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Abstract: India’s rapidly growing automobile industry has intensified the need for sus-
tainable fuel alternatives to reduce dependency on imported fossil fuels and mitigate
greenhouse gas (GHG) emissions. This study examines the potential of second-generation
biorefineries as a comprehensive solution for efficient biomass valorization in India. With
a projected bioethanol demand of 10,160 million liters by 2025 for India’s 20% ethanol
blending target, there is an urgent need to develop sustainable production pathways.
The biorefinery approach enables simultaneous production of multiple valuable products,
including bioethanol, biochemicals, and bioproducts, from the same feedstock, thereby
enhancing economic viability through additional revenue streams while minimizing waste.
This paper systematically analyzes available biomass resources across India, evaluates inte-
grated conversion technologies (biochemical, thermochemical, and synergistic approaches),
and examines current policy frameworks supporting biorefinery implementation. Our
findings reveal that second-generation biorefineries can significantly contribute to reducing
GHG emissions by up to 2.7% of gross domestic product (GDP) by 2030 while creating
rural employment opportunities and strengthening energy security. However, challenges
in supply chain logistics, technological optimization, and policy harmonization continue to
hinder large-scale commercialization. The paper concludes by proposing strategic interven-
tions to overcome these barriers and accelerate the transition toward a sustainable circular
bioeconomy in India.

Keywords: bioethanol blending; biorefinery approach; biomass valorization; sustainable
fuel production; circular economy; ethanol policy in India

1. Introduction
The global energy landscape is undergoing a profound transformation driven by

environmental concerns, resource depletion, and the need for sustainable development.
Fossil fuels, which have powered economic growth for decades, are now recognized as
major contributors to climate change through greenhouse gas (GHG) emissions. This envi-
ronmental impact, coupled with the finite nature of fossil fuel resources, has intensified the
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search for renewable alternatives that can meet growing energy demands while minimizing
ecological footprints. In this context, biomass has emerged as a promising renewable
resource with significant potential to address multiple challenges simultaneously. Unlike
fossil fuels, which take millions of years to form, biomass is produced through photosyn-
thesis in a relatively short timeframe, converting atmospheric CO2 into energy-rich organic
compounds [1]. When these compounds are combusted, they release the stored energy and
return CO2 to the atmosphere, creating a carbon-neutral cycle that significantly reduces net
GHG emissions compared to fossil fuels. Biomass currently accounts for approximately
14% of global energy consumption, with developing nations utilizing 38% of this energy,
particularly in rural areas where access to conventional energy sources remains limited [2].
India, with its favorable climate and extensive agricultural activities, possesses abundant
biomass resources that present significant opportunities for sustainable energy production
and utilization.

India’s vast agricultural landscape, spanning 1.78 million square kilometers [2], gen-
erates over 990 million metric tons of agricultural biomass annually [3]. This includes
crop residues such as rice straw, wheat straw, sugarcane bagasse, and corn stover, which
often remain unutilized or are burned in open fields, contributing to air pollution. Beyond
agricultural residues, India’s biomass resources encompass municipal solid waste (approxi-
mately 160,000 tons daily) [4], forest residues from 71 million hectares of forested land [5],
industrial byproducts [6], and aquatic biomass such as algae [7,8], which are increasingly
recognized for their biofuel potential.

Traditional approaches to biomass utilization have focused primarily on single-product
systems, such as dedicated bioethanol or biogas production facilities. However, these
approaches often fail to maximize the value of biomass feedstocks and struggle with
economic viability. The biorefinery concept addresses these limitations by enabling the
simultaneous production of multiple products—including biofuels, biochemicals, and
biomaterials—from the same raw materials [9]. This integrated approach enhances the
economic sustainability of biofuel industries by generating additional revenue streams,
minimizing waste, and facilitating more efficient resource utilization.

Valorization represents the critical process of converting biomass into valuable prod-
ucts through various conversion pathways [10]. Recent advancements in hydrothermal and
biological treatments have significantly enhanced the efficiency of biomass valorization,
enabling higher yields of desired products while minimizing environmental impacts [9,11].
These technologies are particularly relevant for second-generation biorefineries, which uti-
lize non-food feedstocks such as agricultural residues, forestry waste, and dedicated energy
crops [12], thereby avoiding the food-versus-fuel debates associated with first-generation
biofuels. In the context of biomass feedstocks, various materials exhibit differing levels of
productivity, contributing significantly to multiple industries. As detailed in the results
section, microalgae (Nannochloropsis), used in biodiesel and renewable energy produc-
tion, show an average productivity of 10.7 m3/ha/year, with the potential to reach up to
36.3 m3/ha/year [13]. Switchgrass, utilized for bioenergy and biofuels, has a produc-
tivity range of 5.1 to 8.6 Mg/ha/year [14]. Soybean residues, primarily used for biogas
production, offer 384.5 m3/ha/year for biogas [15]. Woody biomass, including pine and
eucalyptus, which serve various industries such as bioenergy, pulp and paper, and aviation
fuels, can yield up to 115 Mg/ha over a 10-year period [16]. Corn stover and switchgrass,
used for bioenergy in pelletized fuels, have unspecified productivity, but their energy
density increases when blended [17]. Forest residues from logging, contributing to bioen-
ergy and district heating, can generate up to 40 TWh/year between 2030 and 2050 [18].
These results highlight the varying productivity of biomass feedstocks, emphasizing their
potential for large-scale utilization in renewable energy and bio-based product industries.
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The implementation of second-generation biorefineries in India faces several chal-
lenges, including logistical issues in biomass collection and transportation, technological
barriers in conversion processes, and policy frameworks that may not fully support in-
tegrated biorefinery approaches. Addressing these challenges requires a comprehensive
understanding of available biomass resources, conversion technologies, and policy mecha-
nisms that can foster sustainable biorefinery development.

This paper systematically analyzes second-generation biorefinery approaches for
efficient biomass valorization in India. It assesses the availability and characteristics of
various biomass feedstocks across different regions, evaluates biochemical, thermochemical,
and synergistic technologies for biomass conversion, and examines policy frameworks and
institutional mechanisms supporting biorefinery development. Additionally, it identifies
challenges and proposes strategies to overcome barriers to commercial implementation
while analyzing the potential environmental, economic, and energy impacts of widespread
biorefinery adoption within a circular economy framework.

2. Biorefinery Technologies Involved in Biomass Valorization
Second-generation biorefineries mainly utilize non-food feedstock, namely crop

residues, agro-processing waste, algae, aquatic plants, and energy crops with a focus
on addressing the food security issues allied with first-generation biorefineries [12]. It
produces biofuels, bio-products, and biochemicals in an efficient manner [9]. The tech-
nologies involved in second-generation biorefineries are biochemical and thermochemical
conversion technology (Figure 1) and synergistic approaches for effectively utilizing the
resource in a sustainable way.
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2.1. Biochemical Conversion Technology

Biochemical conversion technologies emphasize exploiting biological processes such
as fermentation and anaerobic digestion for biomass valorization [19]. The fermentation
of pretreated biomass results in the production of biohydrogen, bioethanol, biobutanol,
organic acids, biopolymers, and biochemicals upon down-streaming [20]. Anaerobic
digestion converts biomass into biogas and bio-digestate. Biogas is a mixture of methane,
carbon dioxide, traces of H2S, and water vapor. This can be purified via steam reforming or
the pressure swing method to synthesize biomethane, biohydrogen, and carbon dioxide
for commercial applications. The bio-digestate can be used a solid or liquid bio-manure
for agriculture as it a good soil amendment material [21]. These technologies are an
integral part of second generation biorefineries, allowing them to produce liquid biofuels
(bioethanol, biobutanol), organic acids, biochemicals, and biohydrogen, even though they
require costly pretreatment operations. The biogas production from biomass is a highly
suitable and eco-friendly technology. Pretreatment of wet biomass can be ignored, and high
fibrous material requires rigorous pretreatment for the effective digestion of the materials.
Bioethanol and biogas production from biological processing is a proven technology in
second-generation biorefineries [22].

