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ABSTRACT
This paper introduces a novelmethodology leveragingworker localisationdata fromultrawide-band
sensors to formulate alternative facility layouts aimed at minimising travel time and congestion in
labour-intensive manufacturing systems. The system preprocesses sensor data to discern flow pat-
terns between existing stations within the production facility, such as machine tools, workbenches,
and stores. This information about the movement of people and materials informs the generation
of optimised layouts through scenario-based optimisation. We explored two methods to devise
these new layouts: a mixed-integer linear programming method and a simulated annealing meta-
heuristic, the latter being specifically developed to find high-quality solutions to the quadratic
layout design formulation. Both methods employ biobjective formulations, focussing on the min-
imisation of travel time and the reduction of congestion risk on the manufacturing floor, an aspect
often neglected in prior studies. Our methodology, applied to a real-world manual assembly line
case study, demonstrated the potential to reduce travel time by a minimum of 32% and alleviate
congestion while maintaining significant safety distances between facilities. This was achieved by
automatically identifying design features that position high-traffic facilities closely and align them
to eliminate movement overlaps.
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1. Introduction

The layout design of manufacturing systems (Anjos
and Vieira 2017; Burggräf et al. 2021; Hosseini-Nasab
et al. 2018; Pérez-Gosende, Mula, and Díaz-Madroñero
2021) plays a critical role in achieving optimal perfor-
mance and efficiency. A well-planned layout that aligns
with the needs of manufacturing processes and facili-
tates the easy movement of material and people between
stations can lead to enhanced production efficiency and
shorter lead times. However, the challenge lies in the
cost and disruption associated with modifying layouts,
often requiring complete production halts. Therefore, a
robust planning approach that considers the total diver-
sity of flow patterns observed in a facility over a signif-
icant period of time is an essential input to any process
of layout redesign. Factors such as fluctuating demands
for product types and workers’ dynamic movement pat-
terns in response to environmental changes should be
observed and integrated into the layout design. For semi-
automated manufacturing systems (Chang and Lin 2015;
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Kuo, Chen, and Wang 2018; Süer 1996) where human
workers undertake tasks at various stations and move
between facilities for product transfers, tracking worker
movements using localisation sensors, such as Ultra-
wideband (UWB) tags, offers valuable insights into flow
patterns. This paper presents an innovative methodology
that leverages worker localisation data to craft robust lay-
out designs for manufacturing systems reliant onmanual
labour, providing practical solutions to optimise perfor-
mance and efficiency.

In proposing a layout design, the primary concern
often revolves around reducing material flow distances
between facilities to minimise lead times (Anjos and
Vieira 2017). In labour-intensive manufacturing, this
translates to creating shorter distances that enable work-
ers tomove swiftly between facilities. However, focussing
solely on distances during layout design may not be
enough to facilitate frictionless workermovement during
actual operations. Crucially, such layouts often overlook
the specific paths workers would take when navigating
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between locations. Worker movements and their cho-
sen paths significantly impact traffic density within the
environment, leading to potential congestion hotspots.
Besides minimising flow distances, congestion on the
manufacturing floor emerges as a vital concern (Butt
and Cavalier 1997; Sarkar, Batta, and Nagi 2005; Zhang,
Batta, and Nagi 2011). Highly congested areas can result
in waiting times, blockages, and even accidents. Conse-
quently, designing a manufacturing layout necessitates
considering the congestion risks associated with it. This
paper addresses these challenges and proposes method-
ologies to optimise manufacturing layouts by prioritising
efficient worker movement and mitigating congestion
risks.

In automated manufacturing systems, congestion
management in layout design is often addressed by plan-
ning both routing decisions and layout decisions (Zhang,
Batta, and Nagi 2011). However, unlike robots or auto-
mated vehicles that can adhere strictly to prescribed
paths, human workers exhibit a higher degree of flex-
ibility and uncertainty in their movements and chosen
paths. Even assuming that human workers tend to favour
the shortest paths between locations, the sheer number
of potential paths makes it impossible to know the exact
routes they will take until the proposed layout is imple-
mented and their actual movements are observed. As a
result, prescribing routes to workersmay not be preferred
by workers and managers in manufacturing systems,
where workers have freedom of movement for product
and material transfers. Thus, an alternative approach is
needed – one that is less intrusive and avoids route pre-
scription while incorporating congestion risks through
indirect means based on layout decisions. In this paper,
we present a novel worker-centred methodology for gen-
erating layouts that focus solely on facility positioning
decisions and show how worker movement data sup-
plied by localisation sensors can be integrated to achieve
improved layouts. To the best of our knowledge, our study
pioneers the incorporation of worker movement data
into layout design.

We propose two different methods for generating lay-
outs. Both methods consider the minimisation of flow
distance and incorporate congestion risk by assessing
the likelihood of congestion based on the relative posi-
tioning of facilities. By adjusting the weight parameters
of these two objectives, a range of feasible layouts is
generated, with the potential to reduce flow distance
and/or congestion compared to the current layout, which
movement data is observed with. The first is mixed-
integer linear programming-based, which can be easily
solved to optimality using state-of-the-art solvers such as
Gurobi or CPLEX. This linear formulation is made pos-
sible by limiting the relative positioning of facilities to be

described by only four descriptors and using rectilinear
distances. Additionally, we use a quadratic formulation
which uses Euclidean distances and identifies the relative
positioning of facilities continuously with angles. This
quadratic formulation can potentially represent travel
distances and congestion risksmore accurately. However,
it proves too complex to be solved optimally. To discover
high-quality solutions for this quadratic formulation, we
introduce a simulated annealing metaheuristic, which
is benchmarked against four other simulated annealing
approaches proposed for similar layout design problems
in the literature. Our objective is to assess these two alter-
nativemethods, weighing their respective advantages and
disadvantages, and determine which one is better suited
for achieving high-quality layouts.

Layout design decisions that are based on static flow
patterns between facilities neglect the time-dependent
aspects of worker movement. Congestion, a spatio-
temporal phenomenon, occurs when workers simul-
taneously pass through the same area (Nanni and
Pedreschi 2006; Rempe, Huber, and Bogenberger 2016).
To comprehensively assess the performance of proposed
layouts in real-world scenarios, evaluations should incor-
porate these time-dependent aspects. This can be done
in two ways. Firstly, one can consider direct implemen-
tation in the actual manufacturing environment, where
worker movement and travel time between facilities will
be observed using sensors over a period of time, allowing
for redesign based on the new movement data. However,
this approach could be time-consuming and costly if the
proposed layout does not yield significant improvements.
Secondly, the use of realistic simulation environments
to test layouts under simulated worker movement could
provide early identification of potential layout shortcom-
ings and preventing the imposition of unsuitable layouts
on workers.

To account for time-dependent considerations, we
employ simulations to evaluate proposed layouts, calcu-
lating various time-based performance metrics such as
average travel time between facilities and spatio-temporal
congestion measures. Assuming worker preference for
shorter paths, we develop a genetic algorithm to find
reasonable short paths for human workers, which are
then used as possible paths in the simulation for the
new layouts. We apply this methodology to a real-world
case study involving the assembly line of tricycles, with
six workers and seven facilities, utilising UWB sen-
sors to track worker positions (Delamare, Duval, and
Boutteau 2020). Our findings demonstrate that our con-
gestion and distance-aware methods successfully iden-
tify layouts that significantly outperform the current
layout in terms of both travel time and congestion
measures.
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We summarise our main contributions as follows.

• Methods for facility layout design that demonstrate
howworkermovement data, supplied by indoor local-
isation sensors, can be used to improve the current lay-
out in terms of reducing both travel time for workers
and congestion risk on the manufacturing floor. This
showcases a novel use of sensor data to make manu-
facturing smarter and more efficient through layout
design.

• New approaches to integrate the aspect of congestion
risk into facility layout design by considering only
the facility location decisions, without controlling the
routing decisions.

• Establishment of benchmark against existing simu-
lated annealing meteheuristics proposed for layout
design.

The rest of our paper is organised as follows.
Section 2 reviews the related literature. Section 3 presents
our methodology, explaining how we process local-
isation data to derive flow patterns between facili-
ties (Section 3.1), using these to generate new layouts
(Section 3.2), and evaluating the new layouts under the
time-dependent factors (Section 3.3). Section 4 presents
our case study where we apply our methodology. Lastly,
Section 5 concludes the paper.

2. Related literature

The design of facility layout in manufacturing con-
cerns the strategic placement of facilities used for spe-
cific manufacturing operations within the limited space
of a manufacturing floor. Businesses strive for a well-
designed layout that enables the efficient operation of
manufacturing processes, meeting demands at a lower
cost, while adequately using floor space and minimis-
ing health and security risks for workers (Pérez-Gosende,
Mula, andDíaz-Madroñero 2021). In contrast, inefficient
layouts can lead to heightened levels of work-in-progress
and extended manufacturing lead time (Hosseini-Nasab
et al. 2018), as well as bottlenecks and congestion result-
ing from suboptimal space utilisation (Pérez-Gosende,
Mula, and Díaz-Madroñero 2021).

Hosseini-Nasab et al. (2018) provided a detailed
classification of such arrangement problems in terms
of their evolution (static and dynamic layout), work-
shop characteristics, problem formulation, and resolu-
tion approaches. Based on this classification, the layout
design problem addressed in this work is illustrated in
Figure 1. The notable observation from this mapping is
that the flow patterns are described by prescribed paths
such as backtracking and bypassing. However, the sheer

number of potential paths workers undertake is not well
represented within this categorisation. Consequently, the
authors believe that the classification should be expanded
to include smart manufacturing based on real-time fac-
tory data. The dynamic facility layout problem (DFLP)
commonly considers flow over multiple time periods,
considering the changes in material flow over time. In
contrast, this research focuses on worker’s movement
over a specific time period.

