M(x, z) which, observe, appear as the centre of the
hyperbolae-like of the level curves (3.9). Their intersection is the optimal equilibrium
solution, denoted (xc, zc). Figure3b compares solutions (xs, zs) and (xc, zc). Observe
that these solutions are distinct, but that the time evolution of (xs, zs) is “somewhat
close” to (xc, zc)—see Fig. 3c—another illustration of the so-called turnpike property
in optimal control. This effect becomes more pronounced as the length of the time
interval increases.
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Fig. 2 Numerical simulations from the inshore harvesting model only of Example 3.2. a Level curves (3.9)
(coloured) and destination curve (3.8) (black) in (x, z)-plane. The black dotted line is the zero contour
of (3.10), determining the sign of ż. b, c Optimal trajectories (xs, zs) from black circle to black cross,
subject to z(0) = 1 and z(0) = 1.5, respectively (Color figure online)

3.2.3 Harvesting Both Inshore and Offshore Populations

Now assume that both controls in u1 and u2 in (3.5) are available. Thus, themodel (3.5)
is of the form (1.2) with

f (t, x) = f (t, x, z) :=
(
f1(x1) + σ(x2 − x1) + v1(t)
f2(x2) + σ(x1 − x2) + v2(t)

)
, b(x) :=

(
x1 0
0 x2

)
,

and where the variable z is absent, so that Case 1 of the resource-value balance
method is applicable. Consequently, the to-be-maximized function (2.6) is given by

(x1, x2) �→ −δE +
(
p1 − c1

x1

)(
f1(x1) + σ(x2 − x1) + v1(t)

)

+
(
p2 − c2

x2

)(
f2(x2) + σ(x1 − x2) + v2(t)

)
. (3.13)
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Fig. 3 Numerical simulations from the equilibrium-solutions inshore harvestingmodel only of Example 3.2.
a Zero contours of h (black dotted) and M (black dashed) with intersection (xc, zc) marked with the black
diamond. c Optimal trajectory (xs, zs) (black solid), from circle to cross, equilibrium solution in black
diamond. Black dotted, dashed and dashed-dotted lines are zero contours of h, M , and destination curve,
respectively. c Graphs of xs(t) (black) and zs(t) (grey) as in (b) against t , with xc, zc plotted in dotted lines

According to (2.7), under the simplifying assumption that p1 = p2 = p, the first-order
necessary condition for a maximum of (3.13) is

−δ
(
p − c1

x1

)
+ c1

x21

(
f1(x1) + v1(t)

) +
(
p − c1

x1

)
f ′
1(x1) + σ

c1x22 − c2x21
x2x21

= 0 ,

−δ
(
p − c2

x2

)
+ c2

x22

(
f2(x2) + v2(t)

) +
(
p − c2

x2

)
f ′
2(x2) + σ

c2x21 − c1x22
x1x22

= 0 ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.14)

which coincides with [5, Eq. (10.50), p. 338] when v1 = v2 = 0, obtained there by
integration by parts in (1.5). In general, developing the condition (3.14) further requires
bespoke assumptions on f1 and f2. However, under the assumption that, for each v1(t),
v2(t), Eq. (3.13) has a unique componentwise positive maximum xs, Eq. (3.5) is used
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as a definition of the resulting (in general not constant) optimal control, that is,

us,1 := f1(xs,1) + σ(xs,2 − xs,1) + v1 − ẋs,1
xs,1

and us,2 := f2(xs,2) + σ(xs,1 − xs,2) + v2 − ẋs,2
xs,2

.

⎫⎪⎪⎬
⎪⎪⎭

(3.15)

Again note that knowledge of vi is required to determine us. As a numerical illustration,
assume that the fi are logistic and that the inshore and offshore habitats give rise to the
same dynamics, that is, fi are of the form (3.6) with r = r1 = r2 and K = K1 = K2.
By rescaling both xi and time, we may assume that

r = 1, K = 1 so that f1(y) = f2(y) = y(1 − y). (3.16a)

Assuming that the price for both populations is equal, and that the offshore population
is more expensive to catch, we consequently set

σ = 0.01, p1 = p2 = 1, c1 = 0.4, c2 = 0.6, (3.16b)

and, finally, set

δ = 0, t0 = 0, t1 = 5, v1(t) = 0.1 cos(1.75t) and

v2(t) = −0.1 cos(2.8t). (3.16c)

Observe that the vi are not nonnegative valued, but this is only used to a priori ensure
nonnegativity of state trajectories. Here we compute numerically that (3.13) has a
(componentwise) positive maximum, and that the resulting us is nonnegative valued.
Graphs of xs(t), us(t) and v(t) against t are are contained in Fig. 4a. The functions xs
were computed using fmincon inMatlab.