2.2. Thermochemical Conversion Technology

Thermochemical conversion technology utilizes heat, resulting in chemical reactions of
biomass to convert into bioenergy, biofuels, and bioproducts. Combustion, pyrolysis, and
gasification are the basic thermo-chemical conversion technologies [23]. Hydrothermal Car-
bonization (HTC) and hydrothermal Liquefaction (HTL) fall under the label of advanced
technologies. Pyrolysis is an anaerobic process that converts biomass into bio-oil, biochar,
and pyrogas (Syngas) in the presence of heat. The biochar is used for bioenergy, soil amend-
ment, and as an adsorbent. Bio-oil is used as a biofuel and bio-lubricant in industry [24].
In the gasification process, biomass is partially oxidized to synthesize syngas. Syngas is a
mixture of carbon monoxide, carbon dioxide, hydrogen, and hydrocarbons, which can be
streamed to produce biohydrogen, liquid fuels, etc. [25]. HTC converts wet biomass into a
carbon-dense solid material called hydrochar, along with an aqueous phase and biocrude,
under subcritical water conditions. It operates under high pressure and moderate tempera-
ture in the range of 2–10 MPa and 180–250 ◦C, respectively. Subcritical water is liquid water
under high temperature and pressure, above normal boiling conditions but below its critical
point (T: 100–374.2 ◦C and P: 0.1–22.1 MPa) [26]. HTL converts wet biomass into a liquid
material called biocrude, along with hydrochar and an aqueous phase, under subcritical
and supercritical water conditions. This process involves high pressure (10–25 MPa) and
high temperature (250–400 ◦C). Supercritical water is obtained when water exceeds its
critical point (Tc: 374.2 ◦C and Pc: 22.1 MPa). HTC is carried out under subcritical water
conditions, while HTL operates under subcritical conditions and can reach supercritical
water conditions [27]. The biocrude can be refined to produce petrol, diesel, kerosene,
alkenes, phenols, acids, and carbon dots. The hydro-char can be utilized as an electrode,
as an adsorbent, and as bio-coal. The aqueous phase can be utilized as a bio-fertilizer, as
it contains more nutrients, to grow algae, to recover chemicals, or as a soil amendment
material. In general, thermochemical conversion technologies provide litheness in utilizing
heterogenous kinds of biomass with higher conversion efficiency [28]. Table 1 details the
use of several primary and secondary feedstocks through various biorefinery technologies
to yield bioproducts and co-products.



Biomass 2025, 5, 16 5 of 28

Table 1. Biorefinery Technologies for Biomass Utilization and Value Addition.

Primary
Feedstock

Secondary
Feedstock Technology Products Co-Products Reference

Corn Stover Food waste, crop
residues Fermentation

Bioethanol,
Bio-based
chemicals

CO2, Furfural,
Lignin [29–32]

Sugarcane Bagasse Rice husk, coconut
shell Fermentation Bioethanol,

Biobutanol
Lignin, Xylitol,
Acetic acid [1,33,34]

Paddy Straw Wheat straw,
maize stalks Fermentation Bioethanol,

Biomethane
Lignin, Animal
Feed [35,36]

Poplar Willow,
Eucalyptus Fermentation Bioethanol,

Acetic acid Lignin, Biochar [37–39]

Cocoa Pods Coffee husks,
banana stems Fermentation Biochemical,

Organic acids Liquor [40,41]

Food Waste Kitchen waste
Fermentation,
Anaerobic
Digestion

Bioethanol,
organic acids

Biogas, Organic
Fertilizer [42–44]

Coconut Shell Kernel shells,
paddy husk Pyrolysis Biochar, Bio-oil,

Activated carbon Pyrogas [45]

Water Hyacinth Duckweed, algae Pyrolysis Bio-oil, Biochar Pyrogas,
Bio-fertilizer [46–48]

Willow Miscanthus,
Poplar

Pyrolysis,
gasification

Syngas, Biochar,
Bio-oil Heat, Power [49–52]

Wood
Agricultural
residues, sawdust,
bark

Pyrolysis,
Gasification

Bio-oil, Biochar,
Syngas

Biochar, Heat,
Power [53–56]

Switchgrass Wood chips, wheat
straw

Pyrolysis,
Gasification Bio-oil, Syngas Biochar, Electricity [57–62]

Microalgae Seaweed,
wastewater

Algae-based
Biorefinery

Biodiesel,
Bioethanol

Animal Feed,
Biochar [63–66]

2.3. Synergistic Approach

Second-generation biorefineries gradually explore synergistic approaches that inte-
grate both biochemical and thermochemical conversion technologies to valorize biomass
effectively. For example, bio-digestate from anaerobic digestion can be used as a feed-
stock to produce biochar or hydrochar through pyrolysis or through the HTC process,
respectively. Syngas produced from gasification can further be fermented to produce liquid
biofuels. The aqueous phase of the HTL process can be utilized to cultivate algae. Biochar
from the pyrolysis process can be used as a feedstock in gasification to produce carbon
rich syngas. These synergistic approaches result in higher carbon utilization efficiency,
minimize wastage, and produce highly valuable bio-products. It also reduces the capital
cost and operational cost alongside higher energy and mass closure and paves the way for
the circular economy [67–70].
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3. Pros and Cons of Biorefinery Approaches
The execution of second-generation biorefineries comes with various advantages and

challenges. Table 2 gives the pros and cons of different second-generation biorefineries.
The main advantage of second-generation biorefineries is their dependence on non-food
biomass; this promotes food security by utilizing underutilized and plentiful biomass. It
also addresses the problem of waste management and environmental issues in the disposal
of waste products [71]. The other main advantage is that it addresses the reduction of
GHG emissions compared to conventional fossil fuels. It also produces bio-based products,
namely bio-char, bioethanol, bio-diesel, biochemicals, and biopolymers, and also produces
heat and power, enabling the circular economy [72]. This also paves the way for rural
employment, produces additional income for farmers, and reduces dependency on fossil
fuels [73].

Second-generation biorefineries also faces challenges like the construction of the plant,
as this involves high investment and operational costs. The heterogenous nature of biomass
complicates the conversion of biomass into bioenergy and biofuels [74]. The logistics, sea-
sonal availability, and varied composition of biomass also affects the conversion efficiency
and quality of the products. The pretreatment of biomass for biorefinery processes, as
well as downstream and upstream process, needed to obtain high quality material are an
additional hindrance for biorefineries. Non-utilization or non-recovery of by-products can
cause environmental problems [75]. For example, pyrogas from the biochar production
process and tar from the syngas production process are very harmful if not recovered and
utilized properly. The main hinderance is the marketability and wide adoption of these
products instead of conventional products.

Table 2. Pros and cons of different second generation biorefineries.

Technology Pros Cons Technology
Ready Level

Reference

Anaerobic Digestion • Yields biogas and
bio-digestate (fertilizer)

• Quick adoption to manage
waste effectively

• Low suitability for
heterogenous waste

• Purification of biogas is
required to meet the
energy density of fossil
fuel

7–9 [76,77]

Fermentation • Yields high-value
bio-chemicals and
bioethanol

• High adaptability of
biomass feedstock

• Costlier pretreatment
operation

• Sensitive technology as
it involves microbes

5–7 [78,79]

Pyrolysis • Feedstock flexibility
• Easier to integrate with

existing facility
• Energy efficient technology

• Higher investment
• Feedstock preparation

tedious
• Problematic

condensation and
down-streaming
operation

5 [80]
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Table 2. Cont.

Technology Pros Cons Technology
Ready Level

Reference

Gasification • Flexibility in feedstock
• Energy efficient to produce

syngas
• Combined heat and power

(CHP) production is
possible

• High investment
• Requirement of uniform

size and dried biomass
• Tar, slag issues

6–7 [80]

Hydrothermal
Carbonization (HTC)

• No requirement of drying
wet biomass

• Biocrude, biochar, syngas
can be produced

• Low temperature operation

• Energy intensive
operation

• High pressure required
• Higher investment

5–7 [81,82]

Hydrothermal
Liquefaction (HTL)

• No requirement of drying
wet biomass

• Biocrude equivalent to
crude oil

• Energy intensive
operation

• High pressure required
• Higher investment

4–6 [80,83]

Algae-Based
Biorefinery

• Algae can be cultivated in
wastewater

• Higher biomass yield per
unit area

• Biodiesel from lipids and
animal feed from protein

• High carbon sequestration

• High water required if it
is cultivated in fresh
water

• Energy intensive
harvesting and drying
process

6–7 [84–86]

Integrated
Biorefineries

• Multiple bioproducts
• Circular economy

• Complex design
• Higher investment and

operating cost

5–6 [81,87]

4. Assessment of Energy and Bioproducts from Biomass
Second-generation biorefineries deliver a substitute to first-generation feedstocks to

produce energy and high value bioproducts in a sustainable way and without affecting food
security. The bio-products include platform chemicals, bioplastics, bio-based composites,
bio-polymers, and biochar. The moisture, bulk density, energy value, and biochemical
composition, namely cellulose, hemicellulose, and lignin content, determine the conversion
efficiency and bio-energy potential of biomass [88,89]. Bioenergy products have extensive
applications, including as thermal energy, transportation fuels, and for power produc-
tion [90]. The process also yields high-value bioproducts, namely bio-digestate, biochar,
bio-active compounds, organic acids, bioplastics, biopolymers, aromatic chemicals, adhe-
sives, and carbon fibers [91]. Table 3 exemplifies biomass properties with estimated energy
generation potential and possible bioproducts using the tool developed by Tamil Nadu
Agricultural University [92].
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Table 3. Energy generation potential and bioproducts from various biomass [92].

