
Forensic Science International: Digital Investigation 52 (2025) 301878

Available online 24 March 2025
2666-2817/© 2025 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS EU 2025 - Selected Papers from the 12th Annual Digital Forensics Research Conference Europe

Beyond Hamming Distance: Exploring spatial encoding in
perceptual hashes

Sean McKeown
School of Computing, Engineering, and the Built Environment, Edinburgh Napier University, Edinburgh, UK

A R T I C L E I N F O

Keywords:
Perceptual hashing
Semantic approximate matching
Distance metrics
Hamming distance
Image forensics
Content matching

A B S T R A C T

Forensic analysts are often tasked with analysing large volumes of data in modern investigations, and frequently
make use of hashing technologies to identify previously encountered images. Perceptual hashes, which seek to
model the semantic (visual) content of images, are typically compared by way of Normalised Hamming Distance,
counting the ratio of bits which differ between two hashes. However, this global measure of difference may
overlook structural information, such as the position and relative clustering of these differences. This paper
investigates the relationship between localised/positional changes in an image and the extent to which this
information is encoded in various perceptual hashes. Our findings indicate that the relative position of bits in the
hash does encode useful information. Consequently, we prototype and evaluate three alternative perceptual
hashing distance metrics: Normalised Convolution Distance, Hatched Matrix Distance, and 2-D Ngram Cosine
Distance. Results demonstrate that there is room for improvement over Hamming Distance. In particular, the
worst-case image mirroring transform for DCT-based hashes can be completely mitigated without needing to
change the mechanism for generating the hash. Indeed, perceived hash weaknesses may actually be deficits in the
distance metric being used, and large-scale providers could potentially benefit from modifying their approach.

1. Introduction

As long as the Internet and World Wide Web have existed, criminals
have exploited them for nefarious purposes. In the Digital Forensics
context, this often relates to the distribution of Child Sexual Abuse
Material (CSAM). Forensic analysts in many countries have been back-
logged for some time (Beebe, 2009), but recent advances in generative
AI may fuel a new wave of large-scale CSAM proliferation (Thiel et al.,
2023). While in the early stages, the Internet Watch Foundation docu-
ments (Internet Watch Foundation, 2024) a month-on-month increase
for AI CSAM reports for 2024.

One mechanism for keeping on top of the deluge of CSAM related
media is to automate the detection of previously encountered images by
way of perceptual hashing (a form of approximate semantic hashing),
which models the visual properties of an image. Such approaches are
robust to many image transformations, and they typically deal well with
compression and other common image modifications that happen as a
matter of course. Such technologies are already deployed for both law
enforcement and cloud-scale service providers, such as Microsoft’s
PhotoDNA (Krawetz), and Facebook’s PDQ (Facebook).

While much effort has been spent in modelling images with various
techniques to generate a binary hash representation of the image
(Hadmi et al., 2012), Normalised Hamming Distance is often the only
distance metric which is discussed and evaluated. In contrast, fields such
as Information Retrieval have many possible similarity and matching
mechanisms, with a clear separation of document representation and
similarity measurement (Manning et al., 2008). While Hamming Dis-
tance performs well for this task, it is a global measure of difference
between two binary arrays, such that positional information and nuance
is lost. As such, we investigate the following research questions in this
work:

RQ1: Do spatial modifications to images produce observable pat-
terns in perceptual hash strings?
RQ2: Are these patterns able to be exploited in the hash comparison
process to produce better classificatiohn performance than Normal-
ised Hamming Distance?

RQ1 is explored via bitwise hash analysis in Section 3, while alter-
native metrics are proposed and evaluated for RQ2 in Section 4. All code

E-mail address: S.McKeown@napier.ac.uk.

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2025.301878

mailto:S.McKeown@napier.ac.uk
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2025.301878
https://doi.org/10.1016/j.fsidi.2025.301878
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2025.301878&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Forensic Science International: Digital Investigation 52 (2025) 301878

2

used in the experiments is available on Github.1

2. Background and related work

Forensic perceptual hashing is a derivative of the field of Content-
Based Image retrieval (CBIR) (Tyagi, 2017), which is a mature field
dating back to the 1970s. Images can be modelled via a wide-array of
features, such as colour histograms (Swain and Ballard, 1991), texture
and edge histograms (Manjunath et al., 2001), or frequency domain
statistics (Venkatesan et al., 2000). Frequency domain transforms are
often useful as the low-frequency components are robust to various
image modifications (Fridrich, 1999). Coarse image representations
using mean-block colour are also used for similar reasons (Steinebach,
2011). For digital forensic purposes, these hash representations must be
representative of the image, but should not be reversible, or leak in-
formation about the source image, often involving some kind of quan-
tisation in order to produce a binary hash array as a final output (Hadmi
et al., 2012).

The forensic task is to identify images which are similar or identical
to a target hash, distinguishing these from unrelated images. This in-
volves the use of a distance metric, which is used to calculate the dif-
ference between two hashes and return a value which can be compared
to a chosen ‘threshold’. If the distance is lower than this threshold, the
image matches, otherwise it is considered to be an unrelated image. In
CBIR, the relative richness of the image representation indices (not
simply binary hash arrays), and the looser task of matching related
content, allows for a variety of comparison approaches, such as Cosine
Distance, Euclidean Distance, Hamming Distance, and L1/L2 Distance
(Tyagi, 2017). In contrast, perceptual hashes are often compared using
only the Normalised Hamming Distance (Hadmi et al., 2012), which is
simply a ratio of the number of bits which differ between two hashes.