Given the importance of this design decision, a
plethora of optimisation methods have been pro-
posed in the literature to determine the most efficient
arrangement of manufacturing facilities (see Burggräf
et al. 2021, for an overview of the types of algorithms
used); Hasan et al. (2017) for Ant Colony Optimiza-
tion (ACO) for facility layout problem; Zhu, Balakrish-
nan, and Cheng (2018) for a review of dynamic facil-
ity layout research; Pérez-Gosende, Mula, and Díaz-
Madroñero (2020) for sustainability strategies in facility
layout; Yelles-Chaouche et al. (2021) for a review on
reconfigurable manufacturing systems).

The simplest form of layout design is a quadratic
assignment problem, where the potential locations for
the facilities are known and enumerated in advance, and
the design decisions are made based on a mapping of
facilities to these locations. However, even in this simpli-
fied scenario, achieving an optimal layout design remains
challenging due to the computational difficulty of the
quadratic assignment problem (Anjos and Vieira 2017).
Consequently, a wide variety of approximate optimi-
sation methods (Renzi et al. 2014) and mathematical
modelling formulations (Anjos and Vieira 2017) have
been developed to tackle this problem. In the past 10
years, a variety of metaheuristics methods (e.g. genetic
algorithms, simulated annealing, particle swarm, tabu
search, ant colony and variable neighbourhood search)
have been reported for the generation of layouts (Pérez-
Gosende, Mula, and Díaz-Madroñero 2021).

For instance, Pillai, Hunagund, and Krishnan (2011)
developed a simulated annealing metaheuristic for
the design of layouts in cellular manufacturing sys-
tems. Salimpour, Pourvaziri, and Azab (2021) utilised
a genetic algorithm to solve a multiobjective problem
that addressed both cell formation and layout decisions
for cellular manufacturing. In some cases, the problems
addressed were so complex that they necessitated the
development of multi-method solution approaches. For
example, Pourvaziri et al. (2021) decomposed the design
of a flexible manufacturing system into two subproblems
(construction of a robust layout and best routes of prod-
ucts), and employed a metaheuristic to solve the first
one, followed by a branch-and-cut algorithm for the lat-
ter. Our paper focuses on the continuous formulation
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Figure 1. Classification of layout design problems addressed in this work based on Hosseini-Nasab et al. (2018).

of the facility layout problem, where facilities can be
placed freely anywhere on the floor. For this computa-
tionally challenging problem, we propose two alternative
approaches: a mixed-integer linear programming model
and a metaheuristic.

Recognising upon the success of simulated anneal-
ing in identifying high-quality facility designs in manu-
facturing contexts (McKendall, Shang, and Kuppusamy
2006), we have chosen a simulated annealing-based

metaheuristic. This choice is motivated by its ability
to efficiently escape local optima through a probabilis-
tic solution acceptance mechanism, a key advantage for
single-solution searchmethods. For an overview of simu-
lated annealing methods proposed specifically for facility
layout design in the literature, we refer the reader to Singh
and Sharma (2006).

Layout decisions should take into consideration the
uncertainties faced by manufacturing systems, such as
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changing demand levels or resource unavailability. Lay-
outs that are generated based on deterministic repre-
sentations of dynamic manufacturing environments can
prove unrealistic and unsuitable when implemented in
the real-world. It is preferable to have robust layouts
that can perform well across a wide range of possible
scenarios, rather than optimising for a single idealistic
representation of the system. This helps avoid frequent
rearrangements, which can be costly and inconvenient
for manufacturers and workers (Pourvaziri et al. 2021).
To generate robust layouts, it is necessary to consider
the uncertainties and the decision variables affected by
them. One viable approach is to use random variables to
represent problem parameters that are subject to uncer-
tainties. For example, Zha et al. (2017) use fuzzy ran-
dom variables to formulate uncertain demand levels for
products. However, optimisation with stochastic vari-
ables is usually a challenging task. To address these chal-
lenges, similar to the works of Paydar, Saidi-Mehrabad,
and Teimoury (2014) and Pourvaziri et al. (2021), our
paper aims to find robust layouts through scenario-based
optimisation.

The issue of congestion on the manufacturing floor is
significant and directly tied to the layout. As its impor-
tance becomes increasingly recognised, researchers have
incorporated this concern into their design approaches.
The earliest study to acknowledge the importance of con-
gestion is reported by Butt and Cavalier (1997), who
investigated a continuous layout design problem with
rectilinear distances. In their study, new facilities needed
to be placed while considering a number of prede-
fined congested regions where hosting new facilities was
not possible. However, travel through these congested
regions was permitted at an additional cost per unit dis-
tance. The objective was to minimise the crossing of
congested regions as much as possible when travelling
between facilities. Later, Sarkar, Batta, and Nagi (2005)
extended this problem to also include decisions on the
dimensions of new facilities. Similar to Butt and Cava-
lier (1997), they addressed congestion in a static manner
by considering congested regions known in advance. One
limitation of assuming fixed congested regions is that as
new layouts are designed and implemented, congestion
may shift on the floor due to the availability of new travel
paths between facilities. Therefore, it may bemore appro-
priate to consider congestion as a function of material
and worker flow in the proposed layouts.

Recognising this limitation of static congestion con-
sideration, Zhang, Batta, and Nagi (2011) studied layout
design decisions in conjunction with routing decisions
to control the volume of traffic between facilities and
avoid congestion in the links. More recently, Pourvaziri,
Pierreval, and Marian (2021) addressed congestion as a

dynamic phenomenon resulting from layout and aisle
planning decisions. In their work, congestion was incor-
porated by ensuring that high-traffic aisles were wider.
The approaches used in Zhang, Batta, and Nagi (2011),
Hosseini et al. (2021), andPourvaziri, Pierreval, andMar-
ian (2021) are suitable when paths can be restricted,
such as in automated systems with vehicles following
prescribed paths. However, our paper focuses on man-
ual systems where human workers handle the trans-
fer of materials and products between facilities. Given
this distinction, our paper develops innovative indirect
approaches to incorporate congestion in layout design
without interfering with routing.

The latest research (i.e. published after 2017) in solv-
ing the DFLP problem considering congestion, flow
movements, production planning, safety, and human fac-
tors is summarised inTable 1. Commonlyminimising the
total material handling cost and the rearrangement cost
is considered as an optimisation problem. However, few
works have been published considering human factors
in the facility layout and production planning optimi-
sation problems (Li, Tan, and Li 2018). Also, the latest
research includes sustainability parameters in this layout
design problem (Tayal, Solanki, and Singh 2020). Erfani,
Ebrahimnejad, and Moosavi (2020) noted that simulta-
neous optimisation was not concurrently carried out for
dynamic facility layout and job shop scheduling.

The significant limitations of most of this research
summarised in Table 1 are assumptions related to the
certainty of the amount of material flow, identical facil-
ity size consideration, restricting the facility orientation,
and inflexible routing. Also, congestion related to auto-
mated guided vehicles and transporters is considered
rather than workers’ movements. In particular, the incor-
poration of real-time data in layout formulation is not
elaborately considered in the reviewed literature. Consid-
ering the wide variety of computational approaches that
have been proposed for a multitude of problem formu-
lations, it is difficult to compare the efficiency of these
approaches. However, the most common observations
noted from the results are that the efficiency of an indus-
trial process is most effected by the layout in large scale
facilities (such as such as many facilities or transporters).

Lastly, we must mention some studies related to
domains outside of manufacturing but which share simi-
larities with our layout design approach. Our approach is
based on human workers and their observed movement
patterns using tracking sensors. Considering the uncer-
tainties in how human workers choose their paths in
their work environment, Rezaee et al. (2021) conducted a
study on construction site layout planning. They utilised
fuzzy representations to model how workers would find
their paths, which were then used to evaluate the safety



IN
TERN

A
TIO

N
A
L
JO

U
RN

A
L
O
F
PRO

D
U
C
TIO

N
RESEA

RC
H

1331

Table 1. Summary of the latest research on DFLP related to congestion and human factors.

Reference Objective Important parameters Approach used Results

Pourhassan and Raissi (2017) Minimise material handling and the relevant
costs, and minimise the number of possible
interferences among transporters

Knownmaterial flowmatrix and demand rate
for each period; Crowding distance

Simulation and a non-dominated sorting
genetic algorithm (NSGA-II) approach

Shown the solutions leading to a reduc-
tion in the number of accidents.

Li, Tan, and Li (2018) Minimise worker’s stress, maximise the area
utilisation and minimise logistics and re-
layout costs.

Logistics factors (distance, handling costs),
Human factors (physical and mental stress),
and Management factors (reconfigurability,
production efficiency)

Artificial bee colony algorithm (ABC) Compared to PSO and the basic ABC
algorithm, the proposed ABC algorithm
needs fewer iterations and a shorter run-
ning time.

Peng et al. (2018) Minimise the totalmaterial handling cost and
the rearrangement cost

Demand uncertainty, transport device
assignment

Genetic Algorithm (GA) and Particle Swarm
Optimisation (PSO)

The proposed GA performed better than
PSO for large-scale instances.

Pourhassan and Raissi (2019) Minimise total combined rearrangement,
material handling and transporting costs

Multiple transporters Hybrid Genetic and Particle Swarm Optimisa-
tion Algorithms

The proposed algorithm performed bet-
ter with a higher number of facilities.