Biomass Properties Technology Estimated Energy
Generation Potential Bioproducts

C
ro

p
re

si
du

es

Crop straws
(Paddy straw,
wheat straw,
barley straw)

Cellulose, %: 30–45
Hemicellulose, %: 20–25
Lignin, %: 10–20
Ash content, %: 4–20
Moisture, %: 8–12
Energy value, MJ/kg:
10–16
Bulk density, kg/m3:
50–120

Anaerobic
digestion

Biogas: 0.3–0.6 m3 per kg
volatile solids

Bio-digestate
slurry

Fermentation Bioethanol: 0.3–0.5 L per kg
dry biomass

Biocompost,
animal feed,
biochemicals

Pyrolysis

Biooil: 0.2–0.3 L per kg dry
biomass
Biochar: 0.2–0.25 kg per kg
dry biomass

Pyrogas

Gasification Syngas: 1–1.5 m3 per kg dry
biomass

Biochar

HTC/HTL

Biocrude: 0.3–0.5 L per kg
dry biomass
Hydrochar: 0.3–0.4 kg per kg
dry biomass

Aqueous
phase

Crop stalks
(cotton stalk,
millet stalk, corn
stalk, pea stalk)

Cellulose, %: 30–45
Hemicellulose, %: 15–30
Lignin, %: 10–25
Ash content, %: 3–8
Moisture, %: 8–14
Energy value, MJ/kg:
14–18
Bulk density, kg/m3:
50–150

Anaerobic
digestion

Biogas: 0.3–0.7 m3 per kg
volatile solids

Bio-digestate
slurry

Fermentation Bioethanol: 0.25–0.45 L per kg
dry biomass

Animal feed,
organic acids,
biochemicals

Pyrolysis

Biooil: 0.2–0.35 L per kg dry
biomass
Biochar: 0.25–0.3 kg per kg
dry biomass

Pyrogas

Gasification Syngas: 1–1.5 m3 per kg dry
biomass

Biochar

HTC/HTL

Biocrude: 0.3–0.5 L per kg
dry biomass
Hydrochar: 0.3–0.5 kg per kg
dry biomass

Aqueous
phase

Husks and Shells
(Coconut,
sunflower, coffee,
paddy husks and
nut shell)

Cellulose, %: 25–45
Hemicellulose, %: 15–25
Lignin, %: 15–45
Ash content, %: 0.5–5
Moisture, %: 5–15
Energy value, MJ/kg:
13–20
Bulk density, kg/m3:
80–400

Anaerobic
digestion

Biogas: 0.2–0.4 m3 per kg
volatile solids

Bio-digestate
slurry

Fermentation Bioethanol: 0.1–0.25 L per kg
dry biomass

Stillage,
animal feed

Pyrolysis

Biooil: 0.3–0.5 L per kg dry
biomass
Biochar: 0.25–0.35 kg per kg
dry biomass

Pyrogas

Gasification Syngas: 1–1.5 m3 per kg dry
biomass

Biochar

HTC/HTL

Biocrude: 0.4–0.6 L per kg
dry biomass
Hydrochar: 0.3–0.5 kg per kg
dry biomass

Aqueous
phase
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Table 3. Cont.

Biomass Properties Technology Estimated Energy
Generation Potential Bioproducts

A
gr

o
Pr

oc
es

si
ng

R
es

id
ue

s

Fruit and
Vegetable Waste
(Peels, pomace,
seeds)

Carbohydrates, %: 20–40
Lipids, %: 2–40
Ash content, %: 2–8
Moisture, %: 10–90
Energy value, MJ/kg:
10–25
Bulk density, kg/m3:
250–800

Anaerobic
digestion

Biogas: 0.2–0.4 m3 per kg
volatile solids

Bio-digestate

Fermentation Bioethanol: 0.1–0.25 L per kg
dry biomass

Bio-
composites,
biopolymers

Pyrolysis

Biooil: 0.3–0.5 L per kg dry
biomass
Biochar: 0.25–0.35 kg per kg
dry biomass

Pyrogas

Gasification Syngas: 1–1.5 m3 per kg
dry biomass

Biochar

HTC/HTL

Biocrude: 0.3–0.5 L per kg
dry biomass
Hydrochar: 0.4–0.6 kg per kg
dry biomass

Bioactive
compounds

Oil industry
(Fruit bunches,
fronds, oil cake)

Lignin, %: 5–25
Ash content, %: 4–20
Moisture, %: 12–60
Energy value, MJ/kg:
14–20
Bulk density, kg/m3:
100–600

Anaerobic
digestion

Biogas: 0.3–0.5 m3 per kg
volatile solids

bio-compost,
bio-digestate

Fermentation Bioethanol: 0.1–0.25 L per kg
dry biomass

Bioplastic,
animal feed

Pyrolysis

Biooil: 0.3–0.6 L per kg dry
biomass
Biochar: 0.2–0.35 kg per kg
dry biomass

Pyrogas

Gasification Syngas: 1–1.5 m3 per kg
dry biomass

Biochar

HTC/HTL

Biocrude: 0.3–0.5 L per kg
dry biomass
Hydrochar: 0.3–0.6 kg per
kg dry biomass

Phenols,
biochemicals

Brewery and
Distillery Waste
(Spent grain,
distiller’s dried
grains)

Cellulose, %: 17–30
Hemicellulose, %: 15–35
Lignin, %: 10–18
Lipids, %: 5–12
Moisture, %db: 8–12
Moisture, %wb: 70–80
Energy value, MJ/kg:
10–12
Bulk density, kg/m3:
200–300

Anaerobic
digestion

Biogas: 0.3–0.5 m3 per kg
volatile solids

Bio-digestate

Fermentation Bioethanol: 0.1–0.25 L per kg
dry biomass Biocompost

Pyrolysis

Biooil: 0.3–0.5 L per kg dry
biomass
Biochar: 0.2–0.4 kg per kg
dry biomass

Animal feed

Gasification Syngas: 1–1.5 m3 per kg
dry biomass

Biochar

HTC/HTL

Biocrude: 0.3–0.5 L per kg
dry biomass
Hydrochar: 0.3–0.5 kg per kg
dry biomass

Biochemicals,
phenols
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Table 3. Cont.

Biomass Properties Technology Estimated Energy
Generation Potential Bioproducts

En
er

gy
C

ro
ps

Perennial
Grasses
(Switchgrass,
miscanthus,
Napier grass)

Cellulose, %: 30–50
Hemicellulose, %: 20–30
Lignin, %: 10–25
Ash content, %: 1–8
Moisture, %: 10–20
Energy value, MJ/kg:
15–19
Bulk density, kg/m3:
50–150

Anaerobic
digestion

Biogas: 0.3–0.5 m3 per kg
volatile solids

Organic acids,
Bio-digestate

Fermentation Bioethanol: 0.2–0.35 L per kg
dry biomass Biocompost

Pyrolysis

Biooil: 0.2–0.4 L per kg dry
biomass
Biochar: 0.2–0.3 kg per kg
dry biomass

Pyrogas

Gasification Syngas: 1–1.5 m3 per kg
dry biomass

Biochar

HTC/HTL

Biocrude: 0.2–0.4 L per kg
dry biomass
Hydrochar: 0.4–0.6 kg per
kg dry biomass

Biochemicals,
nutrients

Woody Crops
(Willow,
Casuarina,
eucalyptus)

Cellulose, %: 40–50
Hemicellulose, %: 25–30
Lignin, %: 20–30
Ash content, %: 0.5–3
Moisture, %: 10–15
Energy value, MJ/kg:
17–20
Bulk density, kg/m3:
180–350