In the case that vi = 0, then xs and us are constant, and are here given by

xs =
(
0.6995
0.8004

)
and us =

(
0.3019
0.1983

)
, (3.17)

which are also plotted in Fig. 4a. To illustrate Proposition 2, for the alternative
optimal control problem of maximising (1.5) additionally subject to the control con-
straint (2.18), we take

umin =
(
0.15
0.025

)
and umax =

(
0.7
0.6

)
. (3.18)

Recall that in this problem the initial state x(0) = x∗(0) is assumed given. An optimal
trajectory (u∗, x∗) was computed in Bocop for x(0) = (1, 4), and graphs of u∗(t)
and x∗(t) against t are plotted in Fig. 4b. A bang-singular trajectory is observed with
singular portions coinciding with (us, xs), as predicted by the resource-value balance
method.
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Fig. 4 Numerical simulations from the two-harvesting model (3.5) of Example 3.2 subject to model
data (3.16). a Graphs of xs(t) (solid), us(t) (dashed) and v(t) (dashed-dotted) against t . Black and grey
lines correspond to i = 1 and i = 2, respectively. Dotted lines are respective constant xs, us components
corresponding to vi = 0. b Graphs of x∗(t) (solid), u∗(t) (dashed) against t . Fainter lines are xs, us from
(a)

The example is concludedwith commentary on how the above deliberations inform,
at least qualitatively, the solution to the alternative optimization criterion (1.5), with
the additional control constraint (2.18) in the case v1 = v2 = 0, so that xs and us as
in (3.17) are constant and, moreover, (us, xs) is a feasible trajectory.

Anticipating the qualitative description of the optimal trajectory from the Pontrya-
gin Principle,we note that there are eight combinations of bang-bang/singular controls,
for ease denoted:

w1 = umin, w2 = (umax,1, umin,2), w3 = (umin,1, umax,2), w4 = umax,

w5 = (umin,1, us,2), w6 = (umax,1, us,2), w7 = (us,1, umin,2), w8 = (us,1, umax,2).

}

(3.19)

We partition the (x1, x2) phase portrait1 into eight regions, those enclosed by the
solutions of the final value problem (3.5) subject to u = wi and final value xs. These
curves are denoted by γi . Since the problem (3.5) subject to constant controls is time-
invariant, the choice of final time is unimportant for the construction of γi , provided
that it is sufficiently large.

The Pontryagin Principle yields that the optimal control is bang-singular. For the
current problem, we further expect that the first portion of an optimal trajectory
steers x∗(0) to xs, at which point u∗ switches to us. Since the switching times of
the components are generically different, the switch to us is from one of the four
bang-singular controls w5, w6, w7, w8. In other words, generically, optimal trajecto-
ries reach xs along one the bang-singular curves γ5, . . . γ8.

Thus, the following qualitative description of the first portion of optimal trajectories
is proposed:

(I) solutions with x∗(t0) ∈ γi traverse them to xs;

1 Restricting attention to the phase portrait intersected with the nonnegative orthant R2+.
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Fig. 5 Numerical simulations from the two-harvesting model (3.5) of Example 3.2 subject to model
data (3.16) and (3.18). The graph is in (x1, x2)-space. Solid coloured lines are the curves γi , the solu-
tions x of (3.5) subject to the four combinations of bang-singular controls w5, . . . , w8 in (3.19) and the
final value condition xs. Dashed coloured lines are the curves γi corresponding to four combinations of
bang-bang controls w1, . . . , w4 in (3.19). The black dotted lines are numerically-computed optimal tra-
jectories x∗ subject to different initial conditions, marked with cross or diamond. The optimal controls for
initial states not on γi are bang-bang until the corresponding state x intersects the curves γi , at which point
the solutions traverse these curves to xs (Color figure online)

(II) solutions with x∗(t0) /∈ γi are subject to one of the bang-bang controls w1, . . . w4,
determined by the region of the phase portrait, until the trajectory intersects one
of the bang-singular curves γ5, . . . γ8. The solution then traverses this curve to xs.