Selecting an appropriate distance threshold is predicated on the
distribution of intra-image comparisons (images that should match), and
inter-image comparisons (unrelated images) being separable (Zauner,
2010; McKeown et al., 2024). Otherwise, if distributions overlap, any
threshold is a trade-off of False Positives vs. False Negatives in the
matching task. Common perceptual hashes are resistant to image
transformations attacks such as compression, re-scaling, colour modifi-
cation, blurring, filtering etc (Zauner, 2010; Breitinger et al., 2013;
Drmic et al., 2017; Hamadouche et al., 2021; McKeown and Buchanan,
2023), while rotating, mirroring, cropping, and adding borders may
cause difficulty for some hashes (Zauner, 2010; Breitinger et al., 2013;
Drmic et al., 2017; McKeown and Buchanan, 2023), or be worst-case
machine scenarios where inter- and intra-image distributions overlap
completely (McKeown and Buchanan, 2023).

Prior work typically evaluates the mechanism for generating hashes
and their response to transforms, but does not often make changes to
how images are compared. For instance, algorithms typically have a
weakness to certain image content (e.g., high-frequency patterns, or
low-frequency gradients (McKeown et al., 2019)), or to particular
transforms, such as rotation (Breitinger et al., 2013), as mentioned
above. It is possible to pre-process images to mitigate this weakness, for
example, mirroring the image so its darkest corner is always at the
top-left, completely defeating mirroring attacks (Steinebach et al.,
2012), but this is rarely discussed in practice. Similarly, noting that not
all algorithms derive equal utility from the hash-bits in a hash array,
weights can be applied to hashes prior to calculating their Hamming
Distance (Steinebach et al., 2012). This can improve performance,
generally, for a particular algorithm, or potentially mitigate against
worst-case scenario transforms such as mirroring (McKeown et al.,
2024).

Despite these modifications to the process, Normalised Hamming
Distance is still prevalent for most algorithms, without pre-processing,

re-weighting, or weakness mitigation being built-in to the process.
Hamming Distance is the de-facto approach for deep-learning ap-
proaches also, however they sometimes make use of Cosine or Euclidean
distance (Singh and Gupta, 2022). This means that the hashing algo-
rithms themselves are left to trade-off localised vs. global features, with
a global comparison being made afterwards.

3. Spatial data encoding in perceptual hashes

A Normalised Hamming Distance of 0.25 simply indicates that an
aggregate of 25 % of the bits are different, whether this 25 % is clustered
at the beginning/end of the hash, or spread across it. Some images may
be completely different, in which case, given the design of a perceptual
hash, we would expect bits to be more or less differing completely
arbitrarily, with a 50/50 probability of being the same by chance.
However, for regional changes, such as cropping, adding watermarks, or
transpositions such as rotation, there is some degree of perceived simi-
larity, or commonality, as semantic content is preserved. Therefore, if
perceptual hashes typically encode some degree of positional informa-
tion/locality of change, it can be exploited to improve image matching
performance, and alternatives to Hamming Distance would be entirely
appropriate. This section describes the investigation of spatial encoding
in perceptual hashes for RQ1, and how various image transformations
map to changes in their respective binary hash arrays.

3.1. Approach

To detect patterns in hashes, the Hamming Distance itself is not
useful. Instead, we must pay attention to the individual bit positions
within each hash in order to determine how often they are correct when
classifying matches. The counts of these correct classifications (per bit)
can then be aggregated across all images and plotted (for a given hash/
transform) to determine if any transform specific patterns emerge,
which could indicate positional data encoding.

The experiment was conducted with the following process: i)
Generate image transforms which deliberately regionalise change; ii)
Derive perceptual hashes; iii) Calculate Hamming Distances; iv)
Calculate a weights vector, w. v) Visualise weight vector, w.

We make use of the PHASER (McKeown et al., 2024) perceptual
hashing evaluation framework to implement transforms, generate
hashes, calculate inter- and intra-distances, and provide bit-weight
vectors. This latter functionality, and method of exploring the prob-
lem, builds on the paper describing PHASER where it was observed that
providing weights to Hamming comparisons can improve overall
matching performance, particularly for frequency domain Discrete
Cosine Transform (DCT) based hashes (phash and PDQ, in this case) on
mirror transforms (McKeown et al., 2024). The visualised weight vectors
in those cases had a piano-like appearance, indicating that individual
bits alternated between accurate and innacurate classiifcation contri-
butions. We take a similar approach here, but instead focus on bits which
do not prove useful for matching (i.e., low bit-weight), as this will flag
up any redundant/shared information we embed in the transforms (see
Sections 3.1.2 and 3.2).

3.1.1. Selected hashing algorithms
A variety of perceptual hash functions were chosen for this work.

Firstly, we make use of the hash implementations in the Python
Imagehash library, selecting the ahash (Average hash), dhash (Differ-
ence Hash), dhash_vertical (Dhash in vertical mode), phash (DCT-
based Perceptual Hash) and whash (Wavelet Hashing) algorithms.
Additionally, to represent wider efforts in the industry, Facebook’s PDQ
(based on phash) and Apple’s Neuralhash (Convolutional Neural
Network) were also tested, with the latter serving as a representative
deep-learning solution.

To some degree, a level of positional encoding is expected due to how
the hash-bits are generated in many spatial-domain hash approaches. 1 https://github.com/AabyWan/PHASER/tree/main/paper.