Anaerobic
digestion

Biogas: 0.2–0.4 m3 per kg
volatile solids

Bio-digestate

Fermentation Bioethanol: 0.15–0.25 L per
kg dry biomass Pharmaceuticals

Pyrolysis

Biooil: 0.2–0.4 L per kg dry
biomass
Biochar: 0.3–0.4 kg per kg
dry biomass

Aromatic oils,
pyrogas

Gasification Syngas: 1–1.5 m3 per kg
dry biomass

Biochar

HTC/HTL

Biocrude: 0.2–0.4 L per kg
dry biomass
Hydrochar: 0.4–0.6 kg per
kg dry biomass

Liquid
fertilizer

Non-edible plant
(jatropha)

Cellulose, %: 35–45
Hemicellulose, %: 20–30
Lignin, %: 25–35
Ash content, %: 4–10
Moisture, %: 8–14
Energy value, MJ/kg:
18–22
Bulk density, kg/m3:
200–300

Anaerobic
digestion

Biogas: 0.3–0.5 m3 per kg
volatile solids

Bio-digestate

Fermentation Bioethanol: 0.12–0.20 L per kg
dry biomass Bioplastics

Pyrolysis

Biooil: 0.2–0.4 L per kg dry
biomass
Biochar: 0.3–0.4 kg per kg
dry biomass

Pyrogas

Gasification Syngas: 1–1.5 m3 per kg
dry biomass

Biochar

HTC/HTL

Biocrude: 0.2–0.4 L per kg
dry biomass
Hydrochar: 0.4–0.5 kg per kg
dry biomass

Nutraceuticals,
biochemicals
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Table 3. Cont.

Biomass Properties Technology Estimated Energy
Generation Potential Bioproducts

A
qu

at
ic

bi
om

as
s

Algae
(microalgae and
macroalgae)

Cellulose, %: 10–20
Hemicellulose, %: 5–15
Lignin, %: <1
Ash content, %: 10–40
Moisture, %wb: 80–90
Moisture, %db: 10–20
Energy value, MJ/kg:
10–25
Bulk density, kg/m3:
100–300

Anaerobic
digestion

Biogas: 0.2–0.4 m3 per kg
of biomass

Bio-digestate

Fermentation Bioethanol: 0.1–0.2 L per kg
biomass bioplastics

Pyrolysis

Biooil: 0.1–0.3 L per kg
biomass
Biochar: 0.2–0.3 kg per kg
biomass

Nutraceuticals

Gasification Syngas: 1–1.5 m3 per kg
biomass

Biochar

HTC/HTL

Biocrude: 0.3–0.5 L per kg
biomass
Hydrochar: 0.3–0.5 kg per kg
biomass

Nutrient
recover,
chemicals

Water hyacinth
and duckweed
(aquatic plants)

Cellulose, %: 15–40
Hemicellulose, %: 10–30
Lignin, %: 1–20
Ash content, %: 10–25
Moisture, %wb: 80–95
Moisture, %db: 5–20
Energy value, MJ/kg:
10–18
Bulk density, kg/m3:
80–250

Anaerobic
digestion

Biogas: 0.2–0.4 m3 per kg
of biomass

Bio-digestate

Fermentation Bioethanol: 0.1–0.2 L per kg
biomass Organic acids

Pyrolysis

Biooil: 0.1–0.3 L per kg
biomass
Biochar: 0.2–0.3 kg per kg
biomass

Pyrogas,
biochemicals

Gasification Syngas: 1–1.5 m3 per kg
biomass

Biochar

HTC/HTL

Biocrude: 0.3–0.6 L per kg
biomass
Hydrochar: 0.3–0.5 kg per kg
biomass

Biochemicals,
nutrients

5. Policy Framework for Supporting Biorefinery Development
India’s biorefinery development began in response to the 1970s oil crisis, which

spurred the search for alternative renewable energy sources. In the 1980s, the government
established the Commission on Additional Sources of Energy under the Department of
Science and Technology, which later became the Department of Conventional Energy in
1982. A significant development came in 1987 with the creation of the Indian Renewable
Energy Development Agency, which played a key role in advancing renewable energy
projects [93]. The National Policy on Biofuels, introduced in 2018, serves as the cornerstone
for India’s biorefinery strategy. It categorizes biofuels into basic, advanced, and third-
generation types and sets ambitious targets, such as a 20% ethanol blend in petrol and a
5% biodiesel blend by 2030. The policy also expands the range of feedstocks for biofuel
production, including damaged food grains and lignocellulosic biomass [94].

To promote lignocellulosic biorefineries, the JI-VAN Initiative was launched, providing
financial aid and fostering technological advancements [95]. Measures such as Viability Gap
Funding (50,000 million INR over six years), 100% foreign direct investment allowances,
and central tax exemptions support these efforts. Additionally, the Minimum Purchase
Price mechanism ensures the commercial feasibility of bioethanol and biodiesel [96].
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India’s institutional framework for biofuels operates on multiple levels, with the
National Biofuel Coordination Committee, led by the Prime Minister, at the helm. The
Biofuel Steering Committee, reporting to the Cabinet Secretary, provides further support.
At the regional level, biofuel boards are responsible for overseeing the implementation
of biofuel initiatives, though coordination between states continues to present significant
challenges [97,98].

Several ministries contribute to the policy’s execution [96]:

• Ministry of New and Renewable Energy (MNRE): Formulates overarching policies
and provides research support.

• Ministry of Petroleum and Natural Gas (MoPNG): Oversees marketing, pricing,
and procurement.

• Ministry of Agriculture (MoA): Conducts feedstock research.
• Ministry of Rural Development (MoRD) and Ministry of Panchayati Raj (MoPR):

Promote Jatropha and other plantation initiatives on wastelands.
• Ministry of Science and Technology (MoS&T): Focuses on non-edible oil feedstocks.
• Ministry of Environment and Forests (MoEF): Monitors environmental impacts.
• Ministry of Finance (MoF): Provides financial incentives.

This integrated framework ensures a comprehensive approach to biofuel development,
though better coordination between central and state policies is essential.

India’s agricultural sector generates substantial crop residues, often managed through
open burning, contributing to air pollution. The National Policy for Management of
Crop Residue (NPMCR) 2014 promotes in situ residue management technologies, satellite
monitoring, and financial support for farmers. However, implementation has been limited
to states such as Punjab, Haryana, and Rajasthan.

The National Green Tribunal’s ban on crop residue burning in four states and the
promotion of mechanized solutions, such as turbo happy seeders and Super-Straw Man-
agement Systems, have mitigated residue burning to some extent. Despite this, challenges
persist, with significant residues still burned; 50% of Punjab’s and 16.9% of Haryana’s rice
straw residues were burned in situ during 2018–2019 [99].

Central and state governments have initiated several policies to promote bioenergy
from crop residues:

• Punjab’s 2012 Energy Policy targeted 600 MW of biomass power by 2022 but achieved
only 62.5 MW by 2020.

• Haryana’s 2018 Bioenergy Policy aimed for 150 MW but showed limited progress.

Central initiatives include biomass co-firing in coal plants and lignocellulosic ethanol
plants developed by Indian Oil Corporation and Hindustan Petroleum. These plants
are projected to utilize 57.7 Mt of crop residues annually, leaving a surplus of 120 Mt
unaddressed [99].

6. State-Level Bioenergy Development Initiatives
State-level efforts in bioenergy development remain uneven. States like Gujarat and

Uttar Pradesh are pioneering innovative policies. Gujarat’s Waste-to-Energy Policy and
Uttar Pradesh’s Bioenergy Development Board exemplify progressive approaches to bioen-
ergy. Conversely, states such as Jharkhand and Chhattisgarh have limited diversification in
bioenergy projects. Table 4 summarizes key state-level bioenergy initiatives.
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Table 4. State-wise Summary of Bioenergy Development in India [96,100].

State/Union Territory Key Activities and Initiatives Remarks Source

Punjab
Biogas from agro-waste,
gasification, co-generation in sugar
mills.

Proactive state with
remarkable agro-waste
energy production.

[101]

Haryana

Biofuels, bioenergy, and biogas
programs, along with both
grid-connected and off-grid
initiatives.

Programs are well-directed
and regularly upgraded. [102]

Uttar Pradesh
Bioenergy Development Board;
biogas, biodiesel, and bioethanol
missions.

Effective grassroots-level
programs. [103]

Rajasthan Biomass power, biogas, forest
department involvement.

Policies need updating but
cumulative efforts are
reliable.

[104]

Gujarat Waste-to-Energy Policy, biomass
power, co-generation projects.

Proactive state; innovative
waste-to-energy policy. [105]

Madhya Pradesh Grid-connected and off-grid
biomass projects.

Significant private-sector
involvement. [106]

Jharkhand Biogas and biomass power
programs.