Pournaderi, Ghezavati, and
Mozafari (2019)

Minimise transport and handling equipment
cost

Budget constraints, type of material handling
system

Multi-Objective Cloud Simulated Annealing
Algorithm (MOCSA)

NSGA-II performs better than the MOCSA
(except for run-time criterion) and Non-
dominated Ranked Genetic Algorithm
(NRGA).

Wang et al. (2019) Minimise total processing time and logistics
cost

Number of transportation, interference
between facility location and transport path,
and assembly time

Placed-Timed Petri Net, reachability graph
algorithm and search algorithm

Illustrated the production demand in
some period will lead to the optimised
facility layout and production planning.

Chen and Tiong (2019) Minimise work-in-progress in automated
guided vehicle (AGV) based modular
manufacturing system.

Operation assignment, arrival rate, number of
workstations

Queuing theory and simulated annealing Showed reduction in work-in-progress by
identifying the number of workstations.

Tayal, Solanki, and Singh (2020) Energy-efficient sustainable sub-optimal lay-
out

Energy consumption, CO2 emission, people’s
safety and uncertain demand

Big data analytics, Firefly algorithm, data
envelopment analysis, and K-mean clustering

Identified U-shaped layouts that con-
sume less energy and emit less CO2.

Erfani, Ebrahimnejad, and
Moosavi (2020)

Minimise material handling cost, machine
rearrangement and rotation costs, closeness
and farness rating scores of departments, and
percentage of unused space

Unequal area, input and output points for
each department, transportation delay,
machine setup time

Hybrid NSGA-II and Local Search Algorithm Simultaneous optimisation decreases the
mean flow time of jobs by about 10%.

Dridi et al. (2019) Minimising the total travelled distance Multiple vehicles, multiple depots, pickup
and delivery with timewindows, precedence,
capacity and time constraints

Particle swarm optimisation The proposed algorithm reduces the dis-
tance by up to 19% in test cases.

Hosseini et al. (2021) Minimising the sum of material handling
costs and machines rearrangement costs

Positions of machines, types of transporters,
and sequence of transportation operations

Modified genetic algorithm and cloud-based
simulated annealing algorithm

The proposed algorithm is significant for
large-sized problems (particularly above
15 facilities and 10 periods of time).

Pourvaziri et al. (2021) Minimising the material handling costs Product demand, product routes, critical
period

Hybridised genetic-tabu search algorithm The algorithm performed better than
simulated annealing for bigger-sized
problems.
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risks associated with various layouts. In our simulation-
based approach to evaluate the generated layouts, we
also rely on modelling likely paths for workers generated
by a genetic algorithm. Additionally, we note the study
conducted by dos Santos Garcia et al. (2019) who con-
sidered clinical layout design based on data obtained by
tracking patient visits. Similarly, they employed process
mining techniques to analyse this data and extract likely
pathways among the facilities.

In summary, the work contributes to facility layout
design in two ways: firstly the use of worker movement
data provided by indoor localisation sensors and sec-
ondly the inclusion of congestion risk along with the
objective of reducing flow distance, both without the
need to impose specific paths for workers.

3. Methodology

In this section, we present our methodology (coined as
FLOW-TD: Facility Layout Optimization using Work-
place Tracking Data) for designing a 2D manufacturing
layout with length L and widthW, based on the observed
movement patterns of workers in the initial layout. We
represent the manufacturing facilities using the indices
i, j, k ∈ A = {1, 2, . . . ,A}. Each facility i is assumed to
have a rectangular shape, with longer and shorter sides of
lengths Llongi and Lshorti , respectively. Furthermore, we use

the index r ∈ R = {1, 2, . . . ,R} to denote the set of work-
ers whosemovements are tracked using sensors. The data
collected includes their 2D positions on the manufactur-
ing floor over a specific number of periods denoted by
t ∈ T = {1, 2, . . . ,T}, such as days or shifts.

Our methodology comprises several steps, which are
summarised in Figure 2. The initial step involves process-
ing raw worker movement data using knowledge of the
initial layout. This results in generating time-annotated
movement patterns for workers, as well as static flow pat-
terns between each pair of facilities (Section 3.1). These
flow patterns serve as the foundation for our scenarios
outlined in Section 3.2, wherewe introduce two scenario-
based robust optimisation methods for generating lay-
outs. The first method, presented in Section 3.2.1, is
based onmixed-integer linear programming. The second
method, based on a quadratic formulation, is addressed
using a simulated annealing metaheuristic, which we
develop in Section 3.2.2. In Section 3.3, we detail our
simulation approach for evaluating the performance of
the new layouts, as well as the initial layout. This assess-
ment considers the time-dependent aspects of the man-
ufacturing process to gauge congestion through dynamic
measures. To assess the new layouts, we must account for
the potential paths workers may take within them. We
address this by developing a genetic algorithm to deter-
mine the new paths. Through this dynamic evaluation,

Figure 2. Schematic of Facility Layout Optimization using Workplace Tracking Data (FLOW-TD) components.
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we compare the new layouts against the initial layout
and quantify the extent to which improvements can be
achieved in terms of reducing travel time for workers and
alleviating congestion on the floor.

3.1. Data processing

Measurements obtained from movement tracking sen-
sors require some processing before they can be effec-
tively used. For example, this can be necessary to
address signal errors and handle missing data. Further-
more, it is worth noting that data mining techniques
can be employed to transform sensor data into more
meaningful representations for analysis. These tech-
niques aid in eliminating noise, identifying significant
patterns, and even predicting likely patterns that may
not be directly observed in the data. In our specific
case study, rather than directly utilising the raw sensor
data, we apply data mining techniques to preprocess the
data.

Here, we employ a three-step data processing
approach. This approach draws inspiration from the
methodology presented in Aslan et al. (2023). In the
first step, we preprocess the raw position data to cre-
ate event logs for each worker. These event logs serve
to identify and record the specific activities performed
by workers within the described facilities, along with
their corresponding start and end times. In creating
the event log, we use the initial layout to identify the
proximity of workers to facilities. The initial layout pro-
vides the rectangles within which each facility resides.
By verifying whether a worker’s position falls within any
of these rectangles at any given time, we can identify
manufacturing activities performed by workers. Addi-
tionally, we account for the time workers spend inside
the rectangle of a specific facility. Employing a filtering
parameter β , we only consider stays that last at least β

duration as indicative of manufacturing activities being
performed.

Mathematically the concept can be described as fol-
lows: suppose the position of a worker, denoted as r, is
within facility j at time t−1, and at time t, this worker is
observed at a different facility i �= j. To acknowledge that
this worker begins a manufacturing activity in facility i at
time t, we must verify that the worker remains within the
rectangle of facility i from times t+ 1 to t + β , thereby
constituting a stay lasting at least β . Once this is con-
firmed, we generate an event in the event log for facility i,
attributed to worker r, with a start time of t. The end time
of this activity is determined as the last moment t + β

when the worker’s position was still inside facility i. This
procedure results in the creation of an event log for each
worker. Next, we utilise process mining techniques (dos

Santos Garcia et al. 2019) to derive process models from
the individual event logs. These process models pro-
vide a representation of how each worker moves between
different facilities throughout their work shift and also
information on mean sojourn times at specific facilities.
In the third step, we construct discrete event simulations
based on the derived process models and time infor-
mation, which provide us the processed time-annotated
movement patterns. Further details regarding these steps
will be case specific. For the case study considered in
this paper, we give the details on how these steps are
performed in Section 4.1.

Suppose that worker movement patterns are observed
through sensors across a set of time periods t ∈
{1, 2, . . . ,T} (e.g. days, shifts). By treating these patterns
as our scenarios, in the remainder of this paper, we
will use the terms ‘period’ and ‘scenario’ interchangeably
when referring to t as it pertains to these patterns.

We use str = ((art1 , τ
rt
1 ), (art2 , τ

rt
2 ), . . . , (artNrt , τ rtNrt )) to

denote the movement pattern of worker r in period t.
Here, Nrt represents the number of visits performed by
worker r in scenario t, while artl and τ rtl denote the facility
visited and the time spent during that visit, respectively.
Note that these patterns are time ordered (e.g. worker
r visits facility art2 next after visiting facility art1 first in
scenario t) and they are used when evaluating the new
layouts in simulations in Section 3.3.

In the generation of new layouts (Section 3.2), where
we focus on fixing the locations of facilities, we rely on
the static flow patterns between facilities. Specifically, we
extract the (static) flow pattern from facility i to facility
j by

Ftij =
R∑

r=1

Nrt∑
n=2

1{artn=j,artn−1=i}. (1)

3.2. Layout generation procedures

Based on the extracted flow patterns Ftij, we propose two
methods to generate robust layouts that optimise over
the patterns observed in all periods. In our approach,
we consider the manufacturing floor as a rectangular
box with length L and width W. To ensure a feasible
layout, all facilities should fit within this box without
overlapping each other in either x or y dimensions. Addi-
tionally, a safety distance δ ≥ 0 needs to be preserved
between the facilities. To position each facility i, our for-
mulations determine the x-coordinate (cxi ∈ [0, L]) and
y-coordinate (cyi ∈ [0,H]) of its centroid. In other words,
we consider a continuous version of the facility layout
design problem, as in Zha et al. (2017) and Salimpour,
Pourvaziri, and Azab (2021). We also determine the
orientation oi ∈ {0, 1}, which fixes whether the long or
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short side of the facility will align with the x or y axis,
respectively. This consideration for either a vertical or a
horizontal orientation is commonly applied in the litera-
ture (see Pourvaziri, Pierreval, and Marian 2021; Pour-
vaziri et al. 2021; Vitayasak and Pongcharoen 2018).
Consequently, the lengths of the facility in the x and y
dimensions are determined by lxi ∈ {Llongi , Lshorti } and lyi ∈
{Llongi , Lshorti }, respectively.

