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Abstract

With the widespread use of the Internet of Things (IoT), securing the storage and transmission of multimedia content across IoT
devices is a critical concern. Chaos-based Pseudo-Random Number Generators (PRNGs) play an essential role in enhancing the
security of image encryption algorithms. This paper introduces a novel 1-dimensional cosine-modulated-polynomial chaotic map
to be used as a PRNG in image encryption algorithms. The proposed map utilizes a cosine function to modulate the outcome
of a polynomial expression, resulting in complex chaotic behaviour. The designed map acts as a self-modulating system and
offers a larger chaotic range, reduced structural complexity, and enhanced chaotic properties, such as aperiodicity, unpredictability,
ergodicity, and sensitivity to control parameters and initial conditions, in comparison to the traditional 1-dimensional chaotic
maps. An extensive evaluation is performed to gauge the chaotic behaviour of the proposed map, including bifurcation diagrams,
chaotic trajectory analysis, fixed point and stability analysis, Lyapunov Exponent, Kolmogorov Entropy and NIST SP800-22 tests
demonstrating its effectiveness to be used as a secure PRNG in image encryption algorithms.
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1. Introduction

The advancement in the Internet of Things (IoT) resulted in a rapid increase in the number of connected devices,
which in turn led to a rise in image data generation and distribution across various applications, ranging from industrial
monitoring systems to domestic security devices [2][12]. The security of image content across [oT devices is a matter
of primary concern [1]. Image encryption algorithms secure the transmission and storage of image content, and the
security of these algorithms can be enhanced by utilising chaos-based Pseudo Random Number Generators (PRNGs)
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Table 1: Relation between chaotic systems and image encryption

Chaotic Property Cryptographic Property Description

Ergodicity Diffusion Pixels get permuted and the histogram remains
the same.

Sensitivity to initial condi- Confusion A minute change in plaintext or secret key re-

tions and/or control parame- sults in a significant change in the output.

ters

Mixing Diffusion/Confusion A slight alteration in a single block of the orig-

inal image can result in a significant transfor-
mation across the entire image.

Deterministic dynamics Deterministic pseudo- A deterministic process may lead to pseudo-
randomness random output.
Structure complexity Resistance to attacks A simple mathematical function leads to com-

plex non-linear behaviour.

or chaotic maps. Hence, this paper intends to exploit the non-linear dynamics of chaos to design a chaotic map that is
secure, has reduced structural complexity, and can be utilised as a robust PRNG in image encryption algorithms.

The term chaos is derived from the Greek word y&og, which literally translates to ‘complete disorder and confu-
sion.” [9]. Chaotic systems or chaotic maps, in particular, possess key characteristics, such as unpredictability, non-
linear dynamics, and sensitivity to control parameters and initial conditions and are extensively utilized in cryptogra-
phy and image encryption to enhance the security of cryptographic algorithms. The relation between chaotic systems
and image encryption is presented in Table ??. Chaotic maps are usually utilised as PRNGs in image encryption algo-
rithms [9]. The design of chaotic maps, especially to be used as PRNGs, presents significant challenges. In addition
to being highly unpredictable, a robust PRNG must generate sequences that also pass rigorous testing standards, such
as those set by NIST [11]. Several design approaches can be used to create chaotic maps and to enhance their chaotic
properties for image encryption. Some of the effective approaches are: modulation [8, 15, 5], cascading [19, 16, 18],
and coupling [20, 4, 6, 14]. Among these, the modulation approach has been proven to be effective and hard for eaves-
droppers to crack [20]. It involves varying a parameter of one function based on another function’s output, potentially
leading to complex and chaotic outcomes. Several new chaotic maps can be found in recent literature [17, 7, 13, 10],
that aim to improve the chaotic properties. But most of them have complex dynamics which, although promising
higher levels of security, come at the cost of increased computational requirements.

This paper, in this regard, proposes a new 1-dimensional chaotic map that exhibits enhanced chaotic properties
with reduced structural complexity. In the proposed cosine-modulated polynomial map, a cosine function modulates
the outcome of a polynomial expression, potentially leading to complex chaotic behaviour. The designed map acts as
a self-modulating system where the output is determined by applying a nonlinear transformation (cosine function) to
a polynomial function of the same variable. The main contributions of this paper are:

1. A novel cosine-modulated-polynomial map is proposed that offers a large chaotic range and enhanced chaotic
properties, such as aperiodicity, ergodicity, sensitivity to control parameters and initial conditions, irregularity,
diversity, and complexity, in comparison to the traditional 1-dimensional chaotic maps, such as the logistic, sine,
and tent map.

