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Abstract
Purpose  Exercise is known to acutely affect T-lymphocyte populations in the peripheral blood, which is intensity- and 
duration-dependent. However, effects of longer duration endurance exercise (>5 h) on T-cells in the days following are 
unknown. The aim of this study was to investigate the circulating T-cell changes that occur in response to an ultra-endurance 
event, which may provide insight into the inflammatory response to ultra-endurance exercise.
Methods  Ten individuals (m = 7, f = 3) completing an Ironman 70.3 event volunteered for the study. Peripheral blood sam-
ples were taken 1–2 days pre-race (PRE-RACE), and 1 day (RACE + 1) and 2 days (RACE + 2) post-race, with circulating 
T-cells enumerated by flow cytometry (total CD3+, CD4+ and CD8+ T-cells, regulatory T-cells [CD4+CD25+CD127−; 
TREG], naïve [CD27+CD45RA+; NA], central memory [CD27+CD45RA−; CM], effector memory [CD27−CD45RA−; 
EM], and effector memory CD45RA+ [CD27−CD45RA+; EMRA]).
Results  There were no changes in total CD3+, CD4+ and CD8+ T-cells. TREG RACE + 1 was significantly higher compared 
to PRE-RACE, as were the proportion of CD4+ NA cells and CD8+ CM cells at RACE + 2; CD8+ EM cells fell at RACE + 2 
(absolute counts and proportion).
Conclusion  In conclusion, the ultra-endurance event evoked T-cell changes over the 48 h recovery period, with an increase 
in T-cells that regulate the immune response, and a reduction in circulating EM T-cells, most likely trafficked to sites of 
tissue damage and inflammation.
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CRP	� C-reactive protein
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HR	� Heart rate
IM70.3	� Half ironman triathlon (70.3 miles)
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NA	� Naïve T-cells
TEMRA	� Terminally differentiated T-cells
TREG	� Regulatory T-cells
PBMC	� Peripheral blood mononuclear cells
URTI	� Upper respiratory tract infection
V̇O2max	� Maximum oxygen uptake

Introduction

It is well established that long duration (>1.5 h) strenuous 
exercise can modulate immune function (Nieman 2007). 
Such bouts of exercise may affect immune function via 
modulating neutrophils (Quindry et al. 2003), monocyte/
macrophage (Slusher et al. 2018) and/or lymphocyte func-
tion (Shaw et al. 2018). Indeed, we consistently observe 
drastic changes in T-cell populations in response to acute 
exercise bouts, with a dramatic rise in circulating T-cells 
immediately post-exercise (lymphocytosis), returning to 
baseline, or even below baseline (lymphocytopenia) within 
30–60 min after the cessation of exercise (Ross et  al. 
2016; Turner et al. 2010). These effects are largely due 
to exercise-induced catecholamine release, for example, 
increased β2 adrenergic signalling (Dimitrov et al. 2010; 
Kruger et al. 2008) as a result of elevated circulating epi-
nephrine and norepinephrine (Anane et al. 2009).

It is unlikely that the lymphocytopenia observed in the 
30–60 min post-exercise period is reflective of depressed 
immune function (Campbell and Turner 2018, 2019), as 
cells are most likely redistributed to lymph tissues, lung 
and gut for immune surveillance (Kruger and Mooren 
2007) or skeletal muscle to help coordinate muscle repair 
(Deyhle and Hyldahl 2018). We observed increased cir-
culating T-cell subsets (namely CD4+ T-helper cells and 
regulatory T-cells [TREG]) 24 h post-marathon (Clifford 
et al. 2017), potentially indicative of greater immune sur-
veillance, and regulation of the immune response to tis-
sue damage and inflammation. However, due to the T-cell 
pool consisting of a wide variety of subsets, and the fact 
that these subsets respond differently to exercise (Simpson 
et al. 2007), it is likely that a long-duration, endurance 
exercise bout stimulates divergent responses across T-cell 
phenotypes. Therefore, the aim of the current study was 
to investigate the influence of a strenuous, long-duration 
endurance event (Ironman 70.3 race) on a wide range of 
circulating T-cell subsets (including total CD3+, CD4+, 
CD8+ T-cells, TREG, and naïve [NA], central memory 
[CM], effector memory [EM], and effector memory 
CD45RA+ [EMRA] cells). It was hypothesised that the 
ultra-endurance event would lead to significant elevations 
in cytotoxic and effector T-cells in the 48 h post-event.