Limited diversification in
bioenergy projects. [107]

Chhattisgarh Policy-based incentives for
bioenergy.

Information on bioenergy
options is limited. [108]

Telangana

Biomass and biogas programs,
spanning from cooking
applications to megawatt-scale
power generation.

Appreciable efforts for
rural and urban regions. [109]

Andhra Pradesh Biomass-based captive power in
sugar mills.

Active in bioenergy
development. [110]

Karnataka Biogas, combustion, and
co-generation schemes.

Well-planned bioenergy
development direction. [111]

Tamil Nadu Waste-to-energy, biogas, and
gasification projects.

Effective grid-connected
urban initiatives. [112]

Maharashtra Incentives for biomass briquettes
and waste-to-energy projects.

Comprehensive
decentralized bioenergy
policy.

[113]

Odisha Improved cook stoves, biomass
gasification.

Cumulative
incentive-based schemes. [114]

West Bengal Biogas production, village energy
security programs.

Significant urban
MSW-to-energy efforts. [115]

Tripura Biogas plants and improved cook
stoves (Unnat Chulha).

Ground-level initiatives are
commendable. [116]

Sikkim Renewable energy nodal agency. Limited information on
bioenergy activities. [117]

Nagaland Financial support for Unnat Chulha
and NBMMP.

Focused on
grassroots-level clean
energy.

[118]
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Table 4. Cont.

State/Union Territory Key Activities and Initiatives Remarks Source

Meghalaya Subsidies for Unnat Chulha and
NBMMP. Basic bioenergy initiatives. [119]

Kerala Biogas plant setups under NBMMP. Well-organized renewable
energy programs. [120]

Assam Biogas and biomass gasification
programs.

High potential for
bioenergy. [121]

Chandigarh MSW-to-energy projects. Efficient urban waste
management for energy. [122]

The framework for biorefinery development in India emphasizes technological ad-
vancements to support the biofuel sector. Key initiatives include the promotion of pilot
projects aimed at testing and optimizing biorefinery processes. These pilot projects act as a
testing ground for refining technologies and scaling up production, laying the groundwork
for broader industrial applications. Moreover, the framework fosters industry-academia
partnerships, which play a pivotal role in advancing research and development. Collabora-
tion between academic institutions and industrial players ensures the seamless transfer
of knowledge and the integration of cutting-edge innovations into practical applications.
Additionally, international collaborations have been prioritized to facilitate the transfer of
global expertise and advanced technologies, further bolstering the sector’s growth. Specific
focus has been placed on enzyme development and the creation of indigenous technologies,
which are critical for enhancing the efficiency and sustainability of biofuel production
processes [123,124].

Despite these advancements, several challenges persist, particularly in infrastructure
development and technology optimization. Many biorefineries face hurdles in establishing
the necessary infrastructure to support large-scale operations. Technological refinement
is another pressing issue, as efforts to improve efficiency and scalability remain ongoing.
Nonetheless, the framework has made notable achievements, including the establishment
of multiple 100 Kiloliters per Day commercial-scale biorefinery plants. These facilities
demonstrate the feasibility of large-scale biofuel production, marking a significant step
forward for the sector. Furthermore, the initiatives have yielded substantial environmental
benefits, such as a reduction in crop burning incidents, which helps mitigate air pollution
and aligns with broader environmental sustainability goals. Another critical outcome is the
creation of employment opportunities in rural areas, contributing to the socio-economic
development of these regions [94,98].

Looking ahead, India’s biorefinery policy framework continues to evolve with an
emphasis on sustainability and long-term impact. Enhanced technological support remains
a priority, with efforts focused on advancing biorefinery technologies and improving
their integration into existing systems. The framework also highlights the importance of
supply chain management, aiming to optimize the collection, storage, and distribution
of feedstock materials. In parallel, the development of robust markets for biofuels is
being pursued to ensure the economic viability of the sector. A critical aspect of the
future outlook involves the integration of state-level initiatives with central government
policies. This harmonization aims to create a cohesive policy environment that leverages
regional strengths while aligning with national objectives. Such measures are essential for
achieving India’s renewable energy goals and establishing a sustainable bioeconomy [94].
Figure 2 depicts renewable flow management, emphasizing efficient bio-resource use for
sustainable fuels.
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7. Impact on the Environment, Economy, and Energy Sectors
7.1. Environment

Second-generation biorefineries in India present substantial environmental advantages
over traditional fossil fuel systems. By prioritizing the use of lignocellulosic biomass rather
than food-based crops, these biorefineries contribute to sustainability while reducing
competition for agricultural resources. The shift towards second-generation biofuels aligns
with India’s broader environmental objectives, significantly lowering GHG emissions
and minimizing reliance on fossil fuels. Biofuels derived from lignocellulosic feedstocks
are considered near carbon-neutral, as the carbon dioxide released during combustion is
counterbalanced by carbon sequestration during plant growth [126].

When these compounds are combusted, they release the stored energy and return
CO2 to the atmosphere, creating a carbon-neutral cycle that significantly reduces net
GHG emissions compared to fossil fuels. Biomass currently accounts for approximately
14% of global energy consumption, with developing nations utilizing 38% of this energy,
particularly in rural areas where access to conventional energy sources remains limited [2].
India, with its favorable climate and extensive agricultural activities, possesses abundant
biomass resources that present significant opportunities for sustainable energy production
and utilization.

Traditional approaches to biomass utilization have focused primarily on single-product
systems, such as dedicated bioethanol or biogas production facilities. However, these
approaches often fail to maximize the value of biomass factors. Table 5 summarizes the
key environmental advantages of second-generation biorefineries, highlighting their role
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in reducing GHG emissions, enhancing resource efficiency, and promoting sustainability
through innovative waste management and conservation strategies.

Table 5. Environmental Benefits of Second-Generation Biorefineries.

Environmental Impact Description

Reduction in GHG Emissions Lignocellulosic biofuels approach carbon neutrality, offsetting CO2 emissions
through plant sequestration.

Waste Valorization Utilization of agricultural residues prevents open field burning, mitigating air
pollution.

Biodiversity Conservation Sustainable biomass sourcing reduces the need for agricultural land expansion,
limiting deforestation.

Water Conservation Advanced biorefineries consume 30–70% less water compared to first-generation
biofuels; water recycling systems improve efficiency.

Soil Health Improvement By-products such as biochar and bio-digestate enhance soil carbon content and
microbial activity, improving agricultural sustainability.

7.2. Economy

Second-generation biorefineries play a crucial role in reducing India’s dependence on
fossil fuel imports, thereby enhancing national energy security. With an annual agricultural
waste production of approximately 1043 million metric tons, India possesses a substantial
feedstock base for biofuel generation. This biomass has the potential to yield around
64 billion litres of bioethanol annually, aligning with government initiatives aimed at
promoting renewable energy and attracting industrial investments [127].

India’s bioethanol market, valued at USD 2.35 billion in 2023, is anticipated to
double by 2030, growing at a compound annual growth rate (CAGR) of 8.7%. Addi-
tionally, the biomethane and biohydrogen markets, valued at USD 4.2 billion and USD
1.47 billion, respectively, demonstrate significant growth potential [128]. The influx of
private investments has been a key driver of this expansion, with major industrial players
such as Reliance Industries and the Adani Group investing heavily in the sector. Notably,
the Adani Group has pledged an estimated USD 50 billion toward biohydrogen production
and the development of sustainable energy infrastructure [129].

Beyond energy security, biorefineries contribute to rural economic development by
generating employment and producing high-value biochemical by-products such as fur-
furals, xylitol, and organic acids. The integration of a circular economy model further
enhances profitability by repurposing agricultural residues, mitigating both environmental
and economic losses linked to conventional waste disposal practices [97]. Table 6 highlights
the key economic advantages of second-generation biorefineries, including market growth
and investment.

The expansion of second-generation biorefineries in India is poised to drive long-term
economic sustainability. Continued advancements in biofuel technology, integration of
renewable energy sources, and supportive government policies will further strengthen
this sector’s contribution to energy security and economic development. Additionally,
increased focus on research and innovation in enzyme-based conversion processes and
biomass valorization will optimize the economic benefits of biorefineries while ensuring
environmental sustainability [127,130].
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Table 6. Economic Benefits of Second-Generation Biorefineries.

Economy Impact Description

Reduced Fossil Fuel Dependency Domestic biofuel production reduces crude oil imports, strengthening
trade balance and energy security.

