
Lightweight Blockchain Prototype for Food Supply
Chain Management

Alexey Rusakov∗, Naghmeh Moradpoor (SMIEEE)∗, and Aida Akbarzadeh‡
∗School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Edinburgh, UK

‡Faculty of Information Technology and Electrical Engineering,
Norwegian University of Science and Technology, Gjøvik, Norway

Abstract—The modern food supply chain often involves mul-
tiple layers of participants spread across different countries
and continents. This complex system offers significant bene-
fits to businesses worldwide; however, it also presents several
challenges. One major problem is the inability to trace the
product flow back to its origin, a critical issue in many
industries. Another issue is the lack of trust among supply chain
participants. Blockchain technology can help address these and
other challenges faced by the supply chain industry. However, it
is surprising that, globally, there are still not many examples of
the technology’s adoption, with most projects remaining in the
pilot stage. This paper explores the field of custom blockchain
design tailored to specific applications, with a focus on supply
chain operations in the food industry. It includes the development
of a lightweight yet fully featured Python prototype for a
decentralized blockchain system. In addition to common features
like block validation and state updates, the prototype includes a
newly designed type of transaction tailored specifically for supply
chain operations. These transactions eliminate the need for smart
contracts, making the system more lightweight compared to
general-purpose blockchain platforms such as Ethereum and less
prone to security vulnerabilities. The prototype is designed as
a public blockchain network, with Proof of Work selected as
the consensus algorithm. The novelty of this research work lies
in advancing the concept of a custom blockchain solution for
the food industry. The key elements of the prototype have been
unit tested. The overall evaluation was completed using a Python
script that simulates product flow through an example supply
chain, allowing product provenance to be determined by tracing
the product flow back to its origin.

Index Terms—Custom Blockchain, Provenance, Proof of
Work, Product Flow, Blockchain from Scratch

I. INTRODUCTION

The food supply chain often involves a complex network
of participants spread across different countries and even
continents. According to the authors in [1], these partici-
pants are primarily driven by profit-maximizing tendencies
and competitive advantages, which can sometimes outweigh
cooperation. However, the adoption of blockchain technology
has the potential to transform this dynamic and bring multiple
benefits to supply chain management. Although blockchain
technology currently faces multiple challenges, such as scal-
ability issues, data tampering before entering the blockchain,
and regulatory compliance, it offers significant benefits for
the supply chain industry such as shorter product traceability
times, greater transparency, enhanced product provenance, and
improved management of cold-chain food delivery.

According to the authors in [2], one of the major bene-
fits blockchain technology offers to final consumers is the
ability to determine and confirm the provenance of products,
including the actual production date, time, and place of origin.
Proving provenance is especially critical for certain types of
products, such as medicine or food, as it allows consumers to
verify whether the product is safe for consumption. The au-
thors in [3] suggest that provenance certificates can be stored
on the blockchain alongside the corresponding transactions.

Another major issue in the supply chain industry, aside
from the provenance of products, is the time required to
establish this provenance. Both authors in [4] and [5] highlight
the potential for time savings in product traceability through
blockchain solutions. Traditionally, it took approximately 7
days to trace the provenance, as each participant in the
supply chain had to contact the previous participant until
the product’s origin was reached. In contrast, blockchain
technology allows for determining the provenance of the same
product within just 2 seconds.

Another benefit of adopting blockchain technology in the
supply chain is improved transparency. According to the
authors in [6], traditional supply chain systems often suffer
from a lack of transparency, and blockchain solutions can help
address this issue. Enhanced transparency allows stakeholders
to view all participants in the supply chain and track the cur-
rent status of shipments in real time. This improvement should
also enhance accountability and facilitate quicker resolution
of issues that arise during the product flow.

Blockchain adoption can also help address issues in ap-
plications requiring specific temperature conditions during
product shipment or storage in industries such as food and
healthcare. According to the authors in [7], a significant
challenge in traditional supply chains is verifying whether the
required temperature conditions were consistently maintained
throughout all stages of the product’s journey. A possible
solution is to install temperature gauges that record temper-
ature readings during the product’s flow. The authors in [8]
suggest that participants or consumers can request temperature
readings, stored off-chain due to their size, and compare
their hash values with those on the blockchain to verify data
integrity.

In this paper, we developed a lightweight, fully-featured
Python prototype for a decentralized blockchain system in the

food supply chain industry. Our proposed prototype includes
a newly designed type of transaction specifically tailored for
supply chain operations, eliminating the need for smart con-
tracts. This approach makes the system more lightweight com-
pared to general-purpose blockchain platforms like Ethereum
and less prone to security vulnerabilities. There are four
research questions we aim to answer through this study for
the food supply chain industry:

• Which features from existing general-purpose blockchain
solutions should be included, and which can be left out?