Materials and methods

Ethical approval

The authors confirm that the study was performed in accord-
ance with the ethical standards as laid down in the 1964 
Declaration of Helsinki and its later amendments. Ethical 
approval was granted by the Edinburgh Napier Univer-
sity Research and Ethics Governance Committee. Written 
informed consent was obtained from all participants prior 
to commencement of the study.

Participants

Ten (m = 7, f = 3) participants, aged 22–48 years, non-obese 
(<28 kg m2), normotensive (blood pressure < 140/90 mmHg) 
volunteered to take part in the study. All participants were 
already enrolled in an Ironman 70.3 (IM70.3) event prior to 
volunteering for the study. Participants visited the Human 
Performance Laboratory 1–2 days prior to the race for blood 
sampling (PRE-RACE), as well as the following 2 morn-
ings after the race (RACE + 1, RACE + 2, respectively). 
Participants visited the lab between 7:30 a.m. and 9:00 a.m. 
on each day in a fasted state for peripheral blood sampling 
and other laboratory measures. Baseline characteristics are 
shown in Table 1.

Assessment of peak oxygen consumption 
and lactate threshold

Within 3 weeks of the race, but no closer than 1 week of the 
race, participants underwent an incremental cycling exercise 
test on a magnetically braked cycle ergometer (Velotron, 
RacerMate, USA) to volitional exhaustion to quantify lactate 

Table 1   Participant characteristics and exercise trial data

Values shown are mean ± standard deviation
BLa blood lactate

Participants (n = 10, 7 = m, 3 = f)

Age (years) 40 ± 9
Body mass index (BMI; kg m2) 22.2 ± 2.0
Systolic blood pressure (mmHg) 120 ± 7
Diastolic blood pressure (mmHg) 71 ± 2
V̇O2peak (mL kg min−1) 56.5 ± 5.3

Power output @ V̇O2peak (W) 347 ± 44
Power output @ 4 mmol L−1 BLa 

(W)
244 ± 46

V̇O2 @ 4 mmol L−1 BLa (% of V̇
O2peak)

78.7 ± 8.4

Race time (hh:mm:ss) [range] 5:53:44 [05:30:23–6:20:28]
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threshold and maximum oxygen consumption ( V̇O2max). 
The test began at 100 W for males, and 75 W for females, 
and increased by 25 W every 3 min to quantify lactate 
threshold (Messias et al. 2018), and conducted in line with 
recommendations from Bentley et al. (2007). Blood lactate 
(BLa) was measured using capillary finger prick blood sam-
ples using a portable lactate analyser (Lactate Pro 2; Arkray 
Inc., Japan) at the end of each stage. Once the participant 
reached or surpassed BLa of 4 mmol L−1, the intensity of 
exercise was increased by 25 W every minute to exhaustion. 
The intensity (%V̇O2max) at which the participant exhibited 
a BLa of 4 mmol L−1 was recorded. Heart rate (HR) was 
monitored using HR telemetry (Polar, Finland).

Blood sampling and T‑cell phenotyping

Fasting blood samples were taken from participants 1–2 days 
prior to the race (PRE-RACE), and the two mornings after 
the race (RACE + 1, RACE + 2) by a trained phlebotomist 
using venepuncture. Peripheral blood was drawn into 6 mL 

vacutainers spray coated with EDTA anti-coagulant (BD 
Biosciences, UK), with the first 3 mL of peripheral blood 
discarded. Total blood differential leukocyte counts were 
determined using an automated haematology analyser (XS 
1000i, Sysmex, UK). Peripheral blood mononuclear cells 
(PBMC) were isolated using density gradient centrifugation 
as described elsewhere (Ross et al. 2016). To quantify TREG 
cells, cells were analysed on the day of blood collection. For 
the remainder of T-cell subsets, cells were frozen in RPMI 
and 10% dimethyl sulfoxide at −80 °C until batch analysis.