Both of our proposed methods employ a biobjec-
tive formulation designed to minimise a weighted com-
bination of two primary objectives: total flow dis-
tance (weighted with wdist ≥ 0) and congestion potential
(weighted with wcong ≥ 0) across all periods. The biob-
jective formulation is chosen to extend beyond layouts
that solely focus onminimising flow distances. Instead, it
allows for the exploration of multiple layouts by varying
the weight settings, thus seeking layouts that strike a bal-
ance between minimising flow distances and mitigating
congestion potential.

Congestion can arise when multiple flow movements
occur simultaneously, resulting in intersections along
their paths. However, we face the challenge of not know-
ing the exact timing of movements or the precise paths
workers will take between facilities in the new lay-
outs. Therefore, capturing congestion risk necessitates
an indirect and approximate approach. We adopt an

approach based on the observation that although the
exact paths are unknown, when considering flows from
facilities i and j to facility k, if their movements occur
concurrently, they must end up in the vicinity of facility
k. Consequently, there is a possibility that their move-
ments will overlap, leading to congestion. The congestion
risk is particularly significant when facilities i and j are
positioned similarly in relation to facility k, indicating a
higher likelihood of overlapping movements. Moreover,
the congestion risk can increase as the angle between
the directions of flows from facilities i and j into facil-
ity k becomes narrower. This relationship is illustrated in
Figure 3. For instance, when this angle is zero, as shown
in Figure 3(a), and facilities i and j are completely aligned
relative to facility k, there is a very high probability of
flow overlap and congestion. Similarly, even for angles
less than 90◦s, there remains a substantial risk of con-
gestion. However, as the angle increases, the congestion
risk decreases significantly. In summary, while we cannot
precisely know beforehand the exact paths and timing of
workermovements, we indirectly capture congestion risk
by considering the alignment and angle between flows
from different facilities into a target facility. By leverag-
ing this information, we can capture the congestion risk
and incorporate it as a factor in our layout generation
methods.

Figure 3. Congestion risk for the flow coming from facility i to k and facility j to k as a function of the positioning of facility j and the
angle between the direction of these two flows coming into facility k (facility j is coloured blue (in (c) and (d)) when it’s location does not
cause congestion and red (in (a) and (b)) when it does.). (a) 0◦. (b) 45◦. (c) 90◦ and (d) 180◦.
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Our first layout generation method is based on a
mixed-integer linear programming formulation, which
can be efficiently solved using a state-of-the-art solver
such asGurobi.1 Tomaintain linearity in the formulation,
we employ the rectilinear distance function. Addition-
ally, our approach to modelling congestion risk based on
flow patterns between facilities is achieved through lin-
ear constraints. The primary objective of this method is
to minimise overlaps in the relative positioning of facili-
ties, thus reducing congestion risk. To accomplish this, we
utilise four positioning descriptors: left, right, below, and
above, which help guide the layout optimisation process.

The second method employs a simulated annealing
metaheuristic and utilises a quadratic formulation. The
use of a quadratic formulation is motivated by two fac-
tors. Firstly, we consider Euclidean distances instead of
rectilinear distances to better represent actual worker
movement in the 2D environment. For instance, workers
can walk along the shortest line connecting two facili-
ties when transferring materials, assuming there are no
obstacles in between. However, Euclidean distances can-
not be expressed through linear constraints. Secondly,
instead of restricting the relative positioning descriptors
to only left, right, below, or above, we allow for any possi-
ble relative positioning scenario. To account for this flex-
ibility, we introduce a continuous variable to model the
angle between the directions of different flows entering
the same facility. This angle cannot be expressed linearly,
resulting in a quadratic formulation. Due to the quadratic
nature of the formulation, traditional mathematical pro-
gramming solvers are not suitable, and a heuristic opti-
misation approach is necessary. Therefore, we develop
a simulated annealing metaheuristic to approximately
solve the quadratic formulation. This metaheuristic iter-
atively explores the search space, gradually reducing the
search radius to find high-quality layouts that balance
flow distances and congestion risk.

3.2.1. Mixed-integer linear programmingmodel with
rectilinear distances
Belowwe present ourmixed-integer linear programming
(MILP) formulation to find an optimal facility layout.

Minimise wdist
T∑
t=1

A∑
i,j=1

Ftijd
rect
ij

+ wcong
T∑
t=1

A∑
k=1

A∑
i�=k,j>i

FikFjk

×
(
pleftijk + prightijk + pbelowijk + paboveijk

)
(2)

subject to drectij ≥ dxij + dyij, ∀ i, j (3)

dxij ≥ cxi − cxj , ∀ i, j (4)

dxij ≥ cxj − cxi , ∀ i, j (5)

dyij ≥ cyi − cyj , ∀ i, j (6)

dyij ≥ cyj − cyi , ∀ i, j (7)

lxi = Llongi oi + Lshorti (1− oi), ∀ i (8)

lyi = Llongi (1− oi)+ Lshorti oi, ∀ i (9)

(cxi + 0.5lxi )+ δ ≤ (cxj − 0.5lxj )

+M(1− pleftij ), ∀ i �= j (10)

(cyi + 0.5lyi )+ δ ≤ (cyj − 0.5lyj )

+M(1− pbelowij ), ∀ i �= j (11)

pleftij + pleftji + pbelowij + pbelowji = 1,

∀i > j (12)

cxi − lxi ≥ 0, ∀ i (13)

cxi + lxi ≤ L, ∀ i (14)

cyi − lyi ≥ 0, ∀ i (15)

cyi + lyi ≤W, ∀ i (16)

pleftijk ≥ pleftik + pleftjk − 1, ∀ i �= j �= k (17)

prightijk ≥ pleftki + pleftkj − 1, ∀ i �= j �= k
(18)

pbelowijk ≥ pbelowik + pbelowjk − 1,

∀ i �= j �= k (19)

paboveijk ≥ pbelowki + pbelowkj − 1,

∀ i �= j �= k (20)

The objective function (2) minimises the weighted costs
of total flow distance and congestion risk over all peri-
ods. Constraints (3)–(7) model the rectilinear distance
between facilities. Constraints (8)–(9) impose the lengths
of facilities in x and y coordinates based on their orien-
tation. Constraints (10)–(12) imply that facilities should
not overlap that any facility i is positioned to the left,
right, below or above relative to some another facility j,
while also respecting the safety distance δ. In this, we
use M, which is a very large scalar to model the if-then
constraint. Constraints (13)–(16) impose the physical
boundary conditions of the manufacturing floor on each
of the facilities. Lastly, constraints (17)–(20) define when
overlaps occur in the relative positioning of facilities,
which are used in assessing the congestion risk based on
the layout.
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3.2.2. Simulated annealingmetaheuristic for the
quadratic formulation
Below we present the quadratic formulation to generate
robust facility layouts.

Minimise wdist
T∑
t=1

A∑
i=1

A∑
j=1

Ftijd
euc
ij

+ wcong
T∑
t=1

A∑
k=1

A∑
i�=k

A∑
j>i

FikFjkacosineijk

(21)

subjectto
(
deucij

)2 ≥ dsquareij , ∀ i, j (22)

dsquareij =
(
cxi − cxj

)2 + (
cyi − cyj

)2
, ∀ i, j

(23)

dxij ≥ cxi − cxj , ∀ i, j (24)

dxij ≥ cxj − cxi , ∀ i, j (25)

dyij ≥ cyi − cyj , ∀ i, j (26)

dyij ≥ cyj − cyi , ∀ i, j (27)

lxi = Llongi oi + Lshorti (1− oi), ∀ i (28)

lyi = Llongi (1− oi)+ Lshorti oi, ∀ i (29)

(cxi + 0.5lxi )+ δ ≤ (cxj − 0.5lxj )

+M(1− pleftij ), ∀ i �= j (30)

(cyi + 0.5lyi )+ δ ≤ (cyj − 0.5lyj )

+M(1− pbelowij ), ∀ i �= j (31)

pleftij + pleftji + pbelowij

+ pbelowji = 1, ∀ i > j (32)

cxi − lxi ≥ 0, ∀ i (33)

cxi + lxi ≤ L, ∀ i (34)

cyi − lyi ≥ 0, ∀ i (35)

cyi + lyi ≤W, ∀ i. (36)(
acosineikj aproductikj

)
≥ dsquareij + dsquarekj

− dsquareik , ∀ i �= j �= k (37)

aproductikj =
(
2deucij deuckj

)
, ∀ i �= j �= k (38)

In this formulation, Euclidean distances are mod-
elled through the quadratic constraints (22)–(23). Con-
straints (24)–(36) are the same as in the linear formula-
tion. Constraints (37)–(38) model the cosine of the angle

between two different flows going into the same facil-
ity, which we capture by the continuous variables acosineikj .
In this, we use the so-called law of cosines and use the
auxiliary decision variables aproductikj s. Then, in the objec-
tive function (21) congestion risk is considered by min-
imising these cosines. We restrict these variables to be
non-negative (see Table 2) so that the congestion risk will
be incurred only when the cosine is above zero, namely,
when the angle is lower than 90◦. Note that cosine is
a decreasing function between the range [0,π/2] and
therefore the congestion risk is considered through the
minimisation of the cosines in the objective.