S. McKeown

https://github.com/AabyWan/PHASER/tree/main/paper

Forensic Science International: Digital Investigation 52 (2025) 301878

3

For example, with ahash, images are downscaled to 8 × 8, each pixel is
then compared to the mean pixel value, generating a binary determi-
nation of higher/lower, resulting in a 64-bit hash array. Similarly, dhash
compares the left and right pixel relative to each pixel, (or above and
below for vertical mode) to generate bits.2 whash and phash behave
slightly differently, with the reduced image size (32 × 32 for phash) first
undergoing a frequency domain transform (Haar Wavelet and Discrete
Cosine, respectively), with pixels being derived from a comparison with
the median coefficient value from the resulting transform. The phash
DCT matrix is first reduced to the top-left 8 × 8 coefficients, resulting in
the same 64-bit hash size as the other Imagehash implementations. PDQ
works very similarly to phash, with some modifications, but produces
256-bit fixed-size hashes, with a diagonally flipped coefficient
arrangement.

The spatial techniques above (ahash, dhash) should theoretically
encode positional information as bits are derived from pixel-level
comparisons, with the order of bits directly corresponding to the rele-
vant pixel position in the thumbnail image. As whash, phash and PDQ
work with frequency domain coefficients, they were not expected to
produce the same level of granularity, but they should still capture some
relevant spatial properties. Neuralhash, however, uses a Convolutional
Neural Network, where extracted features are more abstract, and bits are
assigned by comparing the feature vector’s positions (Struppek et al.,
2022). In this case, spatial information is likely non-trivially recover-
able, which we expect to be the case for most deep-learning approaches.

3.1.2. Dataset and transform selection
A list of image transforms which have particular spatial properties is

provided in Table 1. Most of the transforms are common in the
perceptual hash evaluation literature, with border, crop, and rotate
being shown to be relatively tricky cases. Common elements in an
image, such as a shared border, can skew the inter-image distribution of
unrelated images, which is potentially problematic (McKeown and
Buchanan, 2023), but in the case here, shared information is useful for
identifying positional encoding. Similarly, the mirroring and rotation
transpositions move existing content (with some interpolation in the
context of rotation as pixels are square), but ultimately preserve the
semantic content of the image. Other transforms, such as compression or
scaling were not included as they distribute changes across the image,
while the focus here is on changes made to specific regions of the image.

The only transform not common in the literature is the composite
image approach, which makes use of a fixed secondary image to embed
in the target image for transformation. This is similar to visible logo
watermarking, but was designed to be more apparent and take up either
a complete quadrant (e.g., top-left) of the target, or, with less granu-
larity, simply the left, right, top, or bottom of the image. Results re-
ported here are for embedding a low-frequency colour gradiant image,
but we found similar results for high-frequency content with blades of
grass.

All transformations were then applied to a 20,000 image subset
(selected via a fixed seed random sample) from the Flickr 1 Million
dataset (MIRFLICKR Download), which was a large enough sample to
establish patterns in the dataset.

3.2. Structural hash information

Composite images, where embedding location is controlled, are the
simplest way to determine if positional information is preserved clearly.
This common data provides no information to discriminate between
images, whether they match or not. If specific bits in the hash corre-
spond to this redundant region of the image, then the weighting process
should generate a very-low weight consistently across all images.

Fig. 1 visualises weights for these confusion matrix quadrants for the
top-left corner image embedding transform. For 1a, representing ahash,
we can see that there is a repeating block pattern introduced, while 1b,
representing phash, has a less obvious pattern. Wrapping these arrays to
square matrices makes it much easier to see why this is the case, with the
equivalent matrices being depicted on the left of Fig. 2. In this case we
can now see a clear top-left block for ahash, while phash presents a
tartan-like hatched pattern.

Additional transforms are depicted in the remainder of Fig. 2, with
the top row depicting representative samples from the spatial hashes,
and bottom row the DCT-based hashes. PDQ and phash patterns are
essentially the same, with PDQ containing more rows/columns overall
and placing the low-frequency coefficient bits at the bottom-right, while
phash contains these in the top-left. Spatial domain techniques produce
very similar graphs overall, with dhash’s horizontal or vertical bias
skewing the diagram occasionally. Of note, whash follows the spatial
domain patterns, rather than those of the other frequency domain

Table 1
Spatial transforms used to tease out positional information encoding in hashes.

Border A white border (0.1× target height/width) around the
edge of the image. Draws a rectangle over the edges of
the image without extending dimensions

Crop (scaled factor) Apply a crop box aperture to cut off fractions of the
image. In this case, 25 % of the left and top, and 10 % all
around the image. Reduces overall image area.

Composite Image
Embedding

Embed a fixed image, common to all targets. The image
was scaled down to fit in the new dimensions of the target
location, which could be a quadrant (e.g., top-left) or
top/bottom/left/right.

Mirroring Horizontal (x-axis) and Vertical (y-axis) image
transposition.

Rotate Rotate the image 15◦ counter-clockwise, embed black
background in the empty-space created by a non-
rectangular image.

Watermarking Embed a small text logo image (0.1× target height,
minimum 40 pixels) in the bottom-right corner. No
transparency used, black background inserted.

Fig. 1. Visualisation of weights for each bit in the hash, corresponding to their
relative contribution to correct classification across confusion matrix quadrants,
aggregated for all images. Values are depicted for the top-left composite image
embedding. From top to bottom: FN, TP, FP, TN. The top two classes should
match (positive) while the bottom classes should not (negative). Black is a
weight of 1, white is a weight of 0.