• Which consensus algorithm is most suitable for the
proposed prototype?

• What API calls and transaction types are required for the
supply chain application?

• What differentiates the proposed prototype from existing
blockchain solutions?

The remainder of this paper is structured as follows: Section
II reviews related work, Section III discusses the methodology
and design, Section IV presents the implementation, Section
V covers the results and evaluation, and Section VI concludes
the paper with future work directions.

II. LITERATURE REVIEW

In this section, we review some of the related work on
blockchain-based solutions for food supply chains, with a
main focus on traceability.

In [9], the authors explore the problem of food supply chain
traceability in the dairy sector and present their solution. The
solution involves developing an Ethereum-based framework
with three fully functional smart contracts that represent the
interactions between participants in the supply chain. The sys-
tem was tested and deployed on a local Ethereum blockchain
network using Ganache-CLI. The authors demonstrate that the
proposed smart contracts enable tracing product flow from raw
materials to end customers. However, despite the flexibility
and freedom smart contracts offer to program almost any
logic, they can suffer from serious vulnerabilities, posing
significant risks to businesses.

The authors in [10] explore a similar problem of product
traceability in the dairy food supply chain but approach it
from a different angle. Their main focus is on developing a
system that consumes minimal computational power, making
it more environmentally friendly. The proposed system is
based on the Algorand Blockchain, which uses the Proof-of-
Stake consensus algorithm. The system benefits from lower
power consumption due to the selected consensus algorithm. It
operates in real-time and successfully improves transparency
among participants. However, their system requires the use of
cryptocurrency which may create issues with exchange rates
between the cryptocurrency and the local currencies used by
participants. This could become problematic if exchange rates
fluctuate, making transaction costs unpredictable.

The authors in [11] built an Ethereum-based prototype of
a food traceability system that includes a consumer client
and a user server. The system uses smart contracts instead

of transaction records; however, the paper does not provide
details about the algorithms used in the smart contracts.
The authors highlight several advantages, including a higher
degree of decentralization, increased security, and greater
reliability. Another advantage is the potential reduction in
transaction costs for small and medium-sized companies due
to the system’s features and flexibility. However, since the
system is based on Ethereum and smart contracts, it may face
potential vulnerabilities.

The paper [12] presents another example of building a
food supply traceability system, which is based on a private
blockchain framework, specifically Hyperledger Fabric. The
authors combine IoT and blockchain technology to achieve
the desired level of product traceability. The system includes
an identification mechanism where each product has its own
identifier, which can be verified by a smart contract. Their
work addresses the problems of poor data sharing and lack
of data security in traditional supply chain systems. However,
since the system is based on a private blockchain framework,
a limitation is that the system owner would need to identify
all participants and invite them into the system, which could
be a significant challenge in real-world applications.

The authors in [13] combine Radio Frequency Identification
(RFID) and blockchain technologies in one system. The RFID
reader interacts with the blockchain, writing information to
the blockchain when a tag is read from the product. The
tag can be attached to the paper packaging. The system is
based on the Hyperledger Fabric platform, which verifies and
manages the data and the reader. The main contribution of this
paper is the development of a blockchain-based RFID tag.
The authors emphasize the high level of security compared
to traditional methods for tracing products. However, the
private blockchain solution has limitations, including the need
to identify all participants, which may not be feasible in a
real-world environment. Another issue is the Byzantine Fault
Tolerance (BFT) protocol used by the researchers, which has
limitations and may not be well-suited for the application.

The authors in [14] propose an approach based on the
Ethereum blockchain and smart contracts for tracking soy-
beans across the agricultural supply chain. The authors high-
light that their system can be adapted for use in other
agricultural supply chains. The system benefits from standard
Ethereum trigger events, allowing participants to be notified
when certain events occur. However, it may suffer from the
same challenges as other Ethereum applications, such as
vulnerabilities in smart contracts.

The conducted literature review shows that despite the
numerous benefits blockchain technology can offer to the
supply chain industry, real-life implementations remain very
limited, with many still in the sandbox phase. One potential
solution is to use a custom-designed blockchain tailored
to a specific industry or application. Such a solution can
benefit from a lightweight design by omitting unnecessary
features, such as smart contracts. Removing these features
not only makes the solution more efficient but also enhances

Fig. 1. Blockchain

security by reducing the risk of vulnerabilities. To address this
crucial gap, in this paper, we developed a lightweight Python
prototype for a decentralized blockchain system in the food
supply chain industry. Our proposed system includes a newly
designed type of transaction specifically tailored for supply
chain operations, eliminating the need for smart contracts.
Therefore, the novelty of this research lies in advancing the
concept of a custom blockchain solution specifically for the
food industry.