Table 2. Notation summary of the linear and quadratic formula-
tions.

Sets
i, j, k ∈ A = {1, 2, . . . , A} the set of facilities
r ∈ R = {1, 2, . . . , R} the set of workers
t ∈ T = {1, 2, . . . , T} the set of time periods, scenarios

Parameters
L the length of the floor
W the width of the floor
Llongi the length of the long side of facility i
Lshorti the length of the short side of facility i
δ the safety distance parameter
Ftij theflow frequencypattern from facility i to facility

j in period t
wdist the weight of flow distance objective
wcong the weight of the static congestion potential

objective

Decision Variables
cxi ∈ [0, L] x-coordinate of the centroid of facility i
cyi ∈ [0,W] y-coordinate of the centroid of facility i
lxi ∈ {Llongi , Lshorti } the length of facility i along the x-axis
lyi ∈ {Llongi , Lshorti } the length of facility i along the y-axis
oi ∈ {0, 1} 1 if the longer side of facility i is placed on the x-

axis, and 0 otherwise.
pleftij ∈ {0, 1} 1 if facility i is positioned to the left of facility j, and

0 otherwise.
pbelowij ∈ {0, 1} 1 if station i is positioned below of station j, and 0

otherwise.
pleftijk ∈ {0, 1} 1 if both facilities i and j are positioned to the left

of facility k, and 0 otherwise.
prightijk ∈ {0, 1} 1 if both station i and j are positioned to the right

of station k, and 0 otherwise.
pbelowijk ∈ {0, 1} 1 if both station i and j are positioned below

station k, and 0 otherwise.
paboveijk ∈ {0, 1} 1 if both station i and j are positioned above

station k, and 0 otherwise.
dxij ∈ [0, L] the horizontal distance between the centroids of

facilities i and j.
dyij ∈ [0,H] the vertical distance between the centroids of

facilities i and j.
drectij ∈ [0, L+W] the rectilinear distance between the centroids of

facilities i and j.
deucij ∈ [0,

√
L2 +W2] the Euclidean distance between the centroids of

facilities i and j.
dsquareij ∈ [0, L2 +W2] the square of the Euclidean distance between the

centroids of facilities i and j.
acosineijk ∈ [0, 1] equals 0, when the angle between the direction

of flow
coming from facility i to facility k and from facility
j to facility k
exceeds π/2, otherwise it represents the cosine
of this angle.
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Solution Encoding and Fitness Calculation: To address
the quadratic formulation and search for solutions, we
have developed a simulated annealing metaheuristic,
which serves as a local search heuristic exploring the
decision variable solution space. In this context, a solu-
tion s is defined to encode the positions of facilities (cxi
and cyi variables) and their orientations (oi variables).
Given the assigned values to these variables in a particu-
lar solution s, we can determine the corresponding values
for the Euclidean distance variables and angle cosine
variables. Using Equation (21), we associate an objective
value Obj(s) with s, defined as:

Obj(s) = wdist
T∑
t=1

A∑
i=1

A∑
j=1

Ftijd
euc
ij

+ wcong
T∑
t=1

A∑
k=1

A∑
i�=k

A∑
j>i

FikFjkacosineijk . (39)

We incorporate this objective value into the fitness func-
tion of s, denoted as Fitness(s). Additionally, we integrate
the feasibility aspect into the fitness function since not
all values of the decision variables adhere to the layout
design constraints. Specifically, the non-overlapping con-
straints (refer to Equations (30)–(32)) and floor bound-
ary constraints (refer to Equations (33)–(36)) must be
satisfied in a feasible solution. Any solution s that violates
these constraints incurs a penalty, assigned a large value
winfeas within the fitness function. Thus we have

Fitness(s) =
{
−Obj(s)− winfeas, s is infeasible
−Obj(s), s is feasible.

(40)

We present the pseudocode for our simulated annealing
method, named ‘the re-operating simulated annealing
(ROSA),’ in Algorithm 1. The algorithm begins with an
initial layout solution sinit. Through iterative exploration,
our local search heuristic aims to find high-fitness solu-
tions by generating and evaluating new layouts, up to a
specified iteration limit (n_iter_limit). Below we describe
the components of this iterative method.

Operators:Wedevise a set of 7 operators that canmod-
ify the current solution s and generate a new solution snew

for a 2D facility layout. Among these operators, four are
shift operators: shift west, shift east, shift north, and shift
south. Each shift operator modifies the position of a sin-
gle facility bymoving it along either the x or y dimension.
The fifth operator is responsible for changing the orien-
tation of a facility, allowing it to be repositioned with a
different alignment. The sixth operator is a swap opera-
tor that exchanges the positions of two facilities within
the layout. This operator enables the relocation of facili-
ties in relation to one another. Lastly, we have the random

operator, which introduces randomness by altering the
positions of one or two facilities in both the x and y
dimensions. This operator adds variability to the search
process, potentially leading to different layout configura-
tions. In the following, we provide a detailed description
of each operator.

• Shift Operators: Whenever one of these operators is
invoked, a facility is selected randomly, and its posi-
tion is shifted by a random amount. The random shift
is determined by uniformly sampling a value from the
interval [0, δ].

• Change Orientation Operator: When this operator
is invoked, a facility i is randomly selected, and its
orientation is modified in the new solution snew. If
the orientation of facility i in the current solution s is
denoted as oi = 1, it will be changed to oi = 0 in snew.
Conversely, if oi = 0 in s, the orientation changes to
oi = 1 in snew.

• Swap Operator: When the swap operator is invoked,
two facilities i and j are randomly selected, ensur-
ing that i �= j. The positions of these selected facili-
ties are then swapped in the new solution snew. To
determine the orientations of the swapped facilities
in snew, an unbiased random sampling is performed.
There is a 0.5 probability that the orientations of the
swapped facilities will also be exchanged in the new
solution. In other words, if the orientations of facil-
ities i and j in the current solution s are denoted as
oi and oj respectively, in snew there is a 0.5 chance
that oi will be set to oj and oj will be set to oi.
Otherwise, if the random sampling outcome does
not result in an orientation swap, the orientations of
facilities i and j remain the same as in the current
solution.

• Random Operator: Each time the random operator
is invoked, a facility i is randomly selected. To deter-
mine whether to change the position of facility i in
the x and y dimensions, two biased random samplings
are performed. The biases in the random samplings
reflect the lengths of the floor in the x and y dimen-
sions, respectively. If the random sampling indicates
that the position of facility i should be changed in the
x dimension, a uniform sampling is performed from
the interval [0, L] to set the new position of facility i
in the x dimension. Similarly, if the random sampling
indicates a position change in the y dimension, a uni-
form sampling is performed from the interval [0,W]
to set the new position of facility i in the y dimen-
sion. Additionally, with a small probability, another
facility j (where j �= i) is chosen to change its position
in the same manner as facility i. This process allows
for the random alteration of facility positions in the
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Algorithm 1 Pseudocode of the re-operating simulated annealing metaheuristic (ROSA)
1: Initialise n = 0, s, sbest← sinit, Fitness_best← Fitness(sinit), n_nonimp = 0, n_restart = 0, TEMP0;
2: while n < n_iter_limit and n_nonimp < n_nonimp_limit do
3: Randomly select an operator from the set of seven operators;
4: Apply the selected operator to s to form the new solution snew

5: Toss the re-operate coin;
6: if the re-operate coin shows YES then
7: go to step 3;
8: end if
9: Fitness_new← Fitness(snew);
10: Calculate TEMP(n) and P(accept) according to Equations (41)- -(42);
11: if Fitness_new > Fitness_best then
12: sbest, s← snew, Fitness_best, Fitness(s)← Fitness(snew), n_nonimprov← 0;
13: else
14: n_nonimprov← n_nonimprov+ 1;
15: Toss the solution acceptance coin;
16: if the acceptance coin is below P(accept) then
17: s← snew, Fitness(s)← Fitness(snew);
18: end if
19: end if
20: if n_nonimprov = nonimp_restart_limit and n_restart < restart_limit then
21: Do restart, let s← sbest and n← n− n_iterback and go to step 3;
22: end if
23: n← n+ 1;
24: end while
25: return sbest with Fitness_best;

layout, with a slight chance of altering the position of
an additional facility.

Solution Acceptance: When a new solution snew is
generated, its fitness is compared to the fitness of the
current solution s. If the fitness of snew is better, i.e.
Fitness(snew) > Fitness(s), the new solution is accepted
as the current solution. However, if the fitness of snew

is not better than that of s, the acceptance of the new
solution is determined based on a probability P(accept).
This probability is modelled using temperature parame-
ters, which is a common approach in simulated annealing
metaheuristics (Kirkpatrick, Gelatt, and Vecchi 1983). As
the iterations in the local search progress, the tempera-
ture gradually decreases, causing the acceptance proba-
bility P(accept) to decrease as well. The initial temper-
ature parameter is denoted as TEMP0, which remains
fixed throughout the process. Additionally, we have a
varying temperature parameter TEMP(n) in iteration n.
To control the temperature reduction in iterations (i.e.
to have TEMP(n+ 1) < TEMP(n)) we employ a log-
arithmic scheme. The resulting acceptance probability

mechanism is as follows.