2. The proposed map, having large Lyapunov exponents (LEs), exhibits complex chaotic behaviour across all pa-
rameter settings. This means a wide range of control parameters ensures optimal chaotic performance, due to the
presence of expanded chaotic regions.

3. The chaotic performance of the proposed map is rigorously evaluated for non-linear dynamics and chaotic tra-
jectory analysis, Lyapunov Exponent analysis, Kolmogorov Entropy analysis, fixed point and stability analysis,
and the 17 NIST tests.
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2. Non-linear Dynamics of Chaotic Maps

In chaos and non-linear dynamics, a continuous-time dynamic system is represented as:

d
) = F(x(), M

where %x(t) is the first order derivative of x(¢), and x is an M-dimensional vector in the real number space R. The
function F : RM — R defines how the system evolves over time and is known as a vector field. For a discrete chaotic
map, equation 1 is expressed as:

Xnr1 = F(xn), 2

where n is an integer. The state of the system at any time, x(f) € RM, consists of the system’s state variables
(x1, X2, ...,x). The function F is dependent on parameters ¢ = (q1,4>2,...,q;), where g € C/ and C/ € R™. The
initial state of the system at # = 0, is known as the initial condition.

A one-dimensional (1D) map being a discrete system, can always be iterated. This means starting from an initial
state, all future states of the system can be determined based on the initial conditions: x; = f(xg), x» = f(x1) =
f(f(x0)), and so on, until x,, = x™(xp). Here, X" represents the M-fold iteration of the map, or in other words, the
function x applied to itself m times:

f’me,Of/O-HOf/ (3)
—_———

m times

This explains how chaotic behaviour can emerge from the application of simple, deterministic rules in both continuous
and discrete systems, highlighting the intricate patterns and unpredictability characteristic of chaos.

3. The Proposed Chaotic Map
3.1. Mathematical Definition of the Proposed Map
Building upon a polynomial foundation, we introduce the concept of a cosine-modulated polynomial chaotic map.

The proposed map is defined by using the polynomial P(x) directly and applying a non-linear transformation, which
is a cosine function modulating the polynomial, to ensure chaos. The expression of this proposed map is expressed as:

Xpe1 = cos(m - P(x,)) mod 1 4

Here, cos(rm - P(x,)) introduces non-linearity, and the modulo operation ensures the output stays within a bounded
range, typically [0, 1]. The proposed chaotic map utilises the polynomial function as the primary source of behaviour,
with the cosine function to induce chaos.

The polynomial utilised for the proposed map is:

P(x) = @ + Bx — yx* — 6x° (3)



Muhammad Shahbaz Khan et al. / Procedia Computer Science 246 (2024) 42144223 4217

where «, 3, y, and ¢ are the control parameters with a broad range given by «,8,y,0 € [-50,50]. These control
parameters or coefficients of the polynomial expression are the primary elements that are responsible for determining
the shape and behaviour of the polynomial. By incorporating the polynomial P(x) in equation 4 the proposed cosine-
modulated-polynomial map is defined as:

x=(cos(n-(a+ﬁ-x—y-x2—6-x3))mod1 (6)

3.2. Control Parameters and Effect on Curvature

The coeflicients of the polynomial expression or control parameters of the map play an important role in defining
the chaotic range of the map. A positive leading coefficient means that as x approaches infinity, the polynomial will
tend towards positive infinity, and as x approaches negative infinity, the polynomial will tend towards negative infinity
(for odd-degree polynomials) or positive infinity (for even-degree polynomials). Whereas, a negative leading coeffi-
cient inverts this behaviour. Positive coefficients in the quadratic term (x?) result in a parabola that opens upwards.
In contrast, negative coefficients result in a parabola that opens downwards. For higher-degree terms, positive and
negative coefficients affect the curvature and the number of turns in the polynomial graph. This can change the nature
and number of the polynomial’s critical points (maxima, minima, and inflexion points).