III. METHODOLOGY & DESIGN

The section introduces the key concepts of the proposed
blockchain solution, provides justifications for the technology
selection, and references relevant literature where applicable.

A. Blockchain

A blockchain is a sequence of blocks linked by the hash
values of the previous blocks (see Figure 1). The proposed
prototype’s block design includes a header and a body. The
body holds the list of transactions, while the header contains
the following fields:

• Block number: A sequential number that increments by
one compared to the parent block’s number.

• Timestamp: The timestamp recorded at the beginning
of the mining process.

• Parent hash: The hash value of the parent block.
• Difficulty: An integer that controls the mining time for

a given block.
• Beneficiary: The address (public key) of the miner who

mined the block.
• Transaction root: The hash value of the transactions

recorded in the block.
• State root: The hash value of the Trie data structure at

the time of mining the block.
• Nonce: The solution to a cryptographic puzzle solved by

miners.

B. Account

An account or wallet represents an entity or individual
(user) who interacts with the blockchain [15]. Each account

has a pair of private and public keys. The public key, either
on its own or in a derived form, represents the address
of the account and can be shared with others to send or
receive transactions. In contrast, the private key remains secret
and is used for signing transactions and/or data encryption.
The account must also store a balance, which represents the
amount of cryptocurrency available in the account.

C. Blockchain synchronisation

Synchronization is crucial as it represents the initial step
for a new node to start interacting with the blockchain.
Blockchain synchronization essentially means that a node,
which has been disconnected from the network for a while,
receives the most recent copy of the blockchain [16]. The
synchronization process is also a part of new account creation
to ensure that the new account has an up-to-date local copy
of the blockchain.

D. Type of Blockchain

A private blockchain is attractive primarily due to its fewer
security concerns; however, issues of trust and the difficulty
in identifying all blockchain participants make this type of
blockchain less preferable for the proposed prototype. A
public blockchain has the advantage of being open to anyone
and not owned by any single entity, making it more suitable
for the proposed prototype. Although some general-purpose
public blockchains suffer from scalability issues, the current
prototype is still chosen to be a public blockchain. This is
because scalability problems become critical only when the
blockchain grows large and when the number of transactions
processed per second becomes a significant concern. However,
the number of participants in a global blockchain platform for
supply chain operations is expected to be only a fraction of
those on general-purpose platforms like Ethereum.

E. Consensus Algorithm

Among the three popular algorithms of Proof of Work
(PoW), Proof of Stake (PoS), and Practical Byzantine Fault
Tolerance (PBFT), PBFT is the only one designed for a private
decentralized network where there is an owner and all other
nodes are backup nodes. Since the proposed prototype is
based on a public blockchain, PBFT cannot be considered.
The remaining two algorithms, PoW and PoS, can both be
implemented within public decentralized networks. However,
because PoS is based on ”stakes” and the proposed blockchain
prototype is focused on supply chain operations, the concept
of ”stake” may not be well-suited to the prototype, at least
in the initial phase of blockchain deployment. On the other
hand, PoW is a proven solution employed in Bitcoin, making
it a strong candidate for the consensus algorithm.

F. Block Validation

The block validation process is a key element of the entire
blockchain operation, performed by all nodes before append-
ing a new block to the blockchain [17]. Block validation is
also executed as a routine task for all blocks during blockchain

synchronization. The block validation process should include
some basic checks [18], such as verifying that the block
number is correct, ensuring that the hash value written in
the block matches the hash value of the parent block, and
confirming that the PoW requirements are met for the given
block. The authors in [19] also show that checking the block
difficulty is necessary to avoid blockchain instability.

G. State

Each node in the blockchain network maintains a local
copy of the entire blockchain, and therefore each node has
all the transactions recorded within those blocks. However,
efficiently retrieving this data can be a challenge. To ad-
dress this, a tree-based data structure originally designed
for efficient data queries and quick information retrieval is
used. Bitcoin employs the Merkle tree as a data structure to
capture the current state of the system [20], while Ethereum
uses a modified version called the Merkle Patricia tree [21].
However, as pointed out by [22], the Merkle tree can be slow.
Therefore, in the current prototype, a simplified version of
the trie-based data structure will be used, as suggested by
[23]. The trie-data structure is designed to store text data,
allowing us to store transaction IDs and shipment details
within it. Before being added to the tri, the text string is split
into individual characters, each representing a node in the
structure. Each node can have child nodes, creating a path
that ends with a stored value. The tri must be updated with
block data each time a new block is received to enable quick
future retrieval.

