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 A B S T R A C T

Advancements in prediction of human motion sequences are critical for enabling online virtual reality (VR) 
users to dance and move in ways that accurately mirror real-world actions, delivering a more immersive 
and connected experience. However, latency in networked motion tracking remains a significant challenge, 
disrupting engagement and necessitating predictive solutions to achieve real-time synchronization of remote 
motions. To address this issue, we propose a novel approach leveraging a synthetically generated dataset 
based on supervised foot anchor placement timings for rhythmic motions, ensuring periodicity and reducing 
prediction errors. Our model integrates a discrete cosine transform (DCT) to encode motion, refine high-
frequency components, and smooth motion sequences, mitigating jittery artifacts. Additionally, we introduce 
a feed-forward attention mechanism designed to learn from N-window pairs of 3D key-point pose histories for 
precise future motion prediction. Quantitative and qualitative evaluations on the Human3.6M dataset highlight 
significant improvements in mean per joint position error (MPJPE) metrics, demonstrating the superiority of 
our technique over state-of-the-art approaches. We further introduce novel result pose visualizations through 
the use of generative AI methods.
1. Introduction

In the fields of virtual reality (VR) and computer vision, real-time 
tracking is crucial for recovering accurate 3D pose data. Human joint 
pose data is commonly captured using multi-camera or single-camera 
setups integrated with AI algorithms to obtain depth information and 
directly recover pose key points and joint orientations. Nevertheless, 
challenges such as limited sensor range, occlusion, and latency per-
sist in tracking 3D pose data. In order to improve immersion and 
engagement in patterned motion scenarios, there is a high demand for 
techniques that minimize latency [1,2] during motion tracking through 
motion prediction.

Deep learning techniques have significantly advanced the domain 
of human motion prediction [3,4]. Among these, recurrent neural 
networks (RNNs) have become particularly popular for predicting se-
quential human pose data [5,6]. However, when it comes to long-term 
horizons and periodic motions, RNNs often struggle due to their in-
ability to effectively capture long-term history, which is essential for 
forecasting periodic motion actions. To address this limitation, re-
cent approaches have incorporated encoders [7] to better represent 
historical information.
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Our work introduces a multi-window extended frequency attention-
based human motion prediction technique that utilizes synthetically 
generated periodic data based on re-timed foot anchor placements, as 
illustrated in Fig.  2. Our method is motivated by the observation that 
humans tend to repeat their motions in actions such as dancing to music 
beats. To validate this, we focus on the context of rhythmic motion 
prediction, where we demonstrate the effectiveness of our approach by 
re-timing Human3.6m [8] to match these rhythmic patterns. We present 
results based on analyzing relevant information from significant bones, 
such as the feet, over a fixed-length period.

Inspired by previous works [9], we represent each sub-sequence of 
foot anchors in the trajectory space using a Discrete Cosine Transform 
(DCT).

We then introduce our dual-windowed extended frequency motion 
attention as weights for DCT-encoded motion aggregation into a future 
motion estimate. To encode spatial dependencies between joints, we 
combine the motion estimate with the last observed matching period, 
using the result as input to a graph convolutional network (GCN) [10]. 
Our experiment, as shown in Fig.  5, demonstrates that our approach 
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Fig. 1. NeFT-Net stable diffusion walking sequence visualization. Note: We apply the positive prompt ‘‘A walking human’’ to the depth map image on the left (a) with different 
seeds to achieve (b), (c), and (d).
outperforms state-of-the-art methods in long-term and short-term pe-
riodic motion prediction on the Human3.6M walking and walking 
together datasets. Our work extends DeFT-Net [11] developed upon 
insights from Mao et al. [12], specifically improving 3D pose motion 
prediction for known periodicity based on foot anchor placements.

To summarize, the main contributions of this paper are:

• a re-timed motion with supervised foot anchor information of 
periodic cycles, such as walking, for the defined use case of 
rhythmic motion prediction.

• an improved overall mean per joint position error (MPJPE) re-
sults compared to state-of-the-art methods in experiments on the 
Human3.6M dataset for forecasting short and long-term motions 
by introducing MultiWindowDCT  attention aligned on a best fit 
period of each motion sequence.

• a strategy for photorealistic visualization of human body motion 
sequences by employing the use of stable diffusion on depth maps 
as shown in Fig.  1.