TEMP(n) = TEMP0
log(n+ 1)

(41)

P(accept) = 1
1− Fitness(snew)−Fitness(s)

TEMP(n)

. (42)

Re-operate: To explore the potential of the set of seven
operators in different combinations, we introduce a ran-
domised mechanism that allows for the re-application
of operators with a certain probability preoper. Instead of
exhaustively considering all possible sequences of oper-
ators, this mechanism provides flexibility and diversity
in generating new solutions. When applying this ran-
domised mechanism, a sequence of operators is ran-
domly selected and applied to a given solution until a
new solution is obtained. However, it is important to
strike a balance between exploration and convergence.
Applying too many operators or considering solutions
that are vastly different from the current one may hin-
der convergence. To address this, the probability preoper
is introduced, which naturally decreases the likelihood
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of having very long sequences of operators. For instance,
the probability of applying a sequence of two operators is
preoper, while the probability decreases to (preoper)2 for a
sequence of three operators, (preoper)3 for a sequence of
four operators, and so on. This probabilistic mechanism
allows for a controlled exploration of different combi-
nations of operators while mitigating the risk of overly
long sequences that can generate a new solution that is
highly different than the current solution and facilitating
convergence.

Restart: To ensure the search progresses efficiently and
avoid getting stuck in suboptimal solutions, we employ a
restart strategy in our method. When a certain number
of iterations pass without finding a better fitness solu-
tion, indicated by the variable n_nonimp, and this num-
ber reaches a predetermined limit nonimp_restart_limit,
we initiate the restart procedure, unless the restart limit
restart_limit has been reached. During the restart pro-
cedure, the current solution is set to the best solution
found thus far, ensuring that valuable progress is not lost.
Additionally, to prevent redundancy and promote explo-
ration, the number of remaining iterations is reduced
by n_iterback. This strategy allows the search process to
start afresh from a promising point, potentially enabling
the discovery of better solutions that were not reach-
able within the previous iterations. By incorporating this
restart strategy, we maintain an adaptive and dynamic
search process that can break free from local optima
and continue exploring the solution space for improved
layouts.

3.3. Evaluation of layouts in simulations

We assess the effectiveness of generated layouts using
time-annotated movement patterns (str). The goal is to
evaluate layouts that we generate based on static flow pat-
terns under time-dependent effects. In this, we focus on
two measures: the average time workers spend moving
between stations and the level of congestion across the
manufacturing floor.

However, the time-annotated patterns alone do not
provide information about the exact points in time when
movements will be completed and workers will reach
their next visited facility in new layouts. This depends on
the specific paths workers will take between facilities in
a new layout, as well as their walking speed. To simulate
these movements, we assume that workers prefer shorter
paths to reach their destinations. However, considering
that facilities are physical rectangular objects that act as
obstacles for walking workers, only paths that do not
intersect these objects are feasible, namely, we cannot
always use the straight line connecting any two points.
Finding the shortest paths among obstacles often involves

representing the problem within a discretised grid/mesh
environment and utilising algorithms such as A∗ (Foead
et al. 2021) or Dijkstra’s algorithm. However, in this
paper, we adopt a different approach inspired by Nazara-
hari, Khanmirza, and Doostie (2019), where we tackle
the problem in a continuous environment, removing the
constraint of restricting worker movement to the grid.
To address this continuous-space optimisation problem,
we develop a genetic algorithm, which is presented in the
online supplement.

4. Case study

We present the manual tricycle assembly line process
described in Delamare, Duval, and Boutteau (2020) as
a case study to illustrate the applicability of our facil-
ity layout methodology. The choice of this system is
motivated by its labour-intensive manufacturing process,
where human workers are tracked using localisation sen-
sors. This allows us to utilise the worker movement data
obtained from these sensors to generate flow patterns in
accordance with our methodology (refer to Section 3.1).
Specifically, we utilise the UWB data from Delamare,
Duval, and Boutteau (2020), which provides 2Dpositions
of workers over a 3-hour shift, for our analysis.

In this particular system, six workers (r = 1, 2, . . . , 6)
are involved in carrying out six distinct manufacturing
tasks. Each task takes place in a designated facility located
on the manufacturing floor. Additionally, there is a stor-
age facility that the workers visit to collect materials for
the products. Thus, our focus is on optimising the lay-
out of these seven facilities (i = 1, 2, . . . , 7), with the last
facility representing the storage area. Table 3 provides
a description of these facilities, including their centroid
coordinates (cxi , c

y
i ), orientations (oi), and initial layout

information, in a floor with length L = 8 and width
W = 5. The determination of these parameters is based
on the insights derived fromDelamare, Duval, and Bout-
teau (2020).We should note that inDelamare, Duval, and
Boutteau (2020), the storage facility is depicted as two
small rectangular objects. However, in our paper, we treat
this facility as one larger rectangular object. To visualise
the initial layout, refer to Figure 4. For reference in the
visualisations, we set the coordinate system such that the
upper left corner of the floor is denoted as (0, 0), and the
bottom right corner as (5, 8).

4.1. Flow patterns from the UWBdata and the initial
layout

To extract flow patterns from the raw 2D position data
obtained from UWB sensors worn by each worker, we
employ our three-step data analysis approach.



1340 A. ASLAN ET AL.

Table 3. Facilities and their coordinates in the initial layout.

Initial Layout

Facility Task Llongi Lshorti (cxi , c
y
i ) oi

1 Lower Frame 1.0m 0.7m (0.5, 5.0) 1
2 Axle 1.0m 0.7m (0.5, 3.0) 1
3 Saddle and Pedalboard 1.0m 0.7m (0.5, 1.5) 1
4 Rear Wheel Axle Unit 1.5m 1.0m (4.25, 1.5) 1
5 Front Wheel Axle 1.0m 0.7m (4.25, 3.0) 1
6 Final Assembly 1.5m 1.0m (4.25, 5.0) 1
7 Material Storage 2.0m 0.7m (2.5, 7.5) 1

Figure 4. Initial layout (the rectangular object labelled with F. i,
i ∈ {1, 2, . . . , 7}) represents facility i.).

First Step: The UWB tags measure position data at a
frequency of 100ms. However, due to obstructions such
as metal objects near the workers, there are occasional
gaps in the data. To address this, we align the position
data using seconds as the time unit. Specifically, we cal-
culate the average of themeasurements takenwithin each
second, resulting in positions per second. This averag-
ing process also acts as a smoothing function, reduc-
ing measurement errors. In instances where no position
measurements are available within a second, we sub-
stitute the missing data with the worker’s last known
position. This approach ensures continuity in the data
and prevents abrupt changes in position. Subsequently,
we generate event logs for each worker based on their
second-by-second positions. To determine the manufac-
turing activities performed by the workers, we leverage

the proximity of workers to the facilities and their dura-
tion of stay. However, we filter out short stays since they
may not be indicative of actual task performance and
could be attributed to measurement errors. For instance,
a brief stay near a facility may not signify engagement in
a task. To achieve this filtering, we introduce a parame-
ter β > 0, which we set to 5 seconds in this case study.
Using the defined parameter, we consider a worker to be
performing a task i at a given time θ if their position
was in close proximity to the corresponding facility at
any time θ ′ within the time window θ , θ − 1, . . . , θ − β .
By applying this filtering, we generate events associated
with specific facilities (i = 1, 2, . . . , 7) along with their
respective start and end times for each individual worker.
The aforementioned data processing steps ensure that we
have event logs that capture the relevant manufacturing
activities performed by the workers.

Second Step: To derive process models from the event
logs of the workers, we utilise process mining techniques
(Aslan et al. 2024). There are various algorithms available
for discovering process models from event logs, includ-
ing Alpha Miner, Heuristic Miner, and Inductive Miner.
In our study, we employ the implementation of the Induc-
tive Visual Miner in ProM 6.11.2 The theoretical founda-
tion of this algorithm can be found in Leemans, Fahland,
and van der Aalst (2013). The ProM tool offers two fil-
tering hyperparameters, one for activities and another
for paths. These filters have a significant impact on the
quality measures of the resulting process models, par-
ticularly their fitness and complexity. For more detailed
information on commonly used quality measures for
process models, we refer the reader to dos Santos Gar-
cia et al. (2019). In our paper, we apply a filtering range
of 10–30% on the paths and/or activities to obtain pro-
cess models with a sufficiently high fitness. It’s important
to note that as the level of filtering increases, the mod-
els become simpler, but this may reduce their fitness.
The output of the ProM tool is in the form of process
models represented using the business process model
notation (BPMN) (van der Aalst 2009). Additionally, the
tool provides time-related statistical information about
the duration of each activitywhenever it is executed. Both
the process models and the mean activity sojourn time
information can be found in the online supplement.

Third Step:Wedevelop discrete event simulationmod-
els using the process models obtained from the event logs
by taking an approach similar to Aslan et al. (2023). The
information extracted from the process models serves
as the foundation for constructing a discrete event sim-
ulation framework, which represents the process state
and the events that transform the state based on transi-
tion probabilities. As mentioned in Rozinat et al. (2009),
these process models seamlessly integrate into discrete
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event simulation (see Tamburis and Esposito 2020 for an
application in the healthcare domain).

To model the transition probabilities, we utilise the
flow sequences and their frequencies directly from the
process models. These flow sequences indicate themove-
ment between facilities, and their frequencies are used
to determine the transition probabilities. For modelling
the transition times, we employ the mean sojourn time
information andutilise Exponential distributions. Specif-
ically, we fit Exponential distributions with means based
on the obtained mean sojourn times. We would like to
emphasise that the Exponential assumption on the dura-
tion of activities is commonly adopted in manufacturing
(Flapper, Gayon, and Lim 2014; Mouzon, Yildirim, and
Twomey 2007). The simulation is implemented in the
C++ language, using Visual Studio.