2 To avoid the edge of the pixel matrix having no comparison, images are 9
× 8 for horizontal and 8 × 9 for vertical mode, respectively. Comparison then
begins with the second pixel, effectively skewing the result slightly.

S. McKeown

Forensic Science International: Digital Investigation 52 (2025) 301878

4

approaches (phash and PDQ). Smaller common items, such as visible
watermarks, produce less pronounced patterns and may not have much
impact on the hashes.

Both border and rotate transforms centralise the weight for spatial
hashes, with corners being less important (as they move farther during
rotation, and blend other common information in downsampling at
border edges). These transforms are less similar for the DCT-based phash
and PDQ, however, with a grid-like pattern appearing for borders, and a
grid-pattern appearing for rotation, albeit with a focus on the lower-
frequency coefficients. In the spatial domain, weight is focused away
from cropped areas, with DCT approaches again shifting weight towards
lower frequencies. Finally, mirroring an image on the x- or y-axis focuses
weight in the centre of the image along the axis of reflection for spatial
approaches, and for DCT results in either alternating vertical bars
(mirror-x) or rows (mirror-y).

Fig. 3a expands on the DCT patterns as it is useful to visualise how it
impacts their row/column patterns. Left/Right composites form hori-
zontal bars, while top/bottom composites form vertical bars. However,
it should be noted that these are far less clean than those for mirroring an
image. Together, these transforms suggest that vertical information
should be weighted on alternating rows, with alternating columns for
horizontal information.

While these findings are not necessarily surprising based on the de-
scriptions of the hashing techniques in Section 3.1.1, the strength of
their effect on biasing the hash is clear. Hamming Distance glosses over

these structural components, and at least heuristically, it would make
sense to give a higher weight to the centre of spatial hashes, while
paying more attention to lower-frequency coefficients and the patterns
of rows and columns within DCT-based approaches.

As expected, the behaviour of Neuralhash differed from the spatial
and frequency transform techniques as it takes a completely different
approach to generating hashes. Visually, there is no clear partition for
left/right/top/down in the hash (Fig. 3b), with weighting matrices
resembling noise patterns, for all transforms. As such, our answer to RQ1
appears to be that the tested ‘shallow’ approaches do indeed encode
spatial information, while deep-learning approaches may not.

4. Exploring alternative metrics

With confirmation of spatial encoding, we now move on to RQ2 in
order to determine if these patterns can be leveraged to improve
matching performance beyond the locality insensitive approach taken
by Hamming Distance. The literature did not lend itself well to this
endeavour, however, as existing approaches such as Structural Simi-
larity Index Measure (SSIM) are intended for arrays of pixel values, and
in testing it did not appear to have utility when comparing binary
matrices of hashes. Similarly, some small scale experiments on other
spatial distance metrics (Bray–Curtis, Canberra, Cosine, Euclidean,
Manhattan, Minkowski) in the Scipy library produced almost identical
results to Hamming Distance.

We therefore prototype new distance metrics appropriate for the
task. The general requirement was to provide an interface that behaves
like those already in the Scipy library: i) Inputs u and v corresponding to
same-length binary arrays, and ii) return a normalised distance value
between 0 and 1, where 0 is the same hash, and 1 is its inverse.

To make use of spatial properties, binary arrays are converted to
square matrices, corresponding to the downscaled image, or, for DCT-
based hashes, the coefficient matrix. This does mean that some arrays
may need padding if they do not form even squares. Additionally, a
wider goal was to produce appropriate inter-image distance distribu-
tions (Zauner, 2010; McKeown and Buchanan, 2023), with a mean/-
median of 0.5 for unrelated images. However, the superseding goal is to
be able to separate distributions of distance values for inter-image
comparisons and intra-image comparisons (original to transform) to
facilitate strong matching performance.

Three approaches are considered: i) Normalised Convolution Dis-
tance, ii) a DCT-aware Hatched Matrix Distance, and iii) 2-D Ngram
Distance.

4.1. Normalised Convolution Distance

In this context of image processing, two dimensional convolutions
involve passing a kernel filter (usually a 3 × 3 or 5 × 5 matrix), over each

Fig. 2. Bit-weight matrices for various hashes and transforms as calculated for True Positive matches only.

Fig. 3. True Positive bit-weight matrices for phash and Neuralhash for various
composite embeddings.

S. McKeown

Forensic Science International: Digital Investigation 52 (2025) 301878

5

pixel in an image. The filter specifies weights to be applied to the
neighbours, as well as the target pixel, accumulating the sum of the
weighted matrix. This accumulation is transferred to a new matrix of the
same size as the original image, where the value is placed in the same
location as the target pixel. In image processing, with the appropriate
filters, it can be used to detect visual features, such as edges and corners,
which ultimately form several layers in a Convolutional Neural Network
(CNN) (Hijazi et al., 2015), providing multiple ‘views’ of the image.

This approach provides a fast way to sum values based on regional
information, as the kernel takes into account surrounding values in the
matrix. In our use case, we apply the convolution to a difference matrix
of the two input hashes, rather than the images or hashes themselves.
The process is as follows:

1. Reshape input arrays to matrices and generate the logical XOR
(difference) matrix.

2. Perform a convolution on the XOR matrix
3. Sum the values in the convolution output and normalise by the

maximum possible value

As XOR captures when the bits are different, we essentially build a
map of the hash differences (1s). When convolving this matrix, regions
with adjacent differences will create larger values in the output matrix
than those with spread differences, or a smaller number of differences.
To normalise, the matrix is divided by the maximum possible convolu-
tion sum (of an array of all 1s for the same size and filter). An example
difference matrix and the subsequent convolution matrix are depicted in
Fig. 4.