Market Growth India‘s bioethanol market is projected to grow at a CAGR of 8.7%,
potentially doubling by 2030.

Investment Attraction Major corporations like Reliance and Adani Group have committed
substantial investments in bioenergy.

Value-Added Products Biorefineries produce high-value chemicals such as xylitol, furfural, and
organic acids, enhancing profitability.

Rural Development Increased demand for agricultural residues boosts rural incomes and
stimulates local supply chains.

7.3. Energy

India’s shift toward biomass-based energy solutions is a key response to its growing
energy demands, which increased from 6101 Mtoe in 1973 to 13,699 Mtoe in 2016 [96,131].
The development of second-generation biorefineries is poised to contribute significantly
to reducing GHG emissions, with potential reductions of up to 2.7% of GDP by 2030,
supporting India’s commitments under the Paris Agreement [132].

Solar energy integration into biorefinery operations has proven highly effective, harness-
ing India’s vast annual solar potential, which exceeds 5000 trillion kWh [133]. Additionally,
Combined Heat and Power (CHP) systems have been integrated into biorefineries, optimizing
resource utilization and resulting in lower environmental impacts compared to conventional
energy systems [134]. The strategic placement of biorefineries helps minimize transportation
costs, which can account for up to 20% of operational expenses. Geographical variations in
biomass availability require region-specific solutions to ensure cost-effectiveness and opera-
tional efficiency [135,136]. The integration of CHP systems in biorefineries further enhances
energy efficiency. These systems can achieve 80–90% overall efficiency, compared to the
30–40% efficiency seen in conventional power generation systems [134]. Table 7 summarizes
the critical factors influencing India’s transition to biomass-based energy solutions

Table 7. Energy Benefits of Second-Generation Biorefineries.

Economy Impact Description

Energy Demand Growth Energy demand rose from 6101 Mtoe (1973) to 13,699 Mtoe (2016).

GHG Emissions Reduction Potential 2.7% reduction in GDP by 2030 from second-generation biorefineries.

Solar Energy Potential India’s annual solar potential exceeds 5000 trillion kWh.

CHP Efficiency CHP systems in biorefineries achieve 80–90% efficiency, compared to 30–40% for
conventional systems.

Renewable Energy Contribution Increased demand for agricultural residues boosts rural incomes and stimulates
local supply chains.

Energy Diversification Biomass diversifies India’s energy portfolio, reducing reliance on fossil fuels.

Decentralized Energy Production Biorefineries contribute to rural electrification by reducing transmission losses.

Integration with Other
Renewables

Combines solar with biomass to address intermittency and optimize solar
potential.

Grid Stability Biogas and biomethane enhance grid stability, supporting renewable energy
integration.

Transportation Costs Transportation can reduce biorefinery operational expenses.
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7.4. Life Cycle Analysis (LCA)

Life Cycle Analysis (LCA) provides a detailed evaluation of the environmental per-
formance of biorefinery systems, analyzing their entire value chain. Studies conducted in
India have highlighted several key findings in LCA:

• Carbon Footprint Reduction: Bio-derived products consistently demonstrate lower
GHG emissions compared to fossil-based alternatives. For example, bio-derived
polyethylene reduces emissions by 0.75 kg CO2-eq/kg compared to conventional
petrochemical processes [137].

• Process Optimization: Advances in production methods have significantly decreased
environmental impacts. Optimized charcoal value chains, for instance, reduced emis-
sions from 2.15 CO2-eq to 0.50 CO2-eq through improved processes and better resource
utilization [138].

• Holistic Impact Assessment: LCA studies assess environmental impacts beyond carbon
emissions, including water quality, land use, biodiversity, and human health.

• Technology Comparison: LCA facilitates comparisons between different conversion
pathways. Biochemical routes often show advantages in water-related impacts, while
thermochemical pathways may excel in energy efficiency.

The integration of circular economy principles within LCA frameworks has led to the
development of closed-loop systems that maximize resource recovery and minimize waste.
For example, lignin residues from bioethanol production are increasingly being repurposed
into high-value applications such as bio-composites, pharmaceuticals, and biosensors [139].

7.5. Circular Economy

The circular economy approach has the potential to significantly transform India’s
biorefinery sector. This approach systematically designs out waste and pollution, keeps
materials in productive use, and regenerates natural systems. Key aspects of circular
economy integration include:

• Resource Efficiency: Circular biorefinery models have demonstrated significant im-
provements in resource use, with some systems achieving near-zero waste through
cascading biomass components [140].

• Environmental Performance: Circular approaches have been shown to reduce GHG
emissions by 39–86% and decrease non-renewable energy usage by 65% compared to
linear production models [137].

• Economic Value Creation: The circular bioeconomy creates new revenue streams by
revalorizing materials previously considered waste. For example, lignin valorization
has applications in polymers, bio-composites, and nanomaterials, with global markets
projected to reach USD 1.2 billion by 2025 [139].

• Rural Development: Circular biorefinery models stimulate rural economies by estab-
lishing collection centers, preprocessing facilities, and local value-addition activities.

• Social Inclusion: These models also promote social inclusion by incorporating tra-
ditional knowledge and providing marginalized communities with opportunities to
participate in biorefinery value chains.

The adoption of circular economy principles ensures that India’s biorefinery sector
promotes sustainability on environmental, economic, and social fronts. This holistic ap-
proach aligns with the United Nations Sustainable Development Goals while addressing
challenges in waste management, resource efficiency, and inclusive development [141].
Innovations in India’s circular bioeconomy include integrated biorefineries that produce
multiple products from a single feedstock, agricultural practices that return nutrients to
soil via biochar and digestate, and collaborative models linking urban waste generators
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with rural biomass processors. Table 8 provides an overview of the key environmental,
economic, and social impacts of integrating LCA and circular economy principles in India’s
biorefinery sector.

Table 8. Key Parameters of LCA and Circular Economy Integration in India’s Biorefinery Sector.

Parameter Details

Carbon Footprint Reduction Bio-derived polyethylene reduces emissions by 0.75 kg
CO2-eq/kg compared to fossil-based polyethylene.

Process Optimization Charcoal value chain emissions reduced from 2.15 CO2-eq to
0.50 CO2-eq through process improvements.

Circular Economy Resource Efficiency Circular biorefineries demonstrate near-zero waste and enhanced
resource use through cascading biomass.

Environmental Performance of Circular Economy Circular approaches reduce GHG emissions by 39–86% and
non-renewable energy by 65% compared to linear models.

Economic Value Creation Lignin valorization for polymers, bio-composites, and
nanomaterials, with a market projected at USD 1.2 billion by 2025.

Sustainability Alignment Circular economy principles support environmental, economic,
and social sustainability goals, aligned with the UN SDGs.

8. Roadmap to Implement Biorefinery Approach
Implementing biorefineries to maximize biomass valorization requires a multi-

disciplinary approach that integrates bio-engineering, chemistry, and agricultural sciences.
In India, where agricultural residues and other biomass types are abundant, the potential
for second-generation biorefineries is substantial. This roadmap highlights the strate-
gic integration of technologies and policies needed to realize this potential, focusing on
thermochemical and biochemical conversion pathways [132].

Biorefineries represent a transformative approach to achieving sustainability and
economic viability in bio-based industries. This guide outlines six critical steps for devel-
oping and optimizing biorefineries, ensuring they meet environmental, economic, and
policy objectives.

1. Process Development and Optimization: This stage focuses on improving biorefinery
efficiency and sustainability by optimizing feedstock cultivation, processing, and
product recovery to reduce GHG emissions and non-renewable energy use [142].
Optimization of the entire value chain is essential to achieving cost-effectiveness and
economic viability.

2. Supply Chain Development: Effective supply chain management ensures the smooth
delivery of biomass to the biorefinery. Selecting strategic locations minimizes trans-
portation costs, while optimizing biomass production and developing efficient logis-
tics systems improve the overall operational efficiency of the supply chain [135].

3. Integration with Existing Infrastructure: Biorefineries can enhance their capabilities
by integrating with existing petrochemical plants, creating hybrid systems. Utilizing
advanced biotechnology enables the seamless adaptation of current infrastructure,
bridging gaps and maximizing resource utilization [143].

4. Economic Viability and Revenue Diversification: To achieve financial sustainability,
biorefineries must diversify their revenue streams. Producing high-value biochemicals
alongside biofuels, generating energy for self-sustaining operations, and exploring
additional revenue opportunities are critical to their long-term success [144].