By drawing random samples from the simulation
models, we generate 100 work shift patterns (T = 100)
for each worker. Each scenario t of a worker r provides a
time-annotated pattern str (refer to Section 3.3). To gener-
ate the new layouts, we utilise the static data derived from
the time-annotated patterns. Specifically, we employ flow
patterns Ftij based on the observedmovement patterns, as
described in Equation (1). These flow patterns represent
the number of times workers move from facility i to facil-
ity j in scenario t. The corresponding data can be found
in the online supplement.

4.2. Generating new layouts

Once we have obtained the flow patterns observed over
100 scenarios (Ftijs) for the assembly system, our next step
is to explore new layouts as alternatives to the initial lay-
out. To achieve this, we maintain a fixed safety distance
parameter, δ, of half a meter, and set wdist to 1. How-
ever, we vary the weight assigned to congestion, wcong,
to generate a range of new layouts using our two layout
generation methods (refer to Section 3.2).

To cover a wide range of scenarios regarding the
importance of congestion concern, we consider wcong

values of 0.01, 0.1, 1, 10, 100, where the importance given
to the congestion concern is increased with the larger
values of wcong. By generating multiple layouts with dif-
ferent weights assigned to congestion, we can assess the
layouts based on two important quality measures: reduc-
ing the distances travelled byworkers andminimising the
potential for congestion on the manufacturing floor. By
varying only wcong, we can explore the possible layouts
that prioritise these two concerns differently in a relative
sense.

For generating layouts using the mixed-integer lin-
ear programming method, we employ Gurobi 9.0 to
find optimal solutions for the linear formulation with

rectilinear distances within seconds. In contrast, the
simulated annealing metaheuristic approximately solves
the quadratic formulation. The success of the simulated
annealing metaheuristic in solving the quadratic formu-
lation can be evaluated by the fitness of the layout solu-
tions it discovers. The performance of this metaheuris-
tic can be influenced by its components and parame-
ters. Hence, we conduct experiments to fine-tune the
algorithm and gain insights into the effectiveness of the
designed components.

Since the simulated annealing method is stochas-
tic, it can converge to different layout solutions due
to the random sampling involved in its components,
such as probabilistic solution acceptance. To account
for this inherent randomness and the rapid con-
vergence of this method, we run the method 20
times, each time using different random seeds. We
select the layout with the highest fitness among these
runs.

4.2.1. Tuning the simulated annealingmetaheuristic
to solve the quadratic formulation
We first fix some of the parameters based on offline
tuning experiments and let winfeas = 108, n_iter_limit =
5000, n_nonimp_limit = 500, TEMP0 = 10, nonimp_
restart_limit = 100, restart_limit = 5, n_iterback =
2000. In these offline experiments, we adopted a design
of experiments approach, considering a set of values for
each parameter and observing solution quality. Eventu-
ally, we fixed their values to the setting that required
the least computational intensity (e.g. fewer iterations)
while yielding the best observed solution quality. We
then focus on the impact of two of the most impor-
tant components: the effect of the re-operate mecha-
nism governed by the probability preoper and the neigh-
bourhood operators on the layout cost of the solu-
tions (calculated with Equation (21)) generated by the
method.

We begin by examining the impact of the re-operate
probability on the quality of the solutions generated for
the quadratic formulation by our method. Consider-
ing the layout cost incurred from the objective (21), in
Figure 5, we present the results where wcong is set to
1, while varying the re-operate probability, preoper, from
the set {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. The figure illustrates
that setting high values for this parameter can sometimes
impede the success of the method, leading to solutions
with notably poor quality. This indicates that employ-
ing too many operators in a single iteration, which can
drastically alter the current solution, is not a favourable
strategy for the method’s performance. Conversely, we
observe that incorporating the re-operate mechanism
with a smaller probability, typically ranging between 0.1
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Figure 5. The effect of preoper (observe that when values exceed 0.3, it leads to significantly higher Q3 values. Additionally, within the
set of values {0.0, 0.1, 0.2, 0.3}, the median and Q1 are higher when preoper = 0.0.).

and 0.3, offers advantages over not using it at all (i.e.
preoper = 0). Solutions obtained with this range of prob-
abilities tend to exhibit the lowest costs. Based on this
performance analysis, we decide to fix the re-operate
probability at 0.2 as it strikes a balance between exploring
alternative solutions and preserving the overall quality of
the layouts.

Next, we investigate the influence of the operators
employed in themethod’s performance.We aim to assess
the value of each operator by evaluating its impact under
different subsets of operators while considering wcong =
1. In Figure 6, we present the results of this analysis. It
is evident from the figure that the four shift operators
(shift west, east, south, and north) play a crucial role in
achieving high-quality solutions. When these operators
are not included, the quality of the solutions significantly
deteriorates. The random operator emerges as the second
most important operator, contributing significantly to
the performance of the method. Additionally, the rotate
operator demonstrates its importance by enabling the
discovery of more cost-effective solutions. On the other
hand, the swap operator appears to have the least impact
among all the operators. However, it is noteworthy that
including the swap operator still enhances the average
performance of the method. Consequently, we conclude
that all operators are important and should be included
in the simulated annealing method to ensure optimal
performance.

4.2.2. Benchmarking the simulated annealing
metaheuristic
In this section, we conduct a comparative analysis of
ROSA with several other simulated annealing meta-
heuristics proposed in the literature for the facility layout
problem. Since our paper focuses on continuous formu-
lations for generating facility layouts, we primarily con-
sider benchmarks specifically designed for continuous
problems.

The first benchmark method is based on the early
work by Chwif, Barretto, and Moscato (1998). Their
approach employs alternating swap and shift opera-
tors across iterations. The shift operator incorporates
a parameter that represents a percentage of the max-
imum polygon height (L) plus the maximum poly-
gon width (W), determining the extent of shift when
invoked. In our benchmark experiments, we tune this
shift amount parameter to one percent. Additionally, we
propose a modified version of the Chwif, Barretto, and
Moscato (1998) method by introducing a random sam-
pling approach for determining the shift amount. In this
modified version that constitutes our second benchmark,
we sample from the interval [0, δ] using the safety dis-
tance parameter δ, aligning it with the shift operator in
ROSA.

Our third benchmark method is derived from the
recent study by Şenol and Murat (2023). They pro-
pose an improved version of the Chwif, Barretto, and
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Figure 6. The effect of operators (observe that the medians are significantly elevated when certain operators, particularly the shift,
rotate, and random operators, are omitted.).

Moscato (1998) approach, referred to as ‘SA-CSR,’ as a
benchmark for their sequential heuristic in solving the
continuous facility layout problem. We implement SA-
CSR as a benchmark for ROSA; however, we encoun-
tered convergence issues. It was apparent that the prob-
lem stemmed from the first step of the neighbourhood
generation procedure in SA-CSR. In this step, candidate
solutions are generated for the location of each facility
by searching for x and y coordinates randomly sampled
from the intervals ranging from zero to the maximum
polygon width (for the x coordinate) and from zero to
the maximum polygon height (for the y coordinate).
This extensive neighbourhood search posed convergence
problems. To address this issue, wemodified the first step
of SA-CSR to restrict the search to a close neighbourhood
of the facility locations in the current solution. Specif-
ically, for each facility i with current location (xi, yi),
we perform the search within [xi − δ, xi + δ] and [yi −
δ, yi + δ]. With this modification, SA-CSR successfully
converges to improved solutions.

Our fourth and final benchmark is based on the
approach proposed by Matai, Singh, and Mittal (2013).
Their simulated annealing method is designed for the
discrete layout problem, where candidate locations for
facilities are predetermined. Consequently, the layout
problem is transformed into an assignment problem that
maps the facilities to these predetermined locations. It is
worth noting that, in terms of solution space size, the con-
tinuous problem is significantly more challenging than
the discrete problem. As a result, many metaheuristics
proposed for the discrete problem only employ the swap

operator to explore solutions, as demonstrated in the
approach by Matai, Singh, and Mittal (2013). Using only
the swap operator may appear limited in terms of solu-
tion space coverage for the continuous problem. How-
ever, this approach has an advantage in enabling a more
greedy search within this restricted neighbourhood to
identify the best possible swap move. In the case of n
facilities, the number of possible swaps is (n(n− 1))/2.
For instance, one can search through all swap moves,
evaluate them, and select the move that yields the most
significant improvement. This greedy approach is indeed
employed in Matai, Singh, and Mittal (2013). We include
this benchmark to gauge the potential of finding an
improved layout by solely swapping facility locations in
the initial layout. The algorithm utilises a dynamic tem-
perature cooling mechanism based on the average and
minimum difference in solution quality across possible
swap moves within an iteration. We employ the same
parameter values as in Matai, Singh, and Mittal (2013).