We expect the optimal control to switch to one of the maximal bang-bang/singular
controls (w4, w6, w8) near the final t = t1, a phenomenon which is not predicted
by the present resource-value balance method. We also comment that we have not
rigorously ruled out multiple switches between bang-bang controls before an optimal
trajectory intersects one of the curves γ5, . . . γ8. However, we have not observed such
multiple switches occurring in this example, and it seems implausible in this context.

Simulation results are plotted in Fig. 5. The curves γi are plotted in coloured lines.
The nine black dotted lines are optimal trajectories for a range of initial conditions,
as computed by Bocop. Each trajectory is observed to reach xs. The solutions plotted
have been truncated once they reach xs. The qualitative behaviour predicted in (I)
and (II) above is observed—eight of the nine solutions (those starting at the crosses)
are subject to bang-bang controlsw1, . . . , w4 before the state-trajectory intersects one
of γ5, . . . γ8. The optimal state-trajectory then traverse these curves to xs. The ninth
solution has been chosen to satisfy x∗(0) ∈ γ4, and is seen to traverse γ4 to xs.

As an illustration of item (II), Fig. 6 contains phase portraits of (3.5) subject to the
four bang-bang controlsw1, . . . , w4. Thesewere computed using the 2DPhasePortrait
Plotter function [31] forMatlab. The bang-singular curves γ5, . . . , γ8 as in Fig. 5 are
also shown. Each phase portrait is applicable for initial conditions x∗(0)which belong
to coloured regions shown. It is observed that the phase lines intersect the bang-
singular curves γ5, . . . γ8, at which point the control switches to the corresponding
bang-singular control.
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Fig. 6 Numerical simulations from the two-harvesting model (3.5) of Example 3.2 subject to model
data (3.16) and (3.18). The coloured (solid, dashed) lines are the curves γi as in Fig. 5 and described
in main text, and which intersect at xs. Each panel gives the phase portrait of (3.5) subject to constant
bang-bang control (see titles). The combination of the blue coloured regions is a phase portrait for the
optimally-controlled system. The phase and quiver lines are plotted in grey. In each panel, it is observed
from the phase/quiver lines that trajectories starting in each coloured region intersect one of the solid lines
γ5, . . . , γ8, at which point the control switches to bang-singular, and the solution traverses these curves to
xs. Solutions which begin on γ1, . . . , γ4 traverse these to xs (Color figure online)

3.3 A Cohort Fisheries Model

A cohort fisheries model and corresponding optimal control problems are presented
in detail in [6, Sect. 6.2, pp. 233–243], and also in the second edition [5, Sects. 9.2
and 9.3] where it is termed the Beverton-Holt commercial fisheries model, after [2].
We approach the problem from the resource-value balance perspective. This example
contains a resource-value function with explicit t dependence, distinguishing it from
the examples considered hitherto.

Let x denote the abundance of a single local population with biomass per individual
denoted w—a given function. The following model and resource-value function are
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assumed:

ẋ = −(r + qu)x, E(t, x) := p(t)w(t)x(t) + c

q

(
ln(x(0)) − ln(x)

)
, (3.20)

where the positive constant r denotes natural mortality, and c, p = p(t), and q
are as in Sect. 3.1, although p is now permitted to depend on time. Here u denotes
fishing mortality. In particular, wx denotes the total biomass of the population and,
consequently, the value of the resource-value E depends explicitly on time t through
the functions p and w. The differential equation in (3.20) is of the form (1.1) with

f (t, x, z) = f (x) := −r x, b(x) := qx .

It is clear that solutions x to the differential equation (3.20) are nonnegative from
nonnegative initial conditions and are bounded by x(0) when u ≥ 0. The positive
initial condition x(0) is called the recruitment in [5, p. 276].

With the above value function, the integral in the performance criterion (1.1) equals

∫ t1

t0
e−δt(qp(t)w(t)x(t) − c

)
u(t) dt .

The resource-value balance method is applied to maximize (1.1), appealing to Case
1 as the variable z is absent. Setting α(t) := p(t)w(t), the to-be-maximized func-
tion (2.6) is given by

x �→ −δ
(
α(t)x + c

q

(
ln(x(0)) − ln(x)

)) + α̇(t)x +
(
α(t) − c

qx

)
(−r x)

= (α̇ − rα − δα) x + cδ

q
ln(x) + cr

q
− cδ

q
ln(x(0)). (3.21)