A variety of filter kernel sizes and values were tested. Larger filters
take into account a larger spatial region around the target bit, while
smaller kernels are more localised. Equally, there is a decision to be
made with regards to the filter weights as they can either bias towards or
against adjacent or distant values. We tested a variety of filter sizes (2 ×
2 to 6 × 6) and various combinations of weights. Filter sizes of 2, 3 and 6
perform roughly equivalently here, while we settled on a filter matrix of
all ones.

4.2. Hatched Matrix Distance

Noting that the DCT-based approach often creates a hatched pattern,
it seems appropriate to treat the hash matrices for PDQ and phash in
terms of their rows and columns. The weight patterns also appear to
make a distinction between whether the values are in even or odd col-
umns/rows, which should also be taken into account. The process is as
follows:

1. Extract rows/columns from the hash, noting whether the indices are
even or odd. Concatenate even rows, even columns, odd rows, and
odd columns into their own respective arrays.

2. Calculate the Hamming Distance for each of the four arrays between
each hash. (i.e., Hash A’s even row array to Hash B’s even row array,
etc.)

3. Calculate the minimum distance between rows (i.e., min(even-
row_dist, oddrow_dist)) and columns.

4. Return the mean of the minimum row/column distances (i.e., mean
(minrow, mincol))

By taking the minimum value for odd/even rows and columns, we
can account for whichever of the values is dominant, with the assump-
tion that the values would not be closer by accident. The mean of row/
column values allows us to mediate between the two, as they are often
both important in hatched weight patterns (as with the phash composite
top-left case). Alternative versions which compared individual rows/
columns (as opposed to concatenating them together), with both Ham-
ming and Cosine distances, proved less effective overall. One limitation
is that this approach does not necessarily account for the cases where the
hatched pattern does not appear, where the emphasis is on the low-
frequency coefficients, as with cropping the top and left of an image.

4.3. 2-D Ngram Cosine Distance

Normally an N-gram is a sequence of n items adjacent to one another,
often used in Natural Language Processing (NLP) to capture a sliding
window of n adjacent words, while adjacent bytes are used for pro-
cessing binary file data. In this case, to capture spatial information, we
use two-dimensional N × N-grams, essentially n × n matrices of hash
bits. The process is as follows:

1. Reshape hash arrays to matrices, and for each matrix accumulate an
array of n × n Ngrams. Sliding windows are overlapping, such that
the rightmost column of the first window forms the leftmost column
of the next.

2. For each hash, flatten the array of Ngrams.
3. Calculate the Cosine Distance between each flattened array.

N-gram sizes from 2 × 2 to 6 × 6 were tested, with a width of 2
performing the best overall, though we did not test non-overlapping
windows.

4.4. Evaluating matching performance

Evaluating the prototype metrics involved selecting a random
250,000 image subset of the Flickr 1 Million Dataset and applying the
transforms in Table 1. Some transforms (most of the Composite per-
mutations, and the 10 % all-sides crop) are omitted for brevity, with
CropTL and CompTL referring to the Crop 25 % Top and Left, and
Composite Top-left transforms, respectively. Mirror-y is dropped as it is
not particularly practical as it hinders viewability in a content-
preserving scenario.

We made use of the PHASER framework to calculate Intra- and Inter-
image distances and the corresponding Area Under the Curve (AUC) for
the ROC (Receiver Operating Characteristic) plot, calculated for each
algorithm/transform/metric triplet. Less difficult transforms, such as re-
scaling, compression and enhancement (contrast, colour, sharpness),
were also tested, but omitted here as they are relatively trivial. Neu-
ralhash was included in the experiment even though it lacks obvious
spatial encoding to determine if it would still benefit from different
metrics.

Evaluation results are depicted in Table 2. The AUCs for Hamming
Distance are presented as is, while AUCs for the prototype distance
metrics are recorded as percentage point differences to the Hamming
Distance for the sake of readability. This is calculated as: (AUCmetric −

AUCHamming) × 100.
A 1%pt change indicates a positive 0.01 shift in the AUC over

Hamming Distance. It should be noted that small changes at high AUCs
Fig. 4. Example intra-image difference and convolution matrices for ahash,
with a filter kernel size of 3 × 3, with all ones.

S. McKeown

Forensic Science International: Digital Investigation 52 (2025) 301878

6

can still translate to decreasing FP and FN rates by orders of magnitude
for a given distance threshold.

For the spatial hashes (we include whash in this category for our
purposes), the convolution approach is often positive, with the rotate
and composite top-left approach benefiting the most across all hashes,
achieving uplifts of around 8%pts for both dhash variants. The border
transform also sees an uplift for all spatial hashes, despite their already
solid performance. The only large loss here is mirroring for dhash,
though this already performs poorly. Interestingly, the relative benefits
for phash and PDQ seem less-well aligned with each other here. There is
some upside for the Neuralhash composite case, which is the worst
transform for it in this set. However, the movement is relatively small,
slightly less than 1%pt, leaving a lot of room for improvement.

Hatch Matrix Distance was intended for the DCT-case, and seems to
be slightly worse across the board than Hamming Distance for spatial
approaches. For the DCT hashes, there is essentially no downside, but
the mirroring difficulties completely evaporate for both phash and PDQ,
to the point that they far exceed the performance of the spatial ap-
proaches. The AUC has essentially doubled, demonstrating that the in-
formation in the hashes themselves is enough to distinguish between
inter- and intra-image classes, despite representing a worst-case trans-
form for Hamming Distance comparisons. Neuralhash, overall, seems to
lose out consistently here.