• an open source version of our code implementation https://
github.com/CarouselDancing/NeFT-net

2. Related work

Human motion prediction relates to a variety of research areas 
like Computer Vision and Machine learning (ML), where predicting 
future movements is essential for applications in computer graphics 
and virtual reality. Section 2.1 details the various traditional tech-
niques employed in the task of motion style synthesis and prediction. 
Section 2.2 describes how recurrent neural networks (RNN) has been 
adopted over the years for sequence-to-sequence 3D human motion 
prediction. Section 2.3 highlights the uniqueness of the attention-based 
approach compared to other approaches for motion prediction.

2.1. Traditional approaches

Motivated by the inherent probabilistic nature of periodic hu-
man motion, early methods such as Boltzmann machines and Hidden 
Markov Models (HMMs) [13,14] have been widely used to predict 
motion sequences. Style interpolation techniques are also frequently ap-
plied to synthesize motion, often driven by scripts, 2D video inputs, or 
to generate new choreography for virtual motion capture. While these 
methods offer robust solutions, they lack the adaptability and precision 
needed for capturing both short-term and long-term dependencies, 
particularly in dynamic contexts like dance and rhythmic walking 
sequences. Other advancements have introduced probabilistic models 
that leverage large motion databases and low-dimensional representa-
tions [15]. These methods utilize implicit empirical distributions and 
efficient binary tree-based search to approximate the true distribution 
of human motion. By structuring motion data efficiently, they allow 
for realistic motion synthesis and robust tracking within Bayesian 
frameworks, addressing both adaptability and precision challenges.
2 
2.2. Recurrent Neural Networks (RNN) approaches

RNNs have grown in prominence for 3D human motion prediction 
tasks [16]. The encoder–decoder model (ERD), first introduced by
Fragkiadaki et al. [6], incorporates Long Short-Term Memory (LSTM) 
cells in the latent space for capturing motion dynamics. The work of
Jain et al. [5] leverages a spatio-temporal graph skeleton, utilizing 
RNNs as nodes to model kinematic chain joint dependencies. Aksan 
et al. [17] replace dense output layers in the RNN architecture with 
structural prediction layers to explicitly model joint dependencies that 
follow a kinematic chain. In the works of Ghosh et al. [18], a sep-
arate denoising auto-encoder is trained to correct noisy outputs. All 
these techniques suffer inability to capture long-range motion history 
trajectories.

However, RNN-based methods have historically struggled with cap-
turing long-term motion history, leading to limitations in predicting 
prolonged sequences. In response, Martinez et al. [19] introduced a 
sequence-to-sequence (Seq2Seq) architecture incorporating an input-to-
output skip connection, which mitigates some of the inherent bias by 
training the model with its own predictions. Despite improved results 
over earlier pose-based models [5], the discontinuity between ground 
truth and predicted frames persisted.

To address this, Pavllo et al. [20] adapted the teacher-forcing tech-
nique, allowing the model to gradually learn from its own outputs, 
further enhancing prediction accuracy. Additionally, Chiu et al. [16] 
introduced a hierarchical RNN model that operates across multiple time 
scales to better capture motion variability over different time spans. 
Furthermore, adversarial training methods proposed by Gui et al. [21] 
enable the generation of smoother motion sequences.

In the work of Hernandez et al. [22], human motion forecasting was 
framed as a tensor imputation problem, with generative adversarial 
networks (GANs) adapted for long-term prediction. Although these 
techniques resulted in improved performance, the use of adversarial 
networks introduces challenges in training, such as instability due to 
the adversarial nature of the generator-discriminator dynamics, diffi-
culty in achieving convergence, and sensitivity to hyperparameters, 
particularly when applied to periodic datasets requiring precise foot 
anchor encoding.