The first-order necessary condition (2.7) for a maximum of (3.21) is

(
α̇ − rα − δα

) + cδ

qx
= 0,

which is easily solved to give

xs(t) := cδ

q
(
(r + δ)α − α̇

) ,

and coincides with [7, Eq. (6.27), p. 236] and, note, also determines xs(0). The corre-
sponding control us is determined by xs and the differential equation in (3.20). Under
the simplifying assumption that p is independent of t , the optimal biomass profile is
then

xs(t)w(t) = cδ

pq(r + δ − ẇ/w)
.
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cf. [7, Eq. (6.29), p. 236]. Observe that both xs and xsw are only feasible if r + δ −
ẇ/w > 0 for all t > 0. The biomass per individual function w is typically assumed to
be positive and bounded, with ẇ/w a decreasing function with time. Therefore, under
this assumption, the singular biomassmay only be feasible beyond some tf > 0. In this
case, the optimal solution of the performance criterion (1.5) subject to (3.20) and the
control constraint 0 ≤ u ≤ umax is as in [6, pp. 237–238]. Indeed, let x0(t) = x(0)e−r t

denote the unfished population, so that x0(t)w(t) equals the unfished biomass. Let tb
denote the point of intersection of x0(t)w(t) and the singular biomass xs(t)w(t), and
let ts be such that

xs(t)w(t) = c

qp
,

after which time harvesting is uneconomic. Then, assuming that input constraints are
not violated, the optimal fishing strategy equals zero before tb and after ts, and equals
the singular control us on [tb, ts].

By way of examples of biomass functions, the von Bertalanffy growth function
[29], see more recently [18],

w1(t) = w∞
(
1 − ρ1e

−a1t
)3

t ≥ 0,

for positive constants w∞, a1 and ρ1 ∈ (0, 1) is considered in [7, Sect. 6.2].2 As
another example, consider the Gompertz function

w2(t) = w∞e−ρ2e−a2 t t ≥ 0,

for further positive constants a2 and ρ2; see, for example [19]. As is well known, w∞
denotes the limiting/asymptotic value ofwi , the constantsρi determinewi (0) > 0, and
ai capture rates of growth. Graphs ofwi and their derivatives, and the quotients ẇi/wi

are contained in Fig. 7a and b, respectively. We see graphically from the second figure
that ẇi/wi is bounded and decreasing for i = 1, 2, and this is elementary to verify
mathematically. Indeed, for instance, ẇ2/w2 = ρ2a2e−a2t . Graphs of the unfished
and singular biomass are contained in Fig. 7c, both assuming biomass function w2. In
both cases we, somewhat arbitrarily for the sake of illustration, take

w∞ = 4, ρ1 = 0.8, a1 = 0.2, ρ2 = 4.8283, a2 = 0.1,

p = 1.5, δ = 0.25, c = 0.4, r = 0.2, x0(0) = 14.

Theρi are chosen so thatwi (0) = 0.0320 (viz. are equal).With these values, numerical
calculations give

tf = 0.7042, tb = 2.701, ts = 8.8126.

Finally, we comment that the above analysis has crucially exploited that δ > 0 and,
indeed, breaks down when δ = 0. In this case the optimal fishing policy is an infinite
impulse at the maximum of the natural (unfished) biomass.

2 The function in [7, Eq. (6.17), p. 234] is the more usual von Bertalanffy length function cubed, corre-
sponding to volume rather than length.
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Fig. 7 Numerical simulations from the fisheries model of Example 3.3. a Graphs of biomass functions
wi (t) against t (solid lines), and their derivatives (dashed lines) for i = 1, 2. b Graphs of quotients ẇi /wi
against t for i = 1, 2. c Graphs of unfished biomass x0(t)w2(t) and singular biomass xs(t)w2(t), both
against t . The key times tf , tb and ts are indicated

3.4 The Resource-Value Function E

The resource-value function E in (3.2) in the basic single population harvesting prob-
lem, as well as those appearing in the inshore-offshore model and Beverton-Holt
fisheries models, are unbounded as x approaches zero, presently corresponding to
small population sizes. Here we consider this matter. More generally, consider

E(x) := px + c

q

(
C0 − ln(x)

)

for a constant C0, which is for now arbitrary. In bioeconomic contexts, the function
E has the interpretation that E(t, x(t)) is the undiscounted net value of having a
population of size x at time t , so that multiplying with e−δt gives the discounted value.
The term px and

C(x) := c

q

(
ln(x) − C0

)
,

have the respective interpretations of gross value (price times amount) and the cost,
noting the sign change in C compared to E . In the latter case, it is easier to interpret
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this by considering
∂C