For TREG cell analysis, PBMCs were stained with 
monoclonal antibodies anti-CD3, anti-CD4-BV650, 
anti-CD25-BV510, and anti-CD127-FITC (all BD Bio-
sciences, UK) and left to incubate at 4 °C in the dark for 
30 min prior to enumeration by flow cytometry (BD FACS 
Celesta, BD Biosciences, UK). TREG cells were defined 
as CD3+CD4+CD25+CD127− cells (see Fig. 1 for flow 
cytometry gating strategy).

For CD4+ and CD8+ NA, CM, EM and EMRA phe-
notyping, these were performed in batch analysis on stored 
PBMCs. Frozen PBMCs were thawed on ice and subsequently 

Fig. 1   Flow cytometric quantification of T-lymphocyte popula-
tions. Side scatter vs. forward scatter for identification of lympho-
cyte gate, followed by gating CD3+ events. Subsequent gating for 

CD4+ TREG are shown (CD25+CD127−), and CD4+ and CD8+ 
NA (CD27+CD45RA +), CM (CD27+CD45RA−), EM (CD27−
CD45RA−), and EMRA (CD27−CD45RA +) events are shown
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stained with monoclonal antibodies against anti-CD3 BV786, 
anti-CD4 V450, anti-CD8 V500, anti-CD27 BV650 and 
anti-CD45RA PerCP Cy5.5 (all BD Biosciences, UK). 
NA, CM, EM and EMRA cells were defined as follows: 
CD27+CD45RA+, CD27+CD45RA−, CD27−CD45RA−, 
CD27−CD45RA+, respectively (Table 2). Cells were incu-
bated with antibodies for 30 min at 4 °C prior to enumeration 
by flow cytometry. A minimum of 100,000 mononuclear cells 
were enumerated per sample for each T-cell panel. Flow cyto-
metric gating strategy is shown in Fig. 1.

Statistical analysis

All data were assessed for normality using the Shapiro–Wilk 
test for normality. All data were deemed to be normal for 
subsequent analyses. For comparisons between PRE-RACE, 
RACE + 1, and RACE + 2 for all cell populations, several 
one-way repeated measures analyses of variance (ANOVA) 
were performed. Main effects of time were determined, and 
where there were significant main effects and where there were 
significant main effects, Tukey’s multiple comparisons tests 
were performed to detect specific differences across the dif-
ferent visits (PRE-RACE, RACE + 1, RACE + 2). Data was 
analysed using SPSS Statistics for Windows (SPSS v26, IBM, 
Corp, New York, USA) and figures designed using GraphPad 
(GraphPad Prism 6.4.1, Dotmatics, USA). Significance alpha 
was set at p < 0.05. All data are presented as mean ± SD unless 
otherwise stated.

Results

Influence of IM70.3 race on peripheral blood 
mononuclear cells

Our data show that there were significant elevations in circu-
lating neutrophils and monocytes 1 day post-race compared 
to pre-race (neutrophils: PRE-RACE 2200 ± 777 cells μL−1 
vs. RACE + 1 3249 ± 875  cells  μL−1, p = 0.001; mono-
cytes: PRE-RACE 422 ± 145  cells  μL−1 vs. RACE + 1 
585 ± 174  cells  μL−1, p = 0.002). Both neutrophils and 
monocytes returned to similar to baseline levels after 48 h 
post-race. Total lymphocyte numbers did not change across 
the 3 days (see Table 3).

Influence of IM70.3 race on T‑lymphocyte 
subpopulations

There was no effect of the ultra-endurance event on abso-
lute counts (cells μL−1) of peripheral blood CD3+ T-cell 
(F = 2.582, p = 0.103), CD4+ T-cells (F = 3.266, p = 0.062), 
or CD8+ T-cells (F = 0.209, p = 0.814). There were no sig-
nificant changes in proportion of CD4+ cells (% of CD3+) 
(F = 2.191, p = 0.141), however, there was an increase in 
proportion of CD8+ T-cells (% of CD3) from RACE + 1 
to RACE + 2 (main effect F = 5.462, p = 0.014, RACE + 1: 
28.1 ± 6.7%, RACE + 2: 31.9 ± 8.1%, p = 0.011). Data are 
shown in Table 4.