2.3. Beyond recurrent models

Given the drawbacks of RNNs, several works have employed the use 
of feed-forward networks as an alternative solution [3,9]. The work of
Butepage et al. [3] introduced a fully connected feed forward to process 
the recent history poses, investigating techniques to encode temporal 
historical information via convolution and exploiting the kinematic 
tree to encode spatial information. Li et al. [7] suggest a convolutional 
sequence-to sequence model (CNN) processing a two-dimensional pose 
matrix whose column represent the pose at every time step. The model 
was employed to extract a pose motion prior from long-term motion 
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history of frames, which, in conjunction with more recent motion 
history, was used as an input to an auto regressive network for future 
pose prediction. While more effective than RNN-based frameworks, the 
manually selected size of the convolutional windows highly influences 
the temporal encoding of motion sequences. To address this, Aksan 
et al. [23] introduced a spati-temporal transformer encompassing a fully 
auto-regressive approach to model temporal dependencies given the 
recursive nature of human motion. Cai et al. [24] leverage a transformer 
architecture on the DCT coefficients extracted from the seed sequence 
and make joint predictions progressively by following a kinematic 
tree. Similarly, Mao et al. [9] encodes joint sequence via DCT and 
train a graph convolutional network (GCN) to capture/learn inter-joint 
dependencies. Since the GCN operates on temporal windows of poses 
to produce an output, the pose forecast are limited to a predetermined 
length. To address this they extracted DCT coefficients from shorter 
sub-sequences in a sliding window fashion aggregated with a 1D atten-
tion block. Guinot et al. [25] introduced a stacked-attention mechanism 
utilizing synthetic IMU data to improve long-term dependency handling 
in dance motion prediction. This method addresses the limitations of 
traditional RNNs by transforming motion dynamics into the frequency 
domain using discrete cosine transform (DCT), which better encodes 
temporal information.

Our work is related to these approaches, but differs in two aspects. 
First, we introduce windowed inputs of a time-beat signal based on foot 
anchor pose information to the DCT windowed input so our model can 
learn periodic motions of short and long term history in the frequency 
domain. We then introduce an N-window extended frequency model 
with a focus on motion periodicity.

3. Method overview

Our technique introduces a unique approach to improving human 
motion prediction by incorporating periodic patterns and adapting a 
multi-window of poses 𝑍𝑖. Each 𝑍𝑖 consists of three concatenated 
slices 𝑆𝑖, 𝑆𝑖+𝑝+offset, and 𝑆𝑖+2𝑝+2offset from the motion history 𝑆1 =
[𝑠1, 𝑠2, 𝑠3,… , 𝑠𝑁 ]. Here, 𝑝 represents the period, and offset allows flex-
ibility in adjusting the relative positions of these slices. This technique 
captures long-term temporal dependencies by analyzing different pe-
riods within human motion data, thus enhancing our model’s ability 
to forecast future poses with improved performance. As shown in 
Fig.  2, we synthesize 3D pose data by interpolating frames containing 
motion foot anchor information from natural walking sequences in the 
Human3.6M dataset. We apply spherical interpolation for pose rotations 
and linear interpolation for pose translations to ensure smooth periodic 
motions. Since future frame forecasting from past sequences is the 
main goal, our method parallels approaches that utilize Discrete Cosine 
Transform (DCT) to encode motion, suppress high frequencies, and 
smooth jittery motions as seen in prior work [9,12]. To adapt the 
attention model to periodic motion cycles, we fold pose tensors to learn 
smooth motion transitions. Our model utilizes window slices of encoded 
periodic motion. For instance, if the first window captures the current 
motion, the second window integrates the immediate history, and the 
third slice looks two steps further back. This three-slice stack model 
enables more robust short- and long-term motion forecasting.

3.1. Foot anchor frame interpolation

As our goal is to learn from periodic walking sequence motions 
and forecast future pose motions, similar to Cao et al. [26], we rely 
on frame annotations based on the right foot placement at every 𝑛th 
frame. For periodic actions, such as walking and walking together,
linear interpolation is applied to the root joint for smooth transitions 
between frames.

In Eq.  (1), we compute a weighted average between the translation 
vectors of two key frames, 𝑝1 and 𝑝2. The interpolation factor 𝑡 ∈ [0, 1]
controls the degree of blending between these frames. When 𝑡 = 0, the 
3 
result is entirely 𝑝1, and when 𝑡 = 1, the result is 𝑝2. For intermediate 
values of 𝑡, the linear interpolation (lerp) computes a gradual transition 
between the two translation vectors, creating smooth transitions in 
position between frames. 

lerp(𝑝1, 𝑝2, 𝑡) = (1 − 𝑡)𝑝1 + 𝑡𝑝2 (1)

In addition to translation interpolation, we also handle rotational 
changes between frames. Unlike translations, rotations are more com-
plex and require spherical interpolation to compute smooth rotational 
transitions. Drawing from Kapoulkine’s spherical linear interpolation 
approximation [27], we define a spherical path between the rotations 
and create key rotations from the rotation vectors of two consecutive 
frames.