∂x
= c

qx
,

which has the interpretation ofmarginal cost being a decreasing function of population
size. Moreover, the marginal cost is unbounded as x decreases to zero. Both of these
properties are economically realistic and meaningful. However, a consequence of
the above expression for marginal cost is that it becomes impossible to choose the
integration constant C0 so that C(x) > 0 for all x > 0. This issue can be fixed as
follows. We instead consider the marginal cost

∂C�

∂x
=

{ −c
qx2c

(x − xc) + c
qxc

x < xc
c
qx x ≥ xc,

which precisely means that we make the marginal cost linear on (0, xc) and continu-
ously differentiable at xc (and, hence, for all x > 0). The cost then is

C�(x) :=
{ −c

2qx2c
(x − xc)2 + c

qxc
(x − xc) + C0 x < xc

c
q

(
ln(x) − ln(xc)

) + C0 x ≥ xc,

where the integration constantC0 now has the interpretation ofC0 = C�(xc). It makes
sense to choose the integration constant so that C�(0) = 0 and this gives

C�(x) :=
{ −c

2qx2c
(x − xc)2 + c

qxc
(x − xc) + 3c

2q x < xc
c
q

(
ln(x) − ln(xc)

) + 3c
2q x ≥ xc,

which, by construction, is positive for x > 0. Other adjustments to the marginal cost
on (0, xc) would achieve the same outcome.

This revised cost C� changes E and that in turn changes ∂E/∂x and, therefore,
in particular changes the integrand in (1.1). We can choose xc > 0 to be arbitrarily
small, so that any such change only happens for extremely small population sizes.
Since these will not be involved in the optimal policy, the change is in fact irrelevant
for optimal control purposes.

The issue of positivity of C is an example of model breakdown, along with the
case δ = 0 in Sect. 3.2. Here, the model (3.2) breaks down for small population sizes.
However, in the optimal control problem small population sizes are never relevant, so
this aspect of model breakdown is not an issue.

4 Conclusions

The resource-value balance method for simplifying the computation of optimal con-
trols in optimal control problems commonly arising in natural resource management
contexts has been presented. Summarising, the method rewrites the original optimal
control problem, namely maximizing (1.1), via the so-called “resource-value balance”
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equation (2.1), the right-hand side of which is independent of the original control vari-
able u. This result appears as Theorem 1. Since the original aim of maximizing the
left-hand side of (2.1) is equivalent to maximizing the right-hand side of (2.1), where
we now view the state variable x as a control, the resource-value balance method can
obviate the need for classical optimal control theoretic techniques such as the Pontrya-
gin Principle, as has been illustrated through a range of examples from bioeconomics.
Indeed, when no dynamic variables (currently termed z) are present in the new opti-
mization problem, then elementary calculus methods for optimization may be used
instead, greatly simplifying the calculations involved. In particular, the concept of a
shadow prices from economics is not required.

The relationship between solutions of the optimal control problem (P1): maxi-
mizing (1.1) subject to (1.2), and (the more common) problem (P2) of maximiz-
ing (1.5)—the integral term in (1.1) only—subject to the same dynamics (1.2) and the
input constraint (2.18) was discussed in Sect. 2.1. Proposition 2 states that the critical
controls of (P1) are precisely the (any) singular portions of optimal controls of (P2).
The optimal solution to (P2) is bang-singular in general. In this sense, the inclusion of
boundary conditions in (1.1) as compared to (1.5) may be seen as “correction terms”
which ultimately simplifies the computation of the optimal control of (1.1), via the
resource-value balance equation, and hence the (any) singular control of (1.5). The
two main results, and the associated insights, comprise the main contribution of the
present work, and arguably gather together and generalise a number of approaches of
Clark deployed across [5]. It is our hope that this work helps to somewhat demystify
singular controls in natural resource management and bioeconomic contexts.

In terms of future work, two avenues are proposed. The first is the optimal removal
(control or management) of an invasive species, such as pest or weed control, consid-
ered in, for example [11, 21],with timely relevance to the societal challenge of ensuring
food security. Optimal control problems naturally arise in this setting to balance the
(economically harmful) presence of a pest with the cost (and potential environmen-
tal harm) of removal. The second is that the ideas underpinning the resource-value
balance method have now been shown to apply to optimal control problems in bioe-
conomic/natural resource models (the present work), as well as in renewable energy
conversion problems [16]. Whilst the resulting optimal control problems share some
similarities, there are substantial differences. This motivates an exploration of the
extent to which Theorem 1 and Proposition 2 generalise across optimal control prob-
lems.
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