5. Policy and Regulatory Support: A robust and stable policy framework is essential
for fostering growth in biorefinery projects. Clear subsidies, legal guidelines, and
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mandates are needed to inspire confidence among investors and ensure compliance
with environmental and economic objectives [96].

6. Environmental Monitoring and Circular Economy: Monitoring and reducing the
environmental impact of biorefineries is a cornerstone of their development. Imple-
menting life cycle assessments and adopting circular economy principles, such as
resource recovery and closed-loop systems, ensures sustainability and minimizes
waste [145].

Step-by-Step Roadmap for Biorefinery Development and Optimization

1. Identify Objectives and Goals: Define the primary objectives, such as reducing GHG
emissions, improving sustainability, and achieving economic viability. Align goals
with global and regional sustainability [96].

2. Conduct Feasibility Studies: Evaluate the availability of biomass feedstocks and
their environmental impact. Assess market demand for bio-based products and
energy [135].

3. Develop Process Design and Optimization: Design efficient processes for feedstock
cultivation, processing, and product recovery. Incorporate advanced technologies to
maximize energy efficiency and minimize waste [141].

4. Build an Efficient Supply Chain: Choose strategic locations to reduce transporta-
tion costs. Optimize biomass production and logistics for collection, transport, and
preprocessing [135].

5. Integrate with Existing Infrastructure: Develop hybrid systems that combine biore-
fineries with petrochemical plants. Utilize biotechnology to bridge gaps and enhance
operational efficiency [143].

6. Establish Economic Models: Create a financial plan that includes high-value biochem-
icals, biofuels, and self-sustaining energy generation. Diversify revenue streams to
ensure long-term viability [144].

7. Engage Policy and Regulatory Stakeholders: Work with policymakers to establish sub-
sidies, mandates, and guidelines. Foster investor confidence by ensuring regulatory
compliance [96].

8. Implement Environmental Monitoring and Sustainability Practices: Conduct life cycle
assessments to track environmental impact. Apply circular economy principles like
resource recovery and closed-loop systems [145].

9. Pilot and Scale-Up: Launch pilot projects to validate designs and processes. Scale up
operations based on pilot results, ensuring efficiency and sustainability.

10. Continuous Improvement and Innovation: Regularly review and refine processes to
incorporate technological advancements. Monitor market trends to adapt products
and services accordingly.

9. Challenges
India faces unique challenges and opportunities in adopting second-generation bio-

fuels. Current production is dominated by first-generation biofuels, including sugarcane
and Jatropha, which are insufficient to meet the National Policy on Biofuels (NPB) target of
20% blending by 2030. Achieving these targets will require transitioning to lignocellulosic
ethanol and biomass-to-liquid (BTL) biodiesel technologies, supported by robust research
and development and industrial-scale deployment.

Second-Generation Biofuels: A single demonstration plant in Pune, Maharashtra,
processes 100 dry tons of biomass per day, including residues like corn stover and bagasse.
However, scaling these technologies remains a challenge due to cost and infrastructure



Biomass 2025, 5, 16 21 of 28

limitations. By 2030, it is estimated that India can produce 50 billion litres of biofuels from
agricultural residues, meeting the 20% blending target [132].

Feedstock Challenges: Limited availability of dedicated energy crops and the unsus-
tainable use of sugarcane molasses highlight the need for diversified feedstock collection
mechanisms [146].

Investment Needs: Transitioning to second-generation biofuels under a Business-
As-Usual (BAU) scenario requires USD 2 billion by 2030, while achieving NPB goals
necessitates USD 32 billion in cumulative investments [132].

10. Conclusions
This study highlights the significant contributions of second-generation biorefineries

in the sustainable energy transition, with a particular focus on India. The research shows
that second-generation biorefineries can effectively utilize non-food biomass feedstocks,
such as crop residues and agro-processing waste, for the production of biofuels, biochemi-
cals, and bio-based products. Through the integration of biochemical and thermochemical
conversion technologies, these biorefineries not only help in reducing greenhouse gas emis-
sions but also contribute to energy security and waste minimization. Notably, bioethanol,
biogas, and biohydrogen production from these sources can significantly support India’s
renewable energy goals, including the target of a 20% ethanol blend by 2025.

The study demonstrates the importance of government policies such as India’s Na-
tional Biofuels Policy, which provides a robust framework for promoting biorefinery
development and advancing bioethanol production. The research also shows the po-
tential for rural economic growth, as biorefineries can generate jobs and produce high-
value by-products like furfurals, xylitol, and organic acids, which help to promote a
circular economy.

However, several challenges remain, such as the high variability in biomass feed-
stock properties, difficulties in process integration, and supply chain inefficiencies.
Despite these limitations, the findings indicate that second-generation biorefineries,
when optimized, have a strong potential to be economically viable. For instance, the
bamboo-based bioethanol refinery in Assam and the lignocellulosic biorefinery in Kar-
nataka provide promising models of large-scale implementation, demonstrating that with
proper investment and technological advancements, biorefineries can become sustainable
economic drivers.

Future research should focus on overcoming these barriers by improving biomass
feedstock pretreatment processes and fermentation efficiencies. Furthermore, the inte-
gration of advanced technologies, such as IoT-enabled monitoring systems and machine
learning, could be explored to enhance operational efficiencies and sustainability. Ad-
ditionally, international comparisons of biorefinery technologies, policies, and market
dynamics could offer valuable insights for accelerating the global adoption of second-
generation biorefineries.
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Experimental Study of the Efficiency of the Gasification Process of the Fast-Growing Willow Biomass in a Downdraft Gasifier.
Energies 2023, 16, 578. [CrossRef]

51. Chen, D.; Li, Y.; Cen, K.; Luo, M.; Li, H.; Lu, B. Pyrolysis Polygeneration of Poplar Wood: Effect of Heating Rate and Pyrolysis
Temperature. Bioresour. Technol. 2016, 218, 780–788. [CrossRef]

52. Lakshman, V.; Brassard, P.; Hamelin, L.; Raghavan, V.; Godbout, S. Pyrolysis of Miscanthus: Developing the Mass Balance of a
Biorefinery through Experimental Tests in an Auger Reactor. Bioresour. Technol. Rep. 2021, 14, 100687. [CrossRef]

53. Azeta, O.; Ayeni, A.O.; Agboola, O.; Elehinafe, F.B. A Review on the Sustainable Energy Generation from the Pyrolysis of Coconut
Biomass. Sci. Afr. 2021, 13, e00909. [CrossRef]

54. Mohan, D.; Pittman, C.U.; Steele, P.H. Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review. Energy Fuels 2006, 20, 848–889.
[CrossRef]

55. Volpi, M.P.C.; Silva, J.C.G.; Hornung, A.; Ouadi, M. Review of the Current State of Pyrolysis and Biochar Utilization in Europe: A
Scientific Perspective. Clean. Technol. 2024, 6, 152–175. [CrossRef]

56. Ahmed, A.; Abu Bakar, M.S.; Sukri, R.S.; Hussain, M.; Farooq, A.; Moogi, S.; Park, Y.-K. Sawdust Pyrolysis from the Furniture
Industry in an Auger Pyrolysis Reactor System for Biochar and Bio-Oil Production. Energy Convers. Manag. 2020, 226, 113502.
[CrossRef]

57. Irfan, M.; Chen, Q.; Yue, Y.; Pang, R.; Lin, Q.; Zhao, X.; Chen, H. Co-Production of Biochar, Bio-Oil and Syngas from Halophyte
Grass (Achnatherum splendens L.) under Three Different Pyrolysis Temperatures. Bioresour. Technol. 2016, 211, 457–463. [CrossRef]
[PubMed]

58. Imam, T.; Capareda, S. Characterization of Bio-Oil, Syn-Gas and Bio-Char from Switchgrass Pyrolysis at Various Temperatures. J.
Anal. Appl. Pyrolysis 2012, 93, 170–177. [CrossRef]

59. Mahinpey, N.; Murugan, P.; Mani, T.; Raina, R. Analysis of Bio-Oil, Biogas, and Biochar from Pressurized Pyrolysis of Wheat
Straw Using a Tubular Reactor. Energy Fuels 2009, 23, 2736–2742. [CrossRef]

60. Chen, T.; Liu, R.; Scott, N.R. Characterization of Energy Carriers Obtained from the Pyrolysis of White Ash, Switchgrass and
Corn Stover—Biochar, Syngas and Bio-Oil. Fuel Process. Technol. 2016, 142, 124–134. [CrossRef]