In Eq.  (2), we perform spherical linear interpolation (slerp) between 
two quaternions, 𝑞1 and 𝑞2, which represent rotations at two keyframes. 
The angle 𝜃 is the shortest angle between the two quaternions, and 
𝑡 ∈ [0, 1] is the interpolation factor. The sine terms ensure that the in-
terpolation follows the shortest path on the spherical surface, smoothly 
transitioning between the two rotations. When 𝑡 = 0, the result is the 
first rotation 𝑞1, and when 𝑡 = 1, the result is 𝑞2. This method provides 
a constant-speed rotational interpolation, crucial for preserving the 
natural flow of human motion. 

slerp(𝑞1, 𝑞2, 𝑡) =
sin((1 − 𝑡)𝜃)

sin(𝜃)
𝑞1 +

sin(𝑡𝜃)
sin(𝜃)

𝑞2 (2)

We combine both interpolation techniques to achieve periodic 
dataset-based foot anchor frame placements and pass these sequences 
in an encoded DCT fashion to our multi-window frequency transformer. 
This method allows our model to learn and forecast future motion 
patterns from periodic sequences efficiently with fewer errors.

4. Multi-window frequency attention

Our multi-window attention presents a novel approach to address-
ing the complexities of human motion forecasting, particularly in pe-
riodic actions such as walking. As natural human motion contains 
short-term and long-term dependencies, which can be difficult to cap-
ture using traditional forecasting models, we address these challenges 
by incorporating multiple temporal windows representing different 
segments of the motion history, an adaptive weighting mechanism, 
and frequency-domain transformation. Through the use of the Dis-
crete Cosine Transform (DCT) [28] and Graph Convolutional Net-
works (GCNs) [29], our model is more robust to temporal and spatial 
dependencies present in natural human motion (see Fig.  3).

The core idea behind our model is the use of N=three temporal 
windows, each representing a different portion of the motion history: 
Current Window, Dual Window, Nth-Past temporal Window. This seg-
mentation allows the model to better account for motion patterns over 
time. The introduction of learnable weights enables the model to dy-
namically adjust the relative importance of each window. We compute 
the deltas, or differences, between adjacent windows to capture motion 
changes over time:

𝛥𝑐𝑝 = 𝐗𝑐 − 𝐗𝑝 (3)

𝛥𝑝𝑑 = 𝐗𝑝 − 𝐗𝑑 (4)

Next, the model applies learnable weights 𝛼𝑐 , 𝛼𝑝, and 𝛼𝑑 to adap-
tively weight the different temporal windows: 

𝐗weighted = 𝛼𝑐𝐗𝑐 + 𝛼𝑝𝐗𝑝 + 𝛼𝑑𝐗𝑑 (5)

This adaptive weighting ensures that the model remains flexible, 
especially when the nature of the motion changes over time.
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Fig. 2. A skeleton-grid comparison of the fixed DCT motions from the HistRepeatDCT method [12] and our re-timed multi-window extended DCT motions for test subject 5 
walking synchronized with right foot anchor placements. The fixed DCT motion sequence is shown as right leg purple/left leg green, and our multi-window extended re-timed 
DCT motions as right leg red/left leg blue skeleton. Note: The red circles represent foot placement re-timed frames and purple circles define foot placements from start to end of 
the original sequence.
Fig. 3. Overview of NeFT-Net. Our re-timed DCT input poses are shown within the solid red boxes with the multi-window extended history, and the predicted poses are shown 
within dotted green boxes. The last observed poses are initially used as query. For every consecutive poses in the history (key), we compute an attention score to weigh the 
multi-window DCT coefficients (values) of the corresponding sub-sequence. The weighted sum of such values is then concatenated with the DCT coefficients of the last observed 
sub-sequence to predict the future. This comprises the transformer model of OurMultiWindowDCT.
Frequency Domain Transformation (DCT)