H. Pub/Sub

The prototype must enable participants to receive and
broadcast messages across the network. This is commonly
referred to as a Pub/Sub service, where publishers broadcast
messages and subscribers receive them. This feature is critical
as it connects individual nodes and forms the blockchain net-
work. Each node should be capable of sending and receiving
messages. The mechanism should allow users to subscribe
to specific channels and receive the corresponding messages.
There should also be methods defined for handling received
messages and for enabling nodes to broadcast messages across
the network.The following channels must be defined within
the blockchain network:

• BLOCK: Used by miners to send new blocks to peers.
New blocks are transmitted in the body of the message
in JSON format.

• TRANSACTION: Used to broadcast new transactions
so that peers can add them to their local transaction pool.

I. Supply Chain Product Cycle

The product cycle for the proposed prototype needs to
account for the typical processes in the supply chain industry,
with a specific focus on the food sector. The term ”product
flow” refers to the entire path of a product from its origin
to the final consumer. In the food supply chain, the final

consumer is typically represented by a grocery store or a
restaurant. The product flow may involve multiple supply
chain participants, which can be grouped into pairs. Each
pair consists of a buyer and a vendor. The movement of
the product from a vendor to a buyer is typically called a
shipment.The proposed prototype should follow the workflow
outlined below between a vendor and a buyer:

• The buyer initiates the shipment by sending a create
shipment request to the vendor. Once this request is sent
and validated, the amount of cryptocurrency is locked
from the buyer’s account.

• The vendor then confirms the shipment through a confirm
shipment request sent to the buyer.

• Once the shipment is received, the buyer sends a confirm
delivery request to the vendor. After this request is
validated by the system, the amount of cryptocurrency
locked from the buyer’s account is transferred to the
vendor’s account.

Each of these requests should be implemented via correspond-
ing types of transactions, including a blocking currency trans-
action for locking cryptocurrency from the buyer’s account.

J. API Endpoints

API endpoints are URLs that allow users to communicate
with the system. The system should include various API
endpoints to enable users to perform standard blockchain
operations, such as blockchain synchronization and creating
new accounts, as well as supply chain-specific tasks like
creating and tracking shipments. The names of the API
endpoints should start with a forward slash to indicate that
they are the endpoints of URLs.

a) Standard Blockchain Operations: The system should
allow users to create accounts. Upon creation, users should
receive both private and public keys. For the proposed proto-
type, a simplified method for creating a new account will be
implemented by sending a GET request to the endpoint /start.
This request will initialize the account creation process by
sending the appropriate transaction type. For simplicity, this
endpoint will also invoke methods that publish the transaction
across the network and mine a new block. Additionally,
as part of this process, all new accounts will receive an
initial cryptocurrency balance of 100,000 units to facilitate
blockchain operations. The API endpoint /synchronize should
be developed to allow users to obtain the latest version
of the blockchain after reconnecting to the network. The
API endpoint /mine should be developed to enable users
to participate in the block verification process and mine
new blocks. This endpoint should also issue an appropriate
reward transaction so that the miner who wins the competition
receives a reward. Once a new block is mined, it must be
added to the blockchain. The API endpoint /account should be
available for users to view their current balance and address.

b) Supply Chain Operations: The proposed prototype
should provide API endpoints that enable users to perform
supply chain-specific operations, ensuring that the product

flow is accurately captured in the blockchain network. The
API endpoint create shipment should submit a transaction
that captures the details of the shipment, including the ad-
dresses of the buyer and vendor, product description, quantity,
price, and a reference to the previous shipment transaction.
Additionally, there should be a specific transaction type that
allows the system to debit the product’s price from the buyer’s
account and block this amount until the delivery is confirmed.
This blocking transaction should be sent immediately after the
’create shipment’ transaction. Shipment creation should be
allowed only for the buyer, not the vendor. The API endpoint
confirm shipment is the next step after the shipment is
created. The vendor should confirm the shipment, so there
should be a mechanism that permits only the vendor to
confirm the shipment. A dedicated transaction type needs
to be developed for this purpose. The API endpoint con-
firm delivery is the final step in the shipment process. Only
the buyer of the current shipment should have access and
be able to confirm the delivery. A dedicated transaction type
needs to be developed to confirm the delivery. Once the
delivery is confirmed, the vendor receives the amount that was
previously debited and blocked from the buyer’s account. The
API endpoint provenance should allow users to trace back
and view the entire product flow down to its origin based on
the entered shipment ID