While the prior two metrics had little upside for Neuralhash, it seems
to have more movement for the Ngram approach, with a 2.7%pt uplift
on the composite embedding, at the slight expensive of other transforms.
Generally, Ngrams are not a good trade-off for spatial approaches,

though the rotate transform does seem to benefit across all hashes. PDQ
only sees change in its worst-off transforms, but the changes are too
insignificant to matter. As with the other metrics, phash sees a small
increase on a transform it already handles fairly well, i.e., composite
embedding.

Larger hash sizes for the Imagehash library algorithms were also
tested, scaling from the default 64-bit to 256-bit. Generally there are a
few cases where this has a relatively substantial impact (2–5 %pt) for
some transforms, but they trade off large losses against another trans-
form (up to 20–40 % in some cases).

4.5. Distributions and computational complexity

The inter-score distributions of original images remains appropriate
for all metrics (normally distributed around 0.5), with Normalised
Convolution distance tracking the Hamming Distance distribution
almost exactly. Ngrams sit slightly higher than the Hamming distribu-
tions at around 0.51 for most metrics, though it is a little lower for whash
(0.49–0.50) and considerably higher for dhash_vertical (0.55). Larger
Ngrams trend down towards 0.5. Both Ngram and Convolution distance
metrics smooth out any spikes that Hamming Distance produces for
certain algorithms. Due to the minimum distance comparison in
Hatched Matrix Distance, unrelated images are slightly more similar
than for other metrics, producing a mean/median around 0.45 for all
algorithms. Despite this, inter- and intra-classes are still neatly separated
allowing for discrimination between them.

For a rough complexity demonstration, timed benchmark data for
the distance metrics are presented in Table 3. Code was written in Py-
thon, with the scipy.spatial.distance module being used for
Hamming and Cosine distances, while convolve is from scipy.
ndimage. The maximum value for normalisation was pre-calculated for
Convolution Distance and passed to the function. Distances for 100,000
random 64-bit array pairs were calculated for ten runs, with the mean
time in seconds being reported in the table. No attempt was made to
vectorise the base functions, and as such the array slicing operations
used by Hatched Matrix Distance and Ngram Cosine Distance make them
very slow in Python, putting them around 10–20× slower than Ham-
ming Distance. The Scipy implementation of convolution is likely
reasonably efficient, but overall the Convolution Distance is still around
4× slower than Hamming. As Hatched Matrix Distance is potentially
very useful for DCT-based algorithms, an attempt was made to optimise
it by pre-compiling it using the numba module, with fastdist being
used for its Hamming calculation. This resulted in an order of magnitude
speed-up, but it still lags behind Hamming Distance by about 1.5×.

5. Conclusion and future work

Overall, we can consider both research questions to have been
answered clearly. For RQ1, pertaining to whether or not spatial image
data is encoded into bit positions in perceptual hashes, Section 3.2
demonstrates that this is indeed the case for a set of popular spatial and
frequency domain hashes, but not for the tested deep-learning model.
The patterns and information encoded in said bit positions are essen-
tially averaged out with a global distance measure such as Hamming
Distance. This additional information could potentially be used to

Table 2
Area under the ROC curve for various non-trivial transforms. Hamming Distance
and percentage point difference vs. the Hamming AUC for: Convolution Distance
(4 × 4 filter), Hatched Matrix Distance (Hamming), and 2 × 2gram with Cosine
distance. Differences are highlighted with bold for >1 % and underline for
< 1 %. 1%pt = 0.01 in the AUC.

AUC %pt Diff to Hamming

Hash Trans. Hamming Conv4_4 Hatch 2gram
ahash CropTL 0.829 0.2 0.0 − 5.4

MirrorX 0.766 − 0.3 − 2.6 − 3.6
Rotate 0.919 2.5 − 0.1 − 0.8
Border 0.971 0.7 − 0.3 0.6
CompTL 0.527 3.8 0.5 − 4.8

dhash CropTL 0.641 − 0.6 − 0.7 − 4.9
Mirr.X 0.618 − 1.1 − 3.4 1.0
Rotate 0.808 7.6 − 1.0 4.3
Border 0.995 0.4 − 0.3 0.1
CompTL 0.992 0.4 − 0.4 − 2.9

dhash vertical CropTL 0.646 − 0.4 − 0.4 − 4.3
MirrorX 0.801 − 0.1 − 2.9 − 6.5
Rotate 0.780 8.4 − 1.0 3.6
Border 0.992 0.6 − 0.4 0.2
CompTL 0.989 0.4 − 0.6 − 5.5

Neural hash CropTL 0.996 0.0 − 0.1 − 0.4
MirrorX 0.930 − 0.1 − 0.4 − 1.0
Rotate 0.988 0.0 − 0.2 − 0.4
Border 0.999 0.0 0.0 0.0
CompTL 0.844 0.9 − 0.7 2.7

PDQ CropTL 0.527 − 0.2 − 0.1 − 0.9
MirrorX 0.515 0.9 48.5 1.6
Rotate 0.502 1.7 3.0 2.7
Border 1.000 0.0 0.0 0.0
CompTL 1.000 0.0 0.0 0.0

phash CropTL 0.586 − 2.5 − 0.2 − 0.3
MirrorX 0.496 2.3 49.1 1.1
Rotate 0.675 − 0.1 1.5 − 0.9
Border 1.000 0.0 0.0 0.0
CompTL 0.944 2.4 0.6 1.3

whash CropTL 0.821 0.3 0.0 − 2.1
MirrorX 0.744 − 0.1 − 2.9 − 1.7
Rotate 0.904 3.1 − 0.2 1.1
Border 0.921 1.4 − 0.5 3.6
CompTL 0.604 4.7 0.2 − 3.4

Table 3
Python benchmarks for 100k randomised 64-bit array pairs. Ryzen 5900x
single-threaded, mean of 10 runs.