In addition to our N-window temporal representation, the model 
leverages the frequency domain through the discrete cosine transform 
(DCT) to handle periodic motion patterns. DCT transforms the motion 
data from the time domain to the frequency domain, which is particu-
larly useful for periodic actions like walking, where repeating patterns 
occur. The DCT is defined as: 

𝐗DCT(𝑘) =
𝑁−1
∑

𝑛=0
𝐗(𝑛) cos

[ 𝜋
𝑁

(

𝑛 + 1
2

)

𝑘
]

(6)

where 𝑘 represents the frequency index and 𝑁 is the length of the 
sequence. Applying DCT to the weighted windows yields: 
𝐗DCT-weighted = DCT(𝐗weighted) (7)

We apply the same principle in our Multi-windowDCT approach, 
where the DCT is applied to sequences from the current, dual, and 
4 
Table 1
Following baseline setting MPJPE Batch evaluation results for test Subject 5 comparison 
on our re-timed interpolated vs original History Repeats Itself DCT [12] method with 
Human3.6M datasets for predicting human motion at various frames for activities
walking and walking together.
 Walking Walking together
 Frame No. 1 3 5 8 9 10  
 HistRep [12] 5.68 17.28 27.62 40.31 43.69 46.81 
 DeFT-Net [11] 5.45 16.78 26.50 38.41 41.69 44.78 
 Ours 5.31 16.23 25.48 37.04 40.75 43.54 

𝑛-past temporal windows. This transformation emphasizes the domi-
nant frequencies in the motion while suppressing high-frequency noise, 
leading to smoother and more accurate predictions (see Table  1).
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Fig. 4. Training loss (a) and MPJPE (b) over 50 epochs for HisRepFixedDCT, DualWindowDCT, and our N-WindowDCT (3 windows).
Attention mechanism

An attention mechanism is employed to weigh the importance of 
different frames in the motion sequence, enabling the model to fo-
cus on the most relevant information. The general attention-weighted 
representation of the motion sequence is given by: 

𝐗attention =
𝑇
∑

𝑡=1
𝛼𝑡𝐱𝑡 (8)

where 𝛼𝑡 are the normalized attention weights for each frame 𝐱𝑡, 
computed as: 

𝛼𝑡 =
exp(𝑎𝑡)

∑𝑇
𝑖=1 exp(𝑎𝑖)

, 𝑎𝑡 = softmax(𝐪⊤𝐤𝑡) (9)

Here, 𝐪 represents the query (the current motion), and 𝐤𝑡 represents the 
key (motion history).

To incorporate contributions from multiple temporal windows in 
our 𝑛-windowDCT approach, the attention mechanism is extended to 
weigh both individual frames within each window and the windows 
themselves. The 𝑛-windowed attention-weighted representation is given 
by: 

𝐗weighted =
𝑛
∑

𝑖=1
𝛼𝑖

𝑇
∑

𝑡=1
𝛽(𝑖)𝑡 𝐱(𝑖)𝑡 (10)

Here:

• 𝛼𝑖: Attention weight for the 𝑖th temporal window.
• 𝛽(𝑖)𝑡 : Attention weight for the 𝑡th frame in the 𝑖th window, normal-
ized over frames within that window.

• 𝐱(𝑖)𝑡 : The 𝑡th frame in the 𝑖th temporal window.

Our N-WindowDCT attention ensures both per-frame and per-win-
dow relevances are captured, aligning with the intuition that certain 
frames within each temporal window may carry more importance 
for the prediction task. As observed from Fig.  4, transitioning from
HisRepDCT  to OurDualwindow yields an average 10% improvement in 
training loss, with a further 12% gain beyond Dual to N-windows. How-
ever, the observed trend suggests diminishing returns of 4 windows of 
observations would yield only approximately  6.7% total improvement 
beyond the 3-window case. Given the memory and processing overhead 
of tracking multiple windows, the 3-window configuration stands out 
as the most practical and effective choice. Similarly diminishing returns 
are reflected in MPJPE, reinforcing this balance between performance 
and efficiency.
5 
Inverse DCT and final prediction

After applying the GCN, we transform the output back to the time 
domain using the Inverse DCT (IDCT): 
𝐗pred = IDCT(𝐗GCN) (11)