c) Front-end Design: The front-end of the proposed
prototype should allow users to perform all key operations
related to the prototype, including submitting transactions and
mining new blocks. The wireframe of the main HTML page
is depicted in Figure 2. The top of the HTML page should
display the current node ID and the address of the current
user. The ’create shipment’ section should allow users to enter
data into text boxes for the parameters needed to create a new
shipment transaction. The submit button should then send a
POST request to the corresponding API endpoint. The result
of the request should be displayed on the screen so that users
can see whether the request was successful. The ”confirm
shipment” and ”confirm delivery” sections should enable users
to enter the shipment ID. The submit button should send
the corresponding POST requests, and the results should be
visible on the screen. The ”Mine” button allows users to
participate in the block validation process and broadcast new
blocks across the network. All messages broadcast by peers
should be displayed in real-time in a multi-line text box using
WebSocket technology.

IV. IMPLEMENTATION

While Rust would be the most suitable programming lan-
guage for our propsoed system, it generally requires more
development time and is arguably not ideal for proof of
concepts and prototypes. Therefore, Python was selected for
this project. The prototype was developed using the following
development environment, tools, and packages.

• Development Environment - WSL Ubuntu 24.04 LTS
• Programming Language - Python 3.12.3

Fig. 2. Main webpage wireframe

• Web Framework - Django 4.2.13
• REST Framework - Django Ninja 1.1.0
• Cryptography package - cryptography 42.0.8
• WebSocket - Django Channels 4.1.0
• Pub/Sub - Redis 7.0.15
• Frontend - Bootstrap 5.3.3
The repositories such as [24], [25], and [26] were reviewed

to explore potential approaches for implementing a blockchain
solution. No code was copied from these repositories or
any other sources. Due to the lack of space, we are not
covering the general implementations common across differ-
ent blockchain applications, such as accounts. The relevant
code related to these general approaches can be found in
our GitHub repository [27]. Therefore, this section presents
the key Python methods designed to manage supply chain
operations as follows.

A. Create Shipment Method

The create shipment method is the key function that
defines and creates a shipment transaction. The method first
invokes another method to generate a new shipping transac-
tion, and then calls a separate method to handle the currency
blocking transaction Listing 1.

txn_shipment = self.account.
generate_new_shipment_transaction(
vendor=vendor,
buyer=buyer,
product_description=product_description,
qty=qty,
price=price,
contract_number=contract_number,
previous_shipment=previous_shipment)

generate currency blocking txn

txn_blck=self.account.
generate_currency_blocking_transaction(
amount=price, ref_txn_id=txn_shipment[’body’

][’id’])

return ([txn_shipment, txn_blck])

Listing 1. Create Shipment

The method that generates the new shipping transaction,
Listing 2. It first sets the previous shipment field to ’origin’ if
it is empty, indicating that this is the beginning of the product
flow and the current shipment is the source of the product.
It then populates the body of the transaction, Listing 6, signs
the transaction, and returns a Python dictionary with two keys:
’body’ and ’signature’.

def generate_new_shipment_transaction(self, vendor,
buyer, product_description, qty, price,

contract_number, previous_shipment):

if previous_shipment == "":
previous_shipment = ’origin’

[SKIPPED - Transaction body]

signature = self.generate_signature(body)

return {
’body’: body,
’signature’: signature

}

Listing 2. Generate Shipment Transaction

The body of the transaction, Listing 3, is represented
by a Python dictionary with multiple keys. The key ’id’
stores a pseudo-random unique ID. The type of transaction is
’CREATE SHIPMENT TRANSACTION’, which helps dif-
ferentiate this type of transaction from others. The dictionary
also includes the addresses of the buyer and vendor, along
with the key ’data’, which can contain almost any data agreed
upon between the buyer and vendor.

body = {
’id’: str(uuid4()),
’type’: TransactionType.

CREATE_SHIPMENT_TRANSACTION.name,
’vendor’: vendor,
’buyer’: buyer,
’previous_shipment’: previous_shipment,
’data’: {

’product_description’: product_description,
’qty’: qty,
’price’: price,
’contract_number’: contract_number

}
}

Listing 3. Shipment Transaction Body

B. Confirm Shipment Method

The confirm shipment method is a wrapper function that
generates the corresponding transaction, adds it to the transac-
tion pool, and broadcasts the new transaction to peers through
the Redis server, Listing 4.

def confirm_shipment(self, shipment_id):

txn = self.account.
generate_confirm_ship_or_deliv_txn(
shipment_id=shipment_id,
transaction_type=TxnType.