Metric Benchmark Time (s)

Hamming 0.79
Normalised Convolution (4 × 4) 3.41
Hatched Matrix 18.28
2gram Cosine 9.85
Optimised Hatched Matrix 1.25

S. McKeown

Forensic Science International: Digital Investigation 52 (2025) 301878

7

improve perceptual image matching classification performance by
incorporating them into a locality sensitive distance metric, which was
the focus of RQ2 (Section 4).

To explore RQ2, we propose three prototype distance metrics
(Hatched Matrix, Normalised Convolution, and 2-D Ngram Cosine),
modelling hashes as two-dimensional, squared, hash matrices. Providing
a positive result for RQ2, evaluation of these metrics indicate that sig-
nificant gains can be made over Hamming Distance. In the case of
Hatched Matrix distance for phash and PDQ, their weaknesses to mir-
roring attacks with Hamming Distance were essentially negated. This
turned a worst-case transform into one of the best-cases, at no cost to
other transform classes and with no change in the hashing process.
Indeed, transforms which are poorly handled cases may be a result of a
global distance metric, rather than being a feature of the underlying
hash algorithm. Less strikingly, the tested convolution-based distance
metric outperforms Hamming Distance across the board, though it does
trade-off small losses in some transforms. The Ngram approach is less
compelling, though it does seem to improve match performance against
rotated images.

A one-sized fits all approach to perceptual hash comparison is
perhaps ill advised, particularly as all tested algorithms have their own
characteristics, though there are shared properties between them. While
they all seem to track Hamming Distance reasonably well on aggregate,
suggesting that it does a decent job, there is clear room for improvement.
The solutions presented here are a first foray into accounting for these
spatial hash properties, and while the Hatched Matrix approach pre-
sented here works well for certain hash patterns, it does not necessarily
benefit transform patterns (such as those weighted more heavily for low-
frequency DCT coefficients). We also do not explicitly test image content
which causes difficulty for certain hashes, (such as gradients for block-
mean approaches, and high-frequency patterns for DCT-transforms),
and it is now in question whether these are indeed features of the
hashes, or their Hamming comparisons.

Future work could look to further explore the metric space by
focusing on the transform-weight response of specific algorithms in a
wider sense, as it appears spatial approaches could be improved by more
closely considering the centre of the image in many cases. DCT and other
frequency transforms can be explored for their coefficient distributions
as well as the higher-level hatched patterns presented here. Stand-
ardising pre-processing approaches could also be considered, though
this would require the rebuilding of hash databases utilising the un-
derlying hash mechanism. Additionally, none of the approaches here
consider that even in cases where a block of an image is different, not all
bits will change, as the algorithms typically aim for any given segment of
data to be a 50/50 distribution between 1s and 0s. As such, a probabi-
listic modelling approach may be appropriate here to take into account
the probability of a bit flipping or staying the same by chance.

Finally, we suggest that developers of content detection software
investigate their choice of distance metric for content detection, as their
current approach may be sub-optimal, with content-preserving trans-
formations defeating their content moderation and detection tooling
unnecessarily.

References

Beebe, N., 2009. Digital forensic research: the good, the bad and the unaddressed. In:
IFIP International Conference on Digital Forensics. Plus 0.5em Minus 0.4em.
Springer, pp. 17–36.

Breitinger, F., Liu, H., Winter, C., Baier, H., Rybalchenko, A., Steinebach, M., 2013.
Towards a process model for hash functions in digital forensics. In: International
Conference on Digital Forensics and Cyber Crime. Plus 0.5em Minus 0.4em.
Springer, pp. 170–186.

Drmic, A., Silic, M., Delac, G., Vladimir, K., Kurdija, A.S., 2017. Evaluating robustness of
perceptual image hashing algorithms. In: 2017 40th International Convention on
Information and Communication Technology, Electronics and Microelectronics
(MIPRO). Plus 0.5em Minus 0.4emOpatija. IEEE, Croatia, pp. 995–1000. May.

Facebook. PDQ. [Online]. Available: https://github.com/facebook/ThreatExchange/t
ree/main/pdq/python.

Fridrich, J., 1999. Robust bit extraction from images. In: Multimedia Computing and
Systems, 1999. IEEE International Conference on, vol. 2, pp. 536–540. Jul.

Hadmi, A., Puech, W., Said, B.A.E., Ouahman, A.A., 2012. Perceptual image hashing. In:
Watermarking-Volume 2. Plus 0.5em Minus 0.4em. INTECH Open Access Publisher.

Hamadouche, M., Zebbiche, K., Guerroumi, M., Tebbi, H., Zafoune, Y., 2021. A
comparative study of perceptual hashing algorithms: application on fingerprint
images. In: 2nd International Conference on Computer Science’s Complex Systems
and Their Application. Algeria, p. 12. May.

Hijazi, S., Kumar, R., Rowen, C., et al., 2015. Using Convolutional Neural Networks for
Image Recognition, vol. 9. Cadence Design Systems Inc., San Jose, CA, USA, 1.