This produces the final predicted motion sequence, incorporating both 
temporal and spatial dependencies.
Algorithm 1: Multi-Window Frequency Attention Algorithm
Input: Motion sequence 𝐱𝑡 for 𝑡 = 1,… , 𝑇
Output: Predicted motion sequence 𝐗pred
// Segment the Motion History into 𝑛 Temporal 

Windows
for 𝑖 = 1 to 𝑛 do

Extract 𝑖-th window 𝐗𝑤𝑖
= {𝐱𝑇−∑𝑖

𝑗=1 𝑤𝑗+1
,… , 𝐱𝑇−∑𝑖−1

𝑗=1 𝑤𝑗
};

// Compute Per-Frame Attention Weights Within Each 
Window

for 𝑖 = 1 to 𝑛 do
for 𝑡 = 1 to 𝑇  do

Compute 𝛽(𝑖)𝑡  for frames in window 𝑖 using query-key 
attention;

// Apply Attention Mechanism to Each Frame and 
Window

for 𝑖 = 1 to 𝑛 do
Compute 𝐗attention𝑤𝑖

=
∑𝑇

𝑡=1 𝛽
(𝑖)
𝑡 𝐱(𝑖)𝑡 ;

Combine weighted windows: 𝐗weighted =
∑𝑛

𝑖=1 𝛼𝑖𝐗
attention
𝑤𝑖

;
// Transform to Frequency Domain Using DCT
Transform 𝐗weighted to the frequency domain;
// Model Spatial Dependencies Using GCN
Update joint relationships using GCN: 𝐗GCN;
// Transform Back to Time Domain Using IDCT
Transform 𝐗GCN back to the time domain: 𝐗pred;
return 𝐗pred

5. ControlNet with depth maps for motion attention visualization

A powerful recent development arises where Stable Diffusion can 
be enhanced with ControlNet [30] to provide greater control over 
image generation. ControlNet allows for the incorporation of additional 
conditions, such as human pose and depth maps, to guide the gen-

eration process. This capability is particularly useful for visualizing 
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Fig. 5. From left to right, a plot visualization of the Mean Per Joint Position Error (MPJPE) across 72 frames for training on History Repeats Itself DCT, multi-window extended 
DCT, and 𝑛-window DCT encoded motion sequences. Note: The red vertical lines start and end of the foot placement cycle.
Fig. 6. From left to right: (a) NeFT-Net predicted keypoints, visualized alongside ground truth (GT) motion sequences in red and green outlines. (b) The predicted keypoints are 
aligned and retargeted, starting with BVH format (left) and mapped onto an SMPL-X mesh (right) using Rokoko Studio and Blender (c) Depth maps (top) are refined using stable 
diffusion to produce photorealistic rendered motion sequences (bottom).
motion, as depth maps can capture the spatial relationships between 
different body parts and their environment. ComfyUI,1 a GUI-based 
Stable Diffusion interface, provides a user-friendly environment for 
composing images with this approach.

We focus on leveraging depth maps rendered from Blender as a 
guiding input to ControlNet, enabling precise and realistic depictions 
of both ground truth and predicted motions. By combining depth-
based conditioning with the generative power of stable diffusion, this 
approach bridges the gap between data-driven motion prediction and 
its compelling visual representation, as shown in Fig.  6, offering a 
unique perspective on how AI can translate abstract motion data into 
vivid, interpretable renders.

The core technique is to use depth maps as the control input for 
ControlNet as seen in Fig.  1. By feeding a sequence of depth maps 
extracted from a video or generated from a simulated environment into 
ControlNet, we can guide the generation of a corresponding sequence 
of images that visualize the motion depicted in the depth maps. This 
approach offers several potential advantages:

• Enhanced Realism: The generative AI imagery is effortlessly real-
istic. Our prompting approach simply described the style of dress 
and context of walking, marching, etc. in a graphical depiction. 
Some orientation terms for example, from left to right assisted 
the success rate of more oriented diagrammatic results, but were 
not as influential as combining all pose frames side-by-side in 
producing coherent outcomes.

• Precise Control: ControlNet’s ability to precisely control the gen-
eration process allows for fine-tuning the visualization based on 

1 https://github.com/comfyanonymous/ComfyUI
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the depth information. Our experiments supplying an alternative 
2D bone hierarchy stick representation directly to ControlNet 
proved to be far less controllable than the more information rich 
depth representation.