CONFIRM_SHIPMENT_TRANSACTION)

if not self.account.add_transaction_to_pool(txn)
:
return {

’Error’: ’Transaction is not valid’,
’Details’: txn}

self.redis.publish_transaction(str(txn))

return (txn)

Listing 4. Confirm Shipment

The key part of the method that generates the ’confirm
shipment’ transaction, Listing 5. The transaction consists of
a body containing the shipment ID, vendor address, and type
of transaction. The method returns both the body and the
signature of the transaction.

body = {
’id’: str(uuid4()),
’from’: self.address,
’shipment_id’: shipment_id,
’type’: transaction_type,

}
signature = self.generate_signature(body)

return {
’body’: body,
’signature’: signature

}

Listing 5. Confirm Shipment Transaction

C. Confirm Delivery Method

The confirm delivery method can only be invoked by the
buyer and works similarly to the confirm shipment method,
with the only difference being that the type of transaction is
set to ’CONFIRM DELIVERY’, Listing 6.

def confirm_delivery(self, shipment_id):
txn = self.account.

generate_confirm_ship_or_deliv_txn(
shipment_id=shipment_id,
transaction_type=TxnType.

CONFIRM_DELIVERY_TRANSACTION)

[SKIPPED]

return (txn)

Listing 6. Confirm Delivery

D. API Endpoint /provenance

The API endpoint /provenance returns a Python list of
shipments, starting from the shipment represented by the
provided shipment ID and tracing back to the origin of the
product flow.

The body of the API endpoint, Listing 8, primarily consists
of a while-loop that retrieves the details of each shipment from
the state and appends the current shipment to the list.

Fig. 3. Simulated Supply Chain

V. RESULTS & EVALUATION

We tested all aspects of the blockchain solution through
four remote supply chain participants who interact to deliver
a product from the source to its final destination. It demon-
strates the ability to trace the product’s origin based on the
data available at its final destination. The participants in the
simulated blockchain are illustrated in Figure 3. Participant
#1 is a raw material supplier (frozen fish in this scenario),
while Participant #4 is the final consumer, represented by the
grocery store. Participants #2 and #3 are intermediate entities
within the supply chain, which can be represented by, for
instance, a food storage facility and a food processing center,
respectively. Each participant has access to the blockchain via
an API. However, for the purposes of the current simulation,
all API calls will be simulated using a Python script. The
simulation of the product flow begins with the preparation
steps, where each participant is initialized. This is achieved by
sending HTTP GET requests to the API endpoints /api/v1/start
and /api/v1/account. These two API calls fully set up a new
participant within the system and obtain their address for
further reference, Listing 7.
res=requests.get(url_txt+"/api/v1/start",timeout=1)
res=requests.get(

url_txt+"/api/v1/account",timeout=1)
res_dict=ast.literal_eval(res.text)
address=res_dict[’address’]

Listing 7. Initialization step

Once the buyers and vendors are set up, the simulation
is ready to start. The product flow begins with Participant #2
(the buyer), who initiates the process by submitting the create
shipment transaction, Listing 8. For the purpose of the current
simulation, fields such as qty, price, and product description
will remain unchanged throughout the product flow. However,
the field contract number will vary, starting with Contract 1
for the first pair and Contract 2 and 3 for the subsequent pairs.
txn = {

"vendor": address_vendor,
"buyer": address_buyer,
"product_description": "product_description_1",
"qty": "999",
"price": "500",
"contract_number": "contract num 1",
"previous_shipment": ""

}

Listing 8. Transaction - Create Shipment

The transaction is submitted via the HTTP POST method
to the API endpoint /api/v1/create shipment, Listing 9. Next,
the string returned from the function call requests.post is
converted into a Python dictionary, and the shipment id is

extracted. For simplicity, a new block is mined by the same
node by sending an HTTP GET request to the API endpoint
/api/v1/mine. Once this is completed, a new shipment is
created in the state.

res=requests.post(
url_buyer+"/api/v1/create_shipment",json=txn,

timeout=1)
res_lst=ast.literal_eval(res.text)
shipment_id=res_lst[0][’body’][’id’]
print(f’\nShipment id: {shipment_id}’)
res = requests.get(url_buyer+"/api/v1/mine", timeout

=1)