In a polynomial, the term that is most responsible for the "instant start" of the curve, particularly how the curve
behaves near the origin (where x = 0), is the constant term, also known as the zero-degree term. For a polynomial
expressed in the form:

P(X) = apX" + ap XN+ X + arx + ag

The constant term is ay. This term determines the value of the polynomial at x = 0, i.e., P(0) = ap. It essentially
sets the starting point of the polynomial on the y-axis. The other coefficients (associated with x, x?, x°, .. .) determine
the shape and curvature of the polynomial as x moves away from zero.

4. Chaotic Behaviour Analysis of the Proposed Map
4.1. Bifurcation Diagram

-Bifurcation diagrams and chaotic trajectories are critical components to gauge the chaotic performance and dy-
namic behaviour of any chaotic map. A bifurcation diagram can visualise the transitions between different dynamical
behaviours of a system as the control parameter varies, illustrating periods of stability and chaos. The bifurcation dia-
gram of the proposed map is shown in Fig. 1d. The bifurcation diagrams of the traditional 1-D chaotic maps, i.e., the
logistic, sine, and tent map are also given in Fig. 1a, Fig. 1b, and Fig. 1c, respectively. It can be seen that the proposed
map exhibits highly chaotic behaviour with a large range of control parameters without any periodic windows. This
highly chaotic behaviour makes it suitable to be used as a PRNG in image encryption.

4.2. Chaotic Trajectory Analysis

Chaotic trajectories of chaotic maps depict the unpredictable and highly sensitive paths that states of a dynamical
system follow over time, under the influence of its underlying rules. Chaotic trajectory analysis helps in understanding
the intrinsic unpredictability and long-term behaviour of chaotic maps, highlighting their sensitivity to initial condi-
tions and the impossibility of long-term predictions despite deterministic governing equations. The 2D and 3D chaotic
trajectories of the proposed map in comparison with the traditional maps are given in Fig. 2 and Fig. 3, respectively.
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Figure 1: Bifurcation diagrams of: (a) Logistic map. (b) Sine Map. (c) Tent Map. (d) The proposed map

It can be seen that the trajectory of the proposed chaotic map occupies a larger space as compared to other maps,
validating the ergodicity of the proposed map.

Furthermore, cobweb diagrams are used to analyze and understand the behaviour of iterative maps, particularly
in studying the convergence or divergence of sequences. To track the chaotic behaviour of the maps, and to illustrate
how the initial value evolves under repeated application of the iterative functions, the cobweb diagrams have also been
visualised in Fig. 4.

4.3. Fixed Point and Stability Analysis

For a chaotic map to be used as a good PRNG, its dynamics play a crucial role, particularly in terms of fixed
points and stability. An attracting fixed point, while indicative of stability, might not be preferable for PRNG purposes
because it leads to predictable behaviour as iterations converge to the fixed point. In contrast, a repelling fixed point or
chaotic behaviour is often more desirable. Repelling dynamics ensure that the trajectory of the map does not converge
to a single point or a small set of points but instead covers a larger portion of the state space.

A fixed point in a dynamical system is a point that, when used as the starting point of the system, remains
unchanged under the application of the system’s function. In other words, it’s a point where the system doesn’t evolve
or move. A fixed point x° in a map defined by x,+1 = f(x,) is a special value where applying the function f to x°
yields x° itself, meaning f(x°) = x°. If for some positive integer n, it holds that f"(x°) = x°, but for any smaller
integer k within the range 0 < k < n, f*(x°) does not equal x°, then x° is recognized as a periodic point with a period
of n. The smallest n for which the point is periodic is referred to as the prime period.

Stability of Fixed Points in the Chaotic Map
The stability of a fixed point depends on how the function f at that point responds to slight changes or disturbances.

This is investigated by introducing a small disturbance, denoted as ¢,, to the fixed point where x° = f(x°). To find out
the impact of this disturbance in the following iterations, we calculate €,,; = f(x° + €,) — x°. By applying a Taylor

o 02 04 06 08 1 0 01 02 03 04 05 06 07 08 08 o 02 04 06 08
X, x, %, X,

() (b) (©) (d)

Figure 2: 2-D chaotic trajectories of: (a) Logistic map. (b) Sine Map. (c) Tent Map. (d) The proposed chaotic map



Muhammad Shahbaz Khan et al. / Procedia Computer Science 246 (2024) 4214-4223 4219

(d)

Figure 4: Cobweb diagrams of: (a) Logistic map. (b) Sine Map. (c) Tent Map. (d) The proposed chaotic map

series expansion, €,,] becomes:

€1 = f(X° +€) —x° = f(x°) + f(x°)e, — x° + O(€2)

Since € is considerably small, the higher-order term O(e2) has a minimal impact on stability, thus it can be accurately
approximated to zero. Consequently, the progression of the disturbance after n iterations is roughly €, = (1°)"e,
where A° signifies the multiplier of the fixed point and is calculated by the derivative of f at x° as|f”"(x°)|.