61. Chojnacki, J.; Kielar, J.; Kukiełka, L.; Najser, T.; Pachuta, A.; Berner, B.; Zdanowicz, A.; Frantík, J.; Najser, J.; Peer, V. Batch Pyrolysis
and Co-Pyrolysis of Beet Pulp and Wheat Straw. Materials 2022, 15, 1230. [CrossRef]

https://doi.org/10.3390/fermentation8120734
https://doi.org/10.3390/microorganisms12061174
https://doi.org/10.1016/j.indcrop.2007.08.008
https://doi.org/10.3390/polym15030664
https://doi.org/10.1590/S1517-83822014000300018
https://www.ncbi.nlm.nih.gov/pubmed/25477922
https://doi.org/10.3389/fenrg.2022.903775
https://doi.org/10.1039/D3FB00041A
https://doi.org/10.3390/fermentation9010008
https://doi.org/10.3390/en16041829
https://doi.org/10.1016/j.jaap.2023.106221
https://doi.org/10.1016/j.biortech.2010.05.089
https://doi.org/10.1080/17597269.2018.1558838
https://doi.org/10.3390/pr11072103
https://doi.org/10.3390/en16020578
https://doi.org/10.1016/j.biortech.2016.07.049
https://doi.org/10.1016/j.biteb.2021.100687
https://doi.org/10.1016/j.sciaf.2021.e00909
https://doi.org/10.1021/ef0502397
https://doi.org/10.3390/cleantechnol6010010
https://doi.org/10.1016/j.enconman.2020.113502
https://doi.org/10.1016/j.biortech.2016.03.077
https://www.ncbi.nlm.nih.gov/pubmed/27035478
https://doi.org/10.1016/j.jaap.2011.11.010
https://doi.org/10.1021/ef8010959
https://doi.org/10.1016/j.fuproc.2015.09.034
https://doi.org/10.3390/ma15031230


Biomass 2025, 5, 16 25 of 28

62. Mishra, R.K.; Misra, Y.; Prasanna Kumar, D.J.; Sankannavar, R.; Kumar, P. Environmental Impacts on Second-Generation
Biofuel Production from Lignocellulosic Biomass. In Biofuels Production from Lignocellulosic Materials; Elsevier: Amsterdam, The
Netherlands, 2025; pp. 101–123.

63. Salami, R.; Kordi, M.; Bolouri, P.; Delangiz, N.; Asgari Lajayer, B. Algae-Based Biorefinery as a Sustainable Renewable Resource.
Circ. Econ. Sustain. 2021, 1, 1349–1365. [CrossRef]

64. da Rosa, M.D.H.; Alves, C.J.; dos Santos, F.N.; de Souza, A.O.; da Rosa Zavareze, E.; Pinto, E.; Noseda, M.D.; Ramos, D.; de
Pereira, C.M.P. Macroalgae and Microalgae Biomass as Feedstock for Products Applied to Bioenergy and Food Industry: A Brief
Review. Energies 2023, 16, 1820. [CrossRef]

65. De Bhowmick, G.; Sarmah, A.K.; Sen, R. Zero-Waste Algal Biorefinery for Bioenergy and Biochar: A Green Leap towards
Achieving Energy and Environmental Sustainability. Sci. Total Environ. 2019, 650, 2467–2482. [CrossRef]

66. Narayanan, M. Biorefinery Products from Algal Biomass by Advanced Biotechnological and Hydrothermal Liquefaction Ap-
proaches. Discov. Appl. Sci. 2024, 6, 146. [CrossRef]

67. Moncada, J.; Tamayo, J.A.; Cardona, C.A. Integrating First, Second, and Third Generation Biorefineries: Incorporating Microalgae
into the Sugarcane Biorefinery. Chem. Eng. Sci. 2014, 118, 126–140. [CrossRef]

68. Moncada, J.; Cardona, C.A.; Rincón, L.E. Design and Analysis of a Second and Third Generation Biorefinery: The Case of
Castorbean and Microalgae. Bioresour. Technol. 2015, 198, 836–843. [CrossRef]

69. Gheewala, S.H. Life Cycle Assessment for Sustainability Assessment of Biofuels and Bioproducts. Biofuel Res. J. 2023, 10,
1810–1815. [CrossRef]

70. Ayisha Naziba, T.; Praveen Kumar, D.; Karthikeyan, S.; Sriramajayam, S.; Djanaguiraman, M.; Sundaram, S.; Ghamari, M.;
Prasada Rao, R.; Ramakrishna, S.; Ramesh, D. Biomass Derived Biofluorescent Carbon Dots for Energy Applications: Current
Progress and Prospects. Chem. Rec. 2024, 24, e202400030. [CrossRef]

71. Dhanya, M.S. Perspectives of Agro-Waste Biorefineries for Sustainable Biofuels. In Zero Waste Biorefinery; Springer Nature:
Singapore, 2022; pp. 207–232.

72. Ahmed, S.F.; Kabir, M.; Mehjabin, A.; Oishi, F.T.Z.; Ahmed, S.; Mannan, S.; Mofijur, M.; Almomani, F.; Badruddin, I.A.; Kamangar,
S. Waste Biorefinery to Produce Renewable Energy: Bioconversion Process and Circular Bioeconomy. Energy Rep. 2023, 10,
3073–3091. [CrossRef]

73. Ogwu, M.C.; Kosoe, E.A.; Osawaru, M.E. Raw Materials for Sustainable Bioeconomy Development in the Global South. In
Sustainable Bioeconomy Development in the Global South; Springer Nature: Singapore, 2025; pp. 37–63.

74. Makepa, D.C.; Chihobo, C.H. Barriers to Commercial Deployment of Biorefineries: A Multi-Faceted Review of Obstacles across
the Innovation Chain. Heliyon 2024, 10, e32649. [CrossRef] [PubMed]

75. Guajardo, N.; Schrebler, R.A. Upstream and Downstream Bioprocessing in Enzyme Technology. Pharmaceutics 2023, 16, 38.
[CrossRef]

76. Nleya, Y.; Young, B.; Nooraee, E.; Baroutian, S. Opportunities and Challenges for Anaerobic Digestion of Farm Dairy Effluent.
ChemBioEng Rev. 2023, 10, 924–940. [CrossRef]

77. Elsayed, A.; Laqa Kakar, F.; Mustafa Abdelrahman, A.; Ahmed, N.; AlSayed, A.; Sherif Zagloul, M.; Muller, C.; Bell, K.Y.;
Santoro, D.; Norton, J.; et al. Enhancing Anaerobic Digestion Efficiency: A Comprehensive Review on Innovative Intensification
Technologies. Energy Convers. Manag. 2024, 320, 118979. [CrossRef]

78. Müller-Langer, F.; Majer, S.; O’Keeffe, S. Benchmarking Biofuels—A Comparison of Technical, Economic and Environmental
Indicators. Energy Sustain. Soc. 2014, 4, 20. [CrossRef]

79. Mazzanti, G.; Demichelis, F.; Fino, D.; Tommasi, T. A Closed-Loop Valorization of the Waste Biomass through Two-Stage
Anaerobic Digestion and Digestate Exploitation. Renew. Sustain. Energy Rev. 2025, 207, 114938. [CrossRef]

80. Decker, S.R.; Milbrandt, A. Anaerobic Digestion of Food Waste: Products and Their Uses. Available online: https://www.nrel.
gov/docs/fy22osti/81676.pdf (accessed on 8 February 2025).

81. Okolie, J.A.; Epelle, E.I.; Tabat, M.E.; Orivri, U.; Amenaghawon, A.N.; Okoye, P.U.; Gunes, B. Waste Biomass Valorization for the
Production of Biofuels and Value-Added Products: A Comprehensive Review of Thermochemical, Biological and Integrated
Processes. Process Saf. Environ. Prot. 2022, 159, 323–344. [CrossRef]

82. Munir, M.T.; Mansouri, S.S.; Udugama, I.A.; Baroutian, S.; Gernaey, K.V.; Young, B.R. Resource Recovery from Organic Solid
Waste Using Hydrothermal Processing: Opportunities and Challenges. Renew. Sustain. Energy Rev. 2018, 96, 64–75. [CrossRef]

83. Kargbo, H.; Harris, J.S.; Phan, A.N. “Drop-in” Fuel Production from Biomass: Critical Review on Techno-Economic Feasibility
and Sustainability. Renew. Sustain. Energy Rev. 2021, 135, 110168. [CrossRef]

84. Brutyan, M.M. Foresight of Microalgae Usage for the Production of Third-Generation Biofuel. Indian. J. Sci. Technol. 2017, 10, 1–10.
[CrossRef]
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