There were no significant changes in absolute counts of 
CD4+ NA (F = 1.041, p = 0.373), CD4+ CM (F = 2.626, 
p = 0.100), CD4+ EM (F = 3.414, p = 0.055), or CD4+ 
EMRA cells (F = 1.735, p = 0.205). Likewise, there were 
no significant changes in absolute counts of CD8+ NA 
(F = 1.013, p = 0.383), CD8+ CM (F = 3.375, p = 0.057), 
or CD8+ EMRA cells (F = 1.459, p = 0.259). There was a 

Table 2   T-cell population phenotyping

TREG regulatory T-cells, CM central memory, EM effector memory

T-cell population Phenotype

Total T-cells CD3+
CD4+ T-cells CD3+CD4+
CD8+ T-cells CD3+CD8+
TREG CD3+CD4+CD25+CD127−
CD4+ NA CD3+CD4+CD27+CD45RA+
CD4+ CM CD3+CD4+CD27+CD45RA−
CD4+ EM CD3+CD4+CD27−CD45RA−
CD4+ EMRA CD3+CD4+CD27−CD45RA+
CD8+ NA CD3+CD8+CD27+CD45RA+
CD8+ CM CD3+CD8+CD27+CD45RA−
CD8+ EM CD3+CD8+CD27−CD45RA−
CD8+ EMRA CD3+CD8+CD27−CD45RA+

Table 3   Changes in circulating leukocyte number in response to 
ultra-endurance event

Values shown are mean ± SD
** p < 0.001 main effect
δ Significantly different from PRE-RACE
γ Significantly different from RACE + 2

PRE-RACE RACE + 1 RACE + 2 Main effects 
(F value, p 
value)

Neutrophils 2200 ± 777 3249 ± 875δ,γ 2399 ± 707 10.590, 
0.001**

Monocytes 422 ± 145 585 ± 174δ,γ 466 ± 123 9.007, 
0.002**

Lympho-
cytes

1668 ± 363 1836 ± 506 1684 ± 478 2.190, 0.141
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significant decline in absolute counts of CD8+ EM cells 
from PRE-RACE to RACE + 2 (main effect F = 3.929, 
p = 0.038; PRE-RACE: 110 ± 77 cells μL−1, RACE + 2: 
75 ± 29 cells μL−1, p = 0.040).

There were largely no significant changes in propor-
tional data (cells as % of parent cell, e.g. % of CD4+ or % 
of CD8+). There were no changes in CD4+ CM (F = 0.229, 
p = 0.799), EM (F = 1.444, p = 0.262), EMRA (F = 1.29, 
p = 0.299), or CD8+ NA (F = 0.733, p = 0.494), or EMRA 
(F = 2.902, p = 0.081) cells, but noted increases in proportion 
of CD4+ NA and CD8+ CM from RACE + 1 to RACE + 2 
(CD4+ NA: main effect F = 3.978, p = 0.037; RACE + 1: 

52.0 ± 9.6%, RACE + 2: 57.0 ± 11.8%, p = 0.041; CD8+ CM: 
main effect F = 5.453, p = 0.014; RACE + 1: 13.0 ± 10.8%, 
RACE + 2: 20.7 ± 8.4%, p = 0.016), with a significant drop 
in proportion of CD8+ EM cells from PRE-RACE to 
RACE + 2 (main effect F = 4.041, p = 0.036; PRE-RACE: 
28.8 ± 11.0%, RACE + 2: 21.9 ± 6.9%, p = 0.046).

CD4+ and CD8+ T-cell data are shown in Figs. 2 and 3.
Despite no changes in total CD4+ cell number, circu-

lating TREG cells were significantly elevated on RACE + 1 
compared to PRE-RACE (absolute counts: main effect 
F = 41.730, p < 0.001; PRE-RACE: 16 ± 6  cells  μL−1, 
RACE + 1: 55 ± 20 cells μL−1, p < 0.001; proportional data 
as % of CD4+: main effect F = 61.230, p < 0.001; PRE-
RACE: 2.3 ± 0.5%, RACE + 1: 6.9 ± 1.8%, p < 0.001). These 
values returned to baseline levels at RACE + 2. TREG data 
are shown in Fig. 4.