Listing 9. Submitting the create shipment transaction

After the new shipment is created by Participant #2 (the
buyer), Participant #1 (the vendor) will need to confirm the
shipment. In the current simulation, this is done by sending
an HTTP POST request to the API endpoint /api/v1/confirm

shipment, Listing 10. Once the shipment is confirmed by the
vendor, a new block is mined by the same node for simplicity.

res=requests.post(url_vendor+"/api/v1/
confirm_shipment",json=txn,timeout=1)

res=requests.get(url_vendor+"/api/v1/mine",timeout
=1)

Listing 10. Confirming shipment

Finally, the delivery needs to be confirmed by Participant
#2 (the buyer) by sending an HTTP POST request to the API
endpoint /api/v1/confirm delivery, Listing 11.

res=requests.post(url_buyer+"/api/v1/
confirm_delivery", json=txn, timeout=1)

res=requests.get(url_buyer+"/api/v1/mine",timeout=1)

Listing 11. Confirming delivery

Once the shipment process between Participant #1 and
#2 is completed, Participant #3 (the buyer) initiates a new
shipment, and Participant #2, who now becomes a vendor,
confirms it. Finally, Participant #3 confirms the delivery,
completing the shipment. The same process—consisting of
the three steps: create shipment, confirm shipment, and con-
firm delivery—occurs between Participant #4 (the buyer) and
Participant #3 (the vendor). The product flow is considered
complete once Participant #4 confirms the delivery. The
process is straightforward and similar between each pair. What
distinguishes each pair is that each uses the shipment id from
the previous pair as a reference to the prior shipment in each
transaction. At the final step, the provenance of the product
can be determined by sending an HTTP POST request to the
API endpoint /api/v1/provenance and printing the results on
the screen. The transaction ID is sent in JSON format, Listing
12.

res=requests.post(url_participant4+"/api/v1/
provenance",json=txn, timeout=1)

r = ast.literal_eval(res.text)

for shipment in r:
pprint(shipment)

Listing 12. Provenace Determination

VI. CONCLUSION & FUTURE DIRECTION

In this paper, a custom lightweight blockchain system
tailored for supply chain operations has been built and tested.
This prototype offers a blockchain solution with specially
designed transaction types, specifically for the supply chain
industry, focusing on the food sector. These new transactions
enable users to track supply chain operations without requir-
ing smart contracts, making the prototype lightweight and
less vulnerable to security risks. In this paper, the following
research questions were addressed through experiments:

• Which features from existing general-purpose blockchain
solutions should be included, and which can be left out?
Excluded from the design are smart contracts, which
have been replaced with specially designed transaction
types tailored for supply chain operations, making the
prototype more lightweight. Another feature is the use
of a Trie-data structure, which is simpler and faster than,
for example, the Merkle Patricia Trie.

• Which consensus algorithm is most suitable for the
proposed prototype? Based on the literature review, the
PoW algorithm was chosen for the prototype as the most
time-proven solution.

• What API calls and transaction types are required for the
supply chain application? A set of API endpoints and
corresponding transactions, such as creating shipments,
confirming shipments, confirming deliveries, and track-
ing provenance, enables the complete cycle of product
delivery between a vendor and a buyer. These API
endpoints also allow for tracing the origin of the product.

• What differentiates the proposed prototype from existing
blockchain solutions? The proposed prototype is more
similar to Bitcoin in that it is tailored to a specific
application, unlike Ethereum, which is a general-purpose
blockchain platform. It also differs from Hyperledger
Fabric, as it is based on public blockchain principles.

The proposed prototype can be improved in several ways.
One area requiring special attention is data encryption. One
possible solution is to use an additional layer, such as Zero-
Knowledge Proof or a similar approach, which could be
programmed and integrated into the prototype. Additionally,
the prototype lacks an API endpoint to cancel an ongoing
shipment and return the locked currency to the buyer.

REFERENCES

[1] Sargent, C. S. and Breese, J. L. (2024). Blockchain barriers in supply
chain: a literature review. Journal of Computer Information Systems,
64(1):124–135.

[2] Liu, B., Si, X., and Kang, H. (2022). A literature review of blockchain-
based applications in supply chain. Sustainability, 14(22):15210.

[3] Azevedo, P., Gomes, J., and Romão, M. (2023). Supply chain
traceability using blockchain. Operations Management Research,
16(3):1359–1381.

[4] Yiannas, F. (2018). A new era of food transparency powered by
blockchain. In- novations: Technology, Governance, Globalization,
12(1-2):46–56.

[5] Galvez, J. F., Mejuto, J. C., and Simal-Gandara, J. (2018). Future
challenges on the use of blockchain for food traceability analysis. TrAC
Trends in Analytical Chemistry, 107:222–232.