Internet Watch Foundation, 2024. What Has Changed in the AI CSAM Landscape? Jul,
[Online]. Available: https://www.iwf.org.uk/media/nadlcb1z/iwf-ai-csam-repo
rt_update-public-jul24v13.pdf.

N. Krawetz. Photodna and limitations. Not known. [Online]. Available: https://www.hac
kerfactor.com/blog/index.php?archives/931-PhotoDNA-and-Limitations.html.

Manjunath, B.S., Ohm, J.-R., Vasudevan, V.V., Yamada, A., 2001. Color and texture
descriptors. IEEE Trans. Circ. Syst. Video Technol. 11 (6), 703–715.

Manning, C.D., Raghavan, P., Schütze, H., 2008. Introduction to Information Retrieval.
Plus 0.5em Minus 0.4em. Cambridge University Press, New York.

McKeown, S., Buchanan, W.J., 2023. Hamming distributions of popular perceptual
hashing techniques. Forensic Sci. Int.: Digit. Invest. 44, 301509.

McKeown, S., Russell, G., Leimich, P., 2019. Fast forensic triage using centralised
thumbnail caches on windows operating systems. Journal of Digital Forensics,
Security and Law 14 (3).

McKeown, S., Aaby, P., Steyven, A., 2024. PHASER: perceptual hashing algorithms
evaluation and results-an open source forensic framework. In: Forensic Science
International: Digital Investigation, vol. 48. Elsevier, 301680 publisher.

MIRFLICKR Download. Jun, [Online]. Available: http://press.liacs.nl/mirflickr/mir
download.html.

Singh, A., Gupta, S., 2022. Learning to hash: a comprehensive survey of deep learning-
based hashing methods. Knowl. Inf. Syst. 64 (10), 2565–2597.

Steinebach, M., 2011. Robust hashing for efficient forensic analysis of image sets. In:
International Conference on Digital Forensics and Cyber Crime. Plus 0.5em Minus
0.4em. Springer, pp. 180–187.

Steinebach, M., 2012. Robust hashing for efficient forensic analysis of image sets. In:
Gladyshev, P., Rogers, M.K. (Eds.), Digital Forensics and Cyber Crime, vol. 88.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 180–187 plus 0.5em minus
0.4em, series Title: Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering.

Struppek, L., Hintersdorf, D., Neider, D., Kersting, K., 2022. Learning to break deep
perceptual hashing: the use case NeuralHash. In: 2022 ACM Conference on Fairness,
Accountability, and Transparency, pp. 58–69.

Swain, M.J., Ballard, D.H., 1991. Color indexing. Int. J. Comput. Vis. 7 (1), 11–32.
Thiel, D., Stroebel, M., Portnoff, R., 2023. Generative Ml and Csam: Implications and

Mitigations.
Tyagi, V., 2017. Content-Based Image Retrieval. Plus 0.5em Minus 0.4em. Springer

Singapore, Singapore.
Venkatesan, R., Koon, S.-M., Jakubowski, M.H., Moulin, P., 2000. Robust image hashing.

In: Image Processing, 2000. Proceedings. 2000 International Conference on, vol. 3.
IEEE, pp. 664–666 plus 0.5em minus 0.4em.

Zauner, C., 2010. Implementation and Benchmarking of Perceptual Image Hash
Functions.

S. McKeown

http://refhub.elsevier.com/S2666-2817(25)00017-4/sref1
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref1
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref1
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref2
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref2
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref2
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref2
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref3
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref3
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref3
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref3
https://github.com/facebook/ThreatExchange/tree/main/pdq/python
https://github.com/facebook/ThreatExchange/tree/main/pdq/python
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref5
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref5
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref6
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref6
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref7
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref7
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref7
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref7
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref8
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref8
https://www.iwf.org.uk/media/nadlcb1z/iwf-ai-csam-report_update-public-jul24v13.pdf
https://www.iwf.org.uk/media/nadlcb1z/iwf-ai-csam-report_update-public-jul24v13.pdf
https://www.hackerfactor.com/blog/index.php?archives/931-PhotoDNA-and-Limitations.html
https://www.hackerfactor.com/blog/index.php?archives/931-PhotoDNA-and-Limitations.html
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref11
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref11
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref12
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref12
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref13
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref13
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref14
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref14
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref14
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref15
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref15
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref15
http://press.liacs.nl/mirflickr/mirdownload.html
http://press.liacs.nl/mirflickr/mirdownload.html
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref16
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref16
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref17
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref17
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref17
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref18
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref18
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref18
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref18
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref18
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref19
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref19
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref19
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref20
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref21
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref21
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref22
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref22
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref23
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref23
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref23
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref24
http://refhub.elsevier.com/S2666-2817(25)00017-4/sref24

	Beyond Hamming Distance: Exploring spatial encoding in perceptual hashes
	1 Introduction
	2 Background and related work
	3 Spatial data encoding in perceptual hashes
	3.1 Approach
	3.1.1 Selected hashing algorithms
	3.1.2 Dataset and transform selection

	3.2 Structural hash information

	4 Exploring alternative metrics
	4.1 Normalised Convolution Distance
	4.2 Hatched Matrix Distance
	4.3 2-D Ngram Cosine Distance
	4.4 Evaluating matching performance
	4.5 Distributions and computational complexity

	5 Conclusion and future work
	References