Discussion

Our data show that an ultra-endurance event (IM 70.3), sig-
nificantly altered circulating leukocytes in the 2 days after 
the event. Namely, there were elevations in neutrophils and 
monocytes (RACE + 1 vs. PRE-RACE), possibly reflective 
of inflammatory response to extreme exercise (Comassi 
et al. 2015; Shin and Lee 2013; Stelzer et al. 2015), but also 
alterations in specific T-lymphocyte subsets, with elevations 
in TREG, CD4+ NA, CD8+ CM, and a drop in CD8+ EM 
cells, with no other alterations in other T-lymphocyte subsets 
(CD4+ CM, EM, EMRA, CD8+ NA, EMRA).

Table 4   Changes in circulating T-cell populations in response to 
ultra-endurance event

Values shown are mean ± SD
*p < 0.005, main effect
γ Significantly different from RACE + 2

PRE-RACE RACE + 1 RACE + 2 Main effect (F 
value, p value)

CD3+ T-cells
 Cells μL−1 1184 ± 310 1325 ± 463 1160 ± 460 2.582, 0.103

CD4+ T-cells
 Cells μL−1 731 ± 195 851 ± 299 707 ± 273 3.266, 0.062
 % of CD3+ 63 ± 11 65 ± 9 62 ± 10 2.191, 0.141

CD8+ T-cells
 Cells μL−1 365 ± 154 381 ± 174 372 ± 174 0.209, 0.814
 % of CD3+ 30 ± 9 28 ± 7γ 32 ± 8 5.462, 0.014*

Fig. 2   CD4+ T-cell changes 
in 48-h post-exercise period in 
response to ultra-endurance race 
(n = 10). CD4+ naïve (CD4+ 
NA, a), central memory (CD4+ 
CM, b), effector memory 
(CD4+ EM, c) and effector 
memory CD45RA+ (CD4+ 
EMRA, d) absolute counts over 
3 days (PRE-RACE, RACE + 1, 
RACE + 2). Corresponding pro-
portional data are shown in e–h. 
Values shown are mean ± SD 
and individual datapoints, 
* p < 0.05
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The neutrophil and monocyte data suggest a strong 
inflammatory response to the ultra-endurance bout. Acute 
exercise is known to increase neutrophils and monocytes, 
which can be elevated for up to 6–24 h post-exercise (Peake 
et al. 2017; Walsh et al. 2011). In this study both neutrophils 
and monocytes were elevated at 24 h post-race (RACE + 1), 
which returned to near baseline (PRE-RACE) levels by 
48 h post-race (RACE + 2). The neutrophilia may be due 
to cortisol-stimulated bone marrow release (McCarthy and 
Dale 1988), or other inflammatory factors which are also 
responsible for mobilisation of cells from the bone marrow, 
such as interleukin-6 (IL-6), glucocorticoids, and granulo-
cyte colony stimulating factor (Suzuki et al. 2003). These 
neutrophils, once in the circulation, can be attracted to 
muscle damage by chemoattractants (Tsivitse et al. 2005), 
and subsequently the cells migrate into the affected mus-
cle tissue (McLoughlin et al. 2003). Monocyte elevations 
are also likely due to increased bone marrow production 
and release (Shi and Pamer 2011), which also infiltrate 
skeletal muscle after tissue damaging exercise (Marklund 
et al. 2013; McLoughlin et al. 2003) such as ultra-endurance 
bouts (Marklund et al. 2013), subsequently transitioning into 

Fig. 3   CD8+ T-cell changes in 48-h post-exercise period in response 
to ultra-endurance race (n = 10). CD8+ naïve (CD8+ NA, a), cen-
tral memory (CD8+ CM, b), effector memory (CD8+ EM, c) and 
effector memory CD45RA+ (CD8+ EMRA, d) absolute counts over 

3  days (PRE-RACE, RACE + 1, RACE + 2). Corresponding propor-
tional data are shown in e–h. Values shown are mean ± SD and indi-
vidual datapoints, * p < 0.05