To perform a fixed point and stability analysis of the proposed map, which is

x=(cos(n'(a+ﬁ'x—y-x2—6-x3))mod1

we would look at the derivative of the map function with respect to x at those fixed points. The stability criterion for
a discrete map like this one is given by the magnitude of the derivative at the fixed point:
o If| ()
o If [ £ £(x)

< 1 at the fixed point, the fixed point is stable (attracting).
> 1 at the fixed point, the fixed point is unstable (repelling).

For the given map, the derivative f'(x°) would be:

()= %mOd(COS(ﬂ"(a+ﬁ'x+'y-x2+6.x3))’1)
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By performing numerical approximation, a fixed point was found at x° ~ 0.50005 for the control parameter value of
1 and an initial guess of 0.5. Then, a stability analysis of this fixed point is performed by calculating the derivative
of the map function at the fixed point and evaluating its magnitude. The derivative of the map function at the fixed
point x° ~ 0.50005 is approximately —9526.572. Given that the magnitude of this derivative is much greater than 1, it
indicates that the fixed point is unstable (repelling).

The stability analysis of this fixed point reveals it to be unstable due to the magnitude of the derivative at this point
being significantly greater than 1, making the proposed map to be ‘repelling’. This validates the effectiveness of the
proposed map by showing that the trajectory of the map does not converge to a single point or a small set of points
but instead covers a larger portion of the state space.

4.4. Lyapunov Exponent

The Lyapunov exponent (LE) is a quantitative measure that characterizes the rate at which trajectories of a dynam-
ical system diverge or converge in the phase space or the sensitivity of the initial value. For a system described by a
one-dimensional map f : R — R, the LE (1) for a trajectory starting from an initial point xy is defined as:

IS,
Alxo) = Tim = 3" In|f'(x)|
n—oo N pr

where,n is the number of iterations, f’(x;) represents the derivative of the function f evaluated at the point x;, x;
denotes the point at the i-th iteration, with the recursive relation x;y1 = f(x;).
In LE analysis;

e A positive LE (4 > 0) indicates chaotic behaviour, characterized by an exponential divergence of initially close
trajectories, highlighting the system’s sensitive dependence on initial conditions.

¢ A negative exponent (1 < 0) signifies convergence towards stability.

e a zero exponent (1 = 0) suggests neutral behaviour, potentially indicating periodic or quasi-periodic motion.

Fig.5 shows the LE analysis of the proposed chaotic map and traditional 1D chaotic maps. Whereas, a thorough
comparison is given in Fig. 6. It can be seen that the LE of the proposed map (near 5) is larger than all other maps
in comparison. This validates that the proposed map exhibits a complex chaotic behaviour over the complete control
parameter range.

0 : o 1 of e

o o5 1 15 2 25 3 35 4 25 3 35 4 o 02 04
Control Parameter v mu

() (b) (©)

Figure 5: Lyapunov Exponents of: (a) The proposed map. (b) Logistic map. (c) Sine map. (d) Tent map.
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Figure 6: Comparison of LEs of traditional 1D chaotic maps with the proposed chaotic map

4.5. Kolmogorov Entropy

Kolmogorov entropy quantifies the rate at which information about the state of a dynamical system is lost over time.
A positive value of Kolmogorov entropy is indicative of chaos, suggesting that the system generates new information
at a constant rate, leading to unpredictable long-term behaviour. The Kolmogorov entropy is defined as:

K = limlim lim — Z Pligsits .. rim) I Plig, i1, .. . im) )
10501 5eees Im

Where K represents the Kolmogorov entropy, 7 is the time step between observations of the system’s state, 7 is the
resolution of the state space partition, with the limit » — 0 indicating infinitely fine partitioning, m is the length of the
observation sequence, P(iy, i1, ..., ;) is the joint probability of a particular sequence of states or events (ig, i1, . . - , in)-

This paper follows the estimation approach presented in [3] to find the Kolmogorov entropy of all maps under
consideration. The results of Kolmogorov entropy for the proposed map with other traditional maps are shown in
Fig. 7. Moreover, a comparison is also shown in Fig. 8. It can be seen that the proposed chaotic map has the highest
value of Kolmogorov entropy with a wider chaotic range. This validates that the output of the proposed map is more
unpredictable than the traditional 1D maps.