• Novel Visualizations: The combination of ControlNet and depth 
maps opens up possibilities for creating novel and abstract visu-
alizations of motion.

To visualize the motion of walking of our attention mechanism, we 
used Blender to generate depth maps of a character model at different 
stages of the walking cycle. These depth maps can then be used as input 
to ControlNet, along with text prompts describing the desired motion, 
to generate images that accurately depict the character’s movement. 
The prompting strategy used in this study was deliberately minimal, 
primarily to maintain consistent orientation and scene composition 
(e.g., ‘‘person walking forward, side view, consistent lightning’’). This 
simplicity ensured camera alignment across various frames but limited 
the generative detail in body articulation, clothing variation, and scene 
interaction.

All frames shown in Fig.  1 were generated together in a combined 
single diffusion pass, with depth maps concatenated to reinforce tem-
poral coherence across the motion sequence. This batch conditioning 
approach helped maintain the consistency of lightening, background, 
and carbon appearance, which are often challenges in frame-by-frame 
generation.

In experimentation of this approach we naturally also applied a 
ControlNet model steered from Open Pose2 derived bone hierarchy 
images, but found the information of such skeletal wire frame pose 

2 https://github.com/CMU-Perceptual-Computing-Lab/openpose

https://github.com/comfyanonymous/ComfyUI
https://github.com/CMU-Perceptual-Computing-Lab/openpose
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images led to excessive ambiguity and relatively poor posed generative 
image results when compared with the more information rich depth 
image controlled generations.

6. Conclusion

In this paper, we introduced an N-window-based motion atten-
tion model that leverages historical pose information based on the 
similarity between the current pose context and cyclic sub-sequences 
in the motion history. Our approach achieves state-of-the-art perfor-
mance in predicting rhythmic motion by re-timing the Human3.6M 
dataset using foot anchor placements. Experimental results show strong 
generalization to previously unseen walking and walking-together se-
quences, as indicated by the training loss in Fig.  4(a) and MPJPE in 
Fig.  4(b), demonstrating improved joint pose accuracy. Our N-Window 
extended frequency transformer model aligns ideally upon three his-
torical windows, arrived at due to the observation of a clear trend 
of diminishing returns in both training loss and predictive accuracy. 
Quantitative power regression analysis of results in Fig.  4(b) indicate 
that while the shift from a fixed representation to a dual-window 
model provides a substantial performance boost, and adding a third 
window slice contributes an even more meaningful improvement. Be-
yond this, however, predicted gains taper off progressively: estimating 
improvements less than 0.1% on successive windows beyond the 10th 
window. These reducing potential gains come at the cost of increased 
memory computation, storage and runtime complexity. This is coupled 
with the lower practical consideration of a motion pattern 10 cycles 
ago being as relevant to the current cycle in all but a regimented 
repeated march. We therefore consider three-windows both effective 
and efficient—avoiding unnecessary overhead while retaining strong 
predictive accuracy.

Whilst our analysis of varying windows of attention is a form of 
ablation study itself, we also compared re-timed and non-re-timed 
data preparations between the non-re-timed HistRepeatDCT method, 
and the Dual and N-Windowed approaches. Ablations of replacement 
or simplification of GCN and DCT elements could further indicate 
the relative importance of each of these measures, including further 
dissection of the model pipeline–such as isolating the roles of DCT 
encoding, the re-timing strategy, and window-based attention–as well 
as exploring the impact of window size for varying periodic motions 
and offset through hyperparameter sensitivity analysis.

We introduced the use of generative AI techniques to visualize 
predicted motions, which revealed the model’s strong temporal con-
sistency, particularly in sequential foot for placements—a core feature 
of rhythmic motion. While articulation of hands and facial expressions 
remain limited by the generative pipeline used, higher-fidelity synthesis 
approaches may offer future improvements.

Although real-time performance was not the primary target, our 
approach demonstrates inference speeds that are compatible with near-
interactive rates and strong opportunities for optimization. Profiling 
and benchmarking will be key to validating deployment in time-
sensitive scenarios. Moving forward, enhancing the model’s real-time 
capabilities will be a priority—especially for interactive applications 
such as dance [2] and performance animation, where timing and 
rhythm are crucial.
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