Fig. 4   CD4+ regulatory T-cell (CD4+ TREG) changes in 48-h post-
exercise period in response to ultra-endurance race (n = 10). a abso-
lute counts over 3 days (PRE-RACE, RACE + 1, RACE + 2), b cor-
responding proportional data. Values shown are mean ± SD and 
individual datapoints, **** p < 0.001
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macrophages. These tissue infiltrating macrophages contrib-
ute to tissue repair and regeneration, and without this pro-
cess of immune cell infiltration, recovery from tissue damag-
ing exercise is limited (Tidball and Wehling-Henricks 2007). 
Studies have demonstrated that monocytes/macrophages 
can contribute to tissue repair via clearing debris (Arnold 
et al. 2007), stimulating muscle satellite cell differentiation 
(Tidball and Wehling-Henricks 2007), and promoting angio-
genesis (Latroche et al. 2017; Ochoa et al. 2007)thus, these 
cells are a key player in the recovery from ultra-endurance 
exercise, where tissue damage is extensive (Rubio-Arias 
et al. 2019).

This is the first study to enumerate specific circulating 
T-cell subsets in the days after an ultra-endurance event. 
Previous work has demonstrated that exercise results in an 
acute lymphocytosis during exercise followed by lymphocy-
topenia in the minutes post-exercise (Rooney et al. 2018), 
which is likely to have occurred in this study. The longer-
term changes (days post-race vs. minutes/hours post-race) 
are likely reflecting the chronic inflammatory processes 
taking place in muscle, lung and/or other peripheral tissues 
that result from such exercise. Turner et al. (2013) observed 
elevated C-reactive protein (CRP) after a single-stage, 
multi-day 233 km running event (100-fold for 24 h, eight-
fold after 7 days post-race), and Rubio-Arias et al. (2019), 
whilst also observing elevations in CRP over 72 h post-ultra 
race, observed significant muscle damage (plasma creatine 
kinase) over the same timepoints. These studies and ours 
indicate that an ultra-endurance event represents a signifi-
cant inflammatory stimulus, which could be contributing to 
the peripheral blood immune cell components, due possibly 
to trafficking of key immune cell subsets into inflamed/dam-
aged tissues.

Significant elevations in TREG absolute counts and 
proportions were observed RACE + 1 vs. PRE-RACE. 
The function of these cells is primarily to regulate the 
immune response to infection and inflammation (Littringer 
et al. 2018; Lei et al. 2015), and the elevation of these 
cells in the peripheral blood 24 h post-race may indicate 
upregulated production of these cells to control inflamma-
tory processes, or an active transport of these cells from 
lymph stores into the blood for re-direction to inflamed 
tissue (such as muscle and lungs). An alternate role for 
these cells in the context of recovery from extreme exer-
cise, could be a contribution to repair and regeneration 
(Li et al. 2018). Recent evidence shows that these cells 
contain potent regenerative proteins, such as amphiregu-
lin (Liu et al. 2022; Zaiss et al. 2015) which can promote 
tissue repair through epidermal growth factor signalling 
(Zaiss et al. 2015) and have been implicated in myocar-
dial muscle repair post-myocardial infarction (Zhuang 
et al. 2022) as well as wound healing (Zaiss et al. 2019). 
Therefore, TREG elevations within 24 h post-event could 

be contributing to a muscle tissue remodelling process, as 
well as suppressing macrophage- and other T-cell medi-
ated inflammatory responses. Recently, Langston et al. 
(2023) demonstrated the role of TREG in muscle post-
exercise, with TREG infiltration into skeletal muscle post-
exercise promoting the long-term exercise training aerobic 
adaptations. However, this study was performed in mice, 
and thus human studies should now be undertaken to elu-
cidate the role of TREG changes with exercise in muscle 
adaptation. It must be noted that in this study, TREG were 
measured as CD3+CD4+CD25+CD127−, and we did not 
include FoxP3 in our flow cytometry assay. CD127(−) was 
used to enumerate TREG cells in our sample, as CD127 is 
downregulated in these cells and correlates well with TREG 
suppressor functions (Liu et al. 2006; Yu et al. 2012), and 
CD4+CD25+CD127− cells were found to have greater 
suppressive function than broadly CD4+CD25+ T-cells 
(Yu et al. 2012). However, some CD127+ T-cells may 
also express FoxP3 (Klein et al. 2010), and therefore, the 
CD127low/− phenotype may be excluding a small propor-
tion of TREG cells in our study.