4.6. NIST SP800-22 Statistical Test

To access the randomness of pseudo-random sequences generated by the proposed chaotic map, the NIST SP800-
22 Statistical Test Suite [3] was applied. This suite tests for various characteristics that a genuinely random sequence is
expected to exhibit, including uniformity, independence, lack of predictability, and absence of any detectable patterns.

orov Entropy (KE)
v Entropy (KE)

jorov Entropy (KE)

imog
Kolmogoroy

[ 1 15 2 25 3 35 4 o o5 1 15 2 25 3 35 4 05 06 o7 08 09 1 1 12 14 16 18 2
Control Parameter Control Parameter Control Parameter Control Parameter

(a) (b) (©) ()

Figure 7: Kolmogorov entropies of: (a) The proposed map. (b) Logistic map. (c) Sine map. (d) Tent map.



4222 Muhammad Shahbaz Khan et al. / Procedia Computer Science 246 (2024) 42144223

Normalized Kolmogorov Entropy (KE)

Logistic Map

—Sine Map
1 | ——Tent Map
Custom Map
0

0 0.2 0.4 0.6 0.8 1
Normalized Parameter

Figure 8: Comparison of Kolmogorov entropy of the proposed map with traditional 1D maps.

NIST statistical suite evaluates only bit streams. To evaluate the pseudo-random sequences generated by the pro-
posed chaotic map, the sequences were first discretized into bit streams. To effectively evaluate the sequences, 50
distinct binary sequences were generated, which contained 100,000 bits. Each of these sequence was then assessed
using the 17 Tests. Table ?? presents the results of the NIST test suite, showing that the generated sequences passed
all tests with almost 99.9% success ratio.

5. Conclusion

This paper introduced a novel 1-dimensional chaotic map that offered complex chaotic behaviour, a larger chaotic
range and enhanced chaotic properties. The proposed map utilised a polynomial expression modulated by a cosine
function, resulting in enhanced chaotic behaviour, which is evident through comprehensive analyses such as bifur-
cation diagrams, chaotic trajectory visualizations, Lyapunov exponent calculations, Kolmogorov entropy, and NIST

Table 2: NIST Test Results

Sr. Test Name Pass Ratio P Value Result
1 The Frequency (Monobit) Test 50/50 0.4830 Pass
2 Frequency Test within a Block 50/50 0.5881 Pass
3 The Runs Test 49/50 0.4703 Pass
4 Tests for the Longest-Run-of-Ones in a Block 49/50 0.4110 Pass
5 The Binary Matrix Rank Test 50/50 0.5312 Pass
6 The Discrete Fourier Transform (Spectral) Test 49/50 0.4003 Pass
7 The Non-overlapping Template Matching Test 49/50 0.5719 Pass
8 The Overlapping Template Matching Test 49/50 0.4591 Pass
9 Maurer’s "Universal Statistical" Test 49/50 0.2217 Pass
10 The Approximate Entropy Test 49/50 0.9611 Pass
11 The Random Excursions Test [X = 1] 49/50 0.2143 Pass
12 The Random Excursions Variant Test [X = 1] 49/50 0.3293 Pass
13 Serial Test 1 49/50 0.9065 Pass
14 The Linear Complexity Test 49/50 0.8758 Pass
15 Serial Test 2 50/50 09111 Pass
16 The Cumulative Sums (Cusums) Test [FORWARD] 49/50 0.5030 Pass
17 The Cumulative Sums (Cusums) Test [REVERSE] 49/50 0.6473 Pass
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SP800-22 tests. Its ability to generate sequences that pass rigorous randomness tests, including nearly perfect scores in
the NIST SP800-22 suite, validated its potential to be used as a pseudo-random number generator in image encryption.
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