[6] Tyma, B., Dhillon, R., Sivabalan, P., and Wieder, B. (2022). Under-
standing accountability in blockchain systems. Accounting, Auditing &
Accountability Journal, 35(7):1625–1655.

[7] Chen, X., He, C., Chen, Y., and Xie, Z. (2023). Internet of
things (iot)—blockchain-enabled pharmaceutical supply chain resilience
in the post- pandemic era. Frontiers of Engineering Management,
10(1):82–95.

[8] Azzi, R., Chamoun, R. K., and Sokhn, M. (2019). The power of a
blockchain-based supply chain. Computers & industrial engineering,
135:582–592.

[9] Casino, F., Kanakaris, V., Dasaklis, T. K., Moschuris, S., Stachtiaris, S.,
Pagoni, M., & Rachaniotis, N. P. (2020). Blockchain-based food supply
chain traceability: a case study in the dairy sector. International Journal
of Production Research, 59(19), 5758–5770.

[10] Varavallo G, Caragnano G, Bertone F, Vernetti-Prot L, Terzo O.
Traceability Platform Based on Green Blockchain: An Application Case
Study in Dairy Supply Chain. Sustainability. 2022; 14(6):3321.

[11] Q. Lin, H. Wang, X. Pei and J. Wang, Food Safety Traceability System
Based on Blockchain and EPCIS, in IEEE Access, vol. 7, pp. 20698-
20707, 2019.

[12] Zhang X, Li Y, Peng X, Zhao Z, Han J, Xu J. Information Traceability
Model for the Grain and Oil Food Supply Chain Based on Trusted
Identification and Trusted Blockchain. International Journal of Envi-
ronmental Research and Public Health. 2022; 19(11):6594.

[13] Wang L, He Y, Wu Z. Design of a Blockchain-Enabled Traceability
System Framework for Food Supply Chains. Foods. 2022; 11(5):744.

[14] K. Salah, N. Nizamuddin, R. Jayaraman and M. Omar, Blockchain-
Based Soybean Traceability in Agricultural Supply Chain, in IEEE
Access, vol. 7, pp. 73295-73305, 2019.

[15] Houy, S., Schmid, P., and Bartel, A. (2023). Security aspects of cryp-
tocurrency wallets—a systematic literature review. ACM Computing
Surveys, 56(1):1–31.

[16] Danzi, P., Kalor, A. E., Stefanovic, C., and Popovski, P. (2018). Analysis
of the communication traffic for blockchain synchronization of iot
devices. In 2018 IEEE international conference on communications
(ICC), pages 1–7. IEEE.

[17] Lee, S. and Kim, J.-H. (2023). Opportunistic block validation for iot
blockchain networks. IEEE Internet of Things Journal, 11(1):666–676.

[18] Antonopoulos, A. M. and Harding, D. A. (2023). Mastering bitcoin. ”
O’Reilly Media, Inc.”.

[19] Sedlmeir, J., Zhou, Y., Papageorgiou, O., and Fridgen, G. (2024). The
imminent (and avoidable) security risk of bitcoin halving. Available at
SSRN 4801113.

[20] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf. [Online; accessed 16-July-2024].

[21] Wood, G. (2024). Ethereum: A secure decentralised generalised trans-
action ledger. Ethereum project yellow paper, pages 1–41.

[22] Knirsch, F., Unterweger, A., and Engel, D. (2019). Implementing a
blockchain from scratch: why, how, and what we learned. EURASIP
Journal on Information Security, 2019:1–14.

[23] Bodon, F. and Rónyai, L. (2003). Trie: an alternative data structure for
data mining algorithms. Mathematical and Computer Modelling, 38(7-
9):739–751.

[24] Git repo - Mastering Bitcoin Third Edition (2024). https://github.com/
bitcoinbook/bitcoinbook/releases/tag/third edition print1. [Online; ac-
cessed 16-July-2024].

[25] Git repo - Build Ethereum From Scratch - Smart Contracts and More”
(2024). Build ethereum from scratch - smart contracts and more.
https://github.com/15Dkatz/build-ethereum-from-scratch. [Online; ac-
cessed 16-July-2024].

[26] Git repo - Commit-by-commit breakdown of Build a Blockchain &
Cryptocurrency Full-Stack Edition (2024). Build a blockchain & cryp-
tocurrency. https://github.com/15Dkatz/cryptochain commits. [Online;
accessed 16-July-2024].

[27] Git Hub repository of the codes https://github.com/alexey1095/bc-for-sc
[Online; accessed 16-September-2024]