CD4+ and CD8+ EM absolute counts were reduced 48 h 
post-race, resulting in proportional increases in CD4+ NA 
cells. This drop in CD4+ and CD8+ EM absolute count 
could be explained by (1) selective apoptosis of these cells, 
or (2) egress of these cells into peripheral tissues at this 
timepoint. It is known that a small proportion of T-cells 
acutely express pro-apoptotic markers (Navalta et al. 2013; 
Kruger et al. 2016), with high intensity exercise preferen-
tially promoting apoptosis in highly differentiated subsets, 
such as CD4+ and CD8+ EM and EMRA cells (Kruger et al. 
2016). However, as we did not observe declines in CD4+ or 
CD8+ EMRA cells in this study, apoptosis may not be the 
only reason we observed changes in T-cells.

Upon exercise cessation, T-cells egress from the circula-
tion into peripheral tissues (Kruger and Mooren 2007), with 
highly differentiated subsets displaying preferential egress 
(Graff et al. 2018), likely mediated by greater β2 adrener-
gic receptor expression on such subsets (Graff et al. 2018). 
Whilst we observed a reduction in CD4+ and CD8+ EM 
subsets 48 h post-exercise, it is likely that the reason for this 
reduction differs to that observed minutes post-exercise. The 
reduction of these cells in the circulation 48 h post-exercise 
is most likely due to trafficking to sites of muscle damage 
(Deyhle et al. 2020), with evidence suggesting an accumula-
tion of CD4+, CD8+ T-cells with an effector phenotype in 
damaged skeletal muscle tissue in male Lewis rats (Deyhle 
et al. 2020), as well as in ultra-endurance athletes after a 
24 h endurance bout of exercise (Marklund et al. 2013). Both 
studies documented elevations in skeletal muscle infiltration 
of CD8+ T-cells, with the former demonstrating a greater 
infiltration of CD4+ T-cells than CD8+ T-cells (Deyhle 
et al. 2020).
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There is some argument for the reduction in CD4+ and 
CD8+ EM cells in the circulation to reflect suppressed 
immune function. However, this has been debated exten-
sively (Campbell and Turner 2018; Simpson et al. 2020). 
The participants in the current study completed a 28-day 
upper respiratory tract infection (URTI) symptom question-
naire after the event (data not shown; Wisconsin Upper Res-
piratory Symptom Survey WURSS-11) (Obasi et al. 2014). 
Out of ten participants, 3 reported feeling sick within the 
28 days, and this was unrelated to extent of changes within 
the T-cell phenotypes. This study was not designed to assess 
immune function and infection risk in these individuals, and 
thus more robust measures of URTI infections/symptoms 
should be incorporated into larger studies of this sort, as 
well as including appropriate controls. As a result, we cannot 
conclude whether the changes in EM absolute counts and 
proportions were resulting in elevated infection risk.

Limitations

In this study, dietary behaviours post-race were not con-
trolled, however, participants were encouraged to keep the 
same evening and morning routine for each blood sampling 
timepoint. Due to the event being a race in nature, intensity 
of the exercise (swim, cycle, run) could not be controlled, 
therefore the high variability in the T-cell data may be due 
to differences in finishing time and/or relative intensity. 
Inflammatory biomarkers, including markers of tissue dam-
age, were not evaluated in this study, and therefore we can 
only speculate that the immunological response observed 
stems from tissue damage and inflammation. However, as 
exercise-induced inflammation and muscle damage is doc-
umented extensively elsewhere (Rubio-Arias et al. 2019; 
Turner et al. 2013; Marklund et al. 2013), we are confident 
these are related.

Conclusion

A half ironman ultra-endurance event increased circulat-
ing TREG populations and reduced circulating differentiated 
T-cells (EM subsets). These data reflect possible T-cell spe-
cific inflammatory processes, including trafficking of key 
cells to damaged and inflamed tissue, and immunoregulatory 
pathways, with TREG subset elevations as a potential means 
to regulate inflammatory activity.
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