Table 4 presents the benchmarking results for var-
ious instances with wcong ∈ {0.01, 0.1, 1, 10, 100}. This
table displays the rankings of the five considered meth-
ods, including ROSA and four benchmarkmethods from
the literature: (i) the method of Chwif, Barretto, and
Moscato (1998), (ii) our modified version of the Chwif,
Barretto, and Moscato (1998) method, (iii) the method
of Şenol andMurat (2023), and (iv) the method of Matai,
Singh, andMittal (2013). Formethods that do not achieve
the best performance, we provide their relative percent-
age gap compared to the method that yields the best
solution.
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Table 4. The Ranking of ROSA and benchmarks with relative percentage gaps to the best performing method (the gap of the method
giving the cost value z is found by 100(z − z∗)/z∗, where z∗ is the cost value by the best performingmethod that gives the smallest cost
among all five methods.)

wcong 1st 2nd 3rd 4th 5th

0.01 ROSA Chwif et al. (1998) Modif. Chwif et al. (1998) Şenol and Murat (2023) Matai, Singh, and Mittal (2013)
– 0.7% 2.9% 4.9% 58.9%

0.1 Modif. Chwif et al. (1998) ROSA Chwif et al. (1998) Şenol and Murat (2023) Matai, Singh, and Mittal (2013)
– 4.4% 5.3% 12.0% 63.1%

1 Modif. Chwif et al. (1998) ROSA Chwif et al. (1998) Şenol and Murat (2023) Matai, Singh, and Mittal (2013)
– 0.1% 6.0% 7.4% 98.9%

10 ROSA Chwif et al. (1998) Modif. Chwif et al. (1998) Şenol and Murat (2023) Matai, Singh, and Mittal (2013)
– 7.4% 13.6% 14.2% 199.5%

100 Modif. Chwif et al. (1998) ROSA Şenol and Murat (2023) Chwif et al. (1998) Matai, Singh, and Mittal (2013)
– 1.7% 26.2% 32.0% 242.9%

Notably, it is evident in Table 4 that the method of
Matai, Singh, and Mittal (2013) consistently performs
the worst, providing significantly inferior solutions com-
pared to the other methods. This indicates that this
method, designed for the discrete layout problem, is not
suitable for our continuous layout problem. On the other
hand, the best-performing methods are ROSA and our
modified version of the method developed by Chwif,
Barretto, and Moscato (1998). Both of these methods
demonstrate significantly superior performance com-
pared to the method of Şenol and Murat (2023). When
comparing the performance of the original method by
Chwif, Barretto, and Moscato (1998) to its modified ver-
sion, we observe that our modification, randomising the
shift amount in the shift operator instead of using a
fixed amount, proves successful. In two out of the five
instances, our method finds the best solution, while in
the remaining three instances, the modified version of
the Chwif, Barretto, and Moscato (1998) method yields
the highest-quality solution. However, considering the
gap between the solution qualities obtained by these two
methods, we find that ROSAhas a slight advantage.Over-
all, the benchmarking results highlight the strong perfor-
mance of ROSA compared to the benchmark methods
from the literature. This demonstrates the effectiveness
of our approach in tackling the continuous facility layout
problem.

4.3. Evaluating new layouts against the initial
layout

We explore a range of new layouts by varying wcong ∈
{0.01, 0.1, 1, 10, 100} to create layouts with different levels
of importance assigned to congestion concerns relative
to travel distance reduction, which is held constant at
wdist = 1. Figure 7 showcases the layouts generated by
two of our methods. Notably, as wcong increases and the
avoidance of congestion risks becomes more significant,
the facility locations tend to spread out more on the
manufacturing floor.

To further examine the relationship between the flow
patterns between facilities (provided in the online sup-
plement) and the new layouts, we observe that the high-
est volume of traffic occurs between facilities 4 and 5,
facilities 7 and 6, and also between facilities 1 and 7.
In Figure 7, we can observe a preference for placing
these facilities in close proximity in the generated lay-
outs, particularly when wcong is not excessively high.
Furthermore, we notice a tendency to position facility
7 between facilities 1 and 6, both of which experience
significant traffic to and from facility 7. This deliber-
ate design choice, emphasised by our congestion-aware
layout generation methods, helps prevent the overlap of
movements between facilities 6 and 7 with the move-
ments between facilities 1 and 7. Overall, the layouts
generated by our methods exhibit a clear consideration
for optimising flow patterns and minimising congestion
risks, as evidenced by the strategic placement of facil-
ities in relation to their traffic volumes and interaction
patterns.

Prior to evaluating them with the time-annotated
movement sequences of workers (str), we determinewalk-
ing paths for the workers in the new layouts using
our genetic algorithm (refer to the online supplement).
Considering the positions of workers second by sec-
ond, we employ this algorithm 42 times to gener-
ate paths between every pair of the seven facilities
(A = 7). Based on the observed average walking speed
of workers in the position data, we set the walking
speed parameter v to 0.25. The remaining parame-
ters are tuned as follows: num_gens = 100, pop_size =
10,000, pop_random_size= 100, num_tournament= 10,
wpath_infeas = 10,000. The ‘Increase Similarity’ and ‘Seed
the Straight Path Angle’ procedures are invoked with a
probability of 0.5, while the ‘Mutation’ procedure is called
with a probability of 0.1.

By utilising the time-annotated sequences, which pro-
vide detailed information on the sequence of facilities
visited by workers and the corresponding time spent at
each facility, in conjunction with the second-by-second
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Figure 7. Layouts generated by linear programming (LP) and ROSAmethods forwcong ∈ {0.01, 0.1, 1, 10, 100}with safety distance δ =
0.5. (a) LP, wcong = 0.01. (b) LP, wcong = 0.1. (c) LP, wcong = 1. (d) LP, wcong = 10. (e) LP, wcong = 100 (f ) ROSA, wcong = 0.01. (g) ROSA,
wcong = 0.1. (h) ROSA,wcong = 1. (i) ROSA,wcong = 10 and (j) ROSA,wcong = 100.

paths obtained from the genetic algorithm, we gener-
ate the positions of workers in the new layouts for each
time step across all scenarios T. To accomplish this, we
adopt the following approach: when workers are sta-
tionary and engaged in activities at a facility (as indi-
cated by the duration of the current activity in the time-
annotated sequence), we fix their positions at the centre
of the respective facilities. Conversely, when workers are
required to commence movement (signifying the com-
pletion of the current activity and the initiation of a
new activity at a different facility according to the time-
annotated sequence), we determine their positions based
on the generated paths until they reach their new desti-
nations.

Subsequently, we employ the simulated position data
to evaluate the following travel time and congestion-
based metrics for the layouts:

• Travel Time Metric: This metric represents the total
number of minutes spent by all workers collectively
while travelling between facilities during a work shift.
It is calculated by summing up the travel times of

individual workers across all scenarios and then aver-
aging the result. This metric provides a comprehen-
sive measure of the overall travel efficiency and time
expenditure associated with worker movements in the
layout.

• Congestion Metrics: We employ a spatio-temporal
density-based metric (Nanni and Pedreschi 2006)
to assess congestion on the manufacturing floor,
considering only workers as the moving entities.
To evaluate congestion, we partition the floor into
square meter subregions and analyse the congestion
within these regions over time. This is determined
by the number of workers passing through a sub-
region within the same second. The dynamic con-
gestion measure for each subregion is computed as
(number of workers passing)× (number of workers
passing− 1). Here, the number of workers passing
refers to the total count of workers in motion whose
positions fall within the respective subregion at that
moment. It is important to note that this congestion
measure yields positive values only when there are
multiple moving workers passing through the same
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subregion simultaneously. This is because a single
worker alone does not present congestion-related risks
such as collisions. Furthermore, this measure exhibits
quadratic growth with increasing density of moving
workers, capturing the non-linear impact of density
on congestion risks. Based on this spatio-temporal
density measure, we use the following two metrics to
assess congestion.
° Congestion Sum Metric: This metric represents

the cumulative congestion measure for all sub-
regions on the manufacturing floor. To calculate
this metric, we average the congestion measure
for each subregion across all seconds and scenar-
ios. The congestion measure for a subregion cap-
tures the density-based congestion within that
particular area, considering the number of work-
ers passing through it within the same second. By
summing up the congestion measures of all sub-
regions and averaging them over time and sce-
narios, we obtain a comprehensive assessment of
the overall congestion level in the facility layout.

° CongestionMaxMetric:Thismetric represents the
maximum congestion measure observed among
all subregions on the manufacturing floor. To
calculate this metric, we compute the conges-
tion measure for each subregion by averaging
it across all seconds and scenarios. By identify-
ing the maximum congestion measure among all
subregions and averaging it over time and scenar-
ios, we obtain a measure that reflects the highest
congestion level experienced in a given facility
layout.

In Table 5, we present the evaluation results for the
travel time and congestion metrics of the new lay-
outs compared to the initial layout. Both layout gener-
ation methods, LP and ROSA, demonstrate success in
finding improved layouts compared to the initial one,
resulting in significantly reduced travel time for work-
ers and decreased congestion on themanufacturing floor.
Notably, the layouts generated with lower weight values

forwcong tend to yield themost substantial improvements
in both travel time and congestion dimensions.

Comparing the performance of the two layout gener-
ation methods, it seems that LP is generally able to find
better layouts than ROSA. The quadratic formulation is
more comprehensive in measuring the congestion risk
than the linear formulation; however, it poses a computa-
tional challenge, requiring a heuristic solution approach
for which we propose ROSA. On the other hand, the
linear formulation uses a restricted measurement of the
congestion risk; however, it can be solved to optimal-
ity. Each method has different strengths and weaknesses,
which can prove to be a better fit than the other in dif-
ferent situations. However, in our case study, we find that
using the less comprehensive linear formulation is not too
limiting and can achieve better layouts.

The LP method, under the weight value wcong = 0.01,
achieves the greatest reduction in travel time, improv-
ing upon the initial layout by 55%. Moreover, this layout
demonstrates a considerable enhancement in congestion
mitigation compared to the initial layout. In fact, all new
layouts, except for four, outperform the initial layout
across all metrics. These findings highlight the effec-
tiveness of our methods in discovering layouts that not
only minimise travel time for workers but also alleviate
congestion, underscoring the importance of incorporat-
ing congestion considerations in conjunction with flow
distances.

To convey the superiority of the LP method when it is
used with lowerwcong values visually, we present Figure 8
wherewe show thePareto front among the initial andnew
layouts using the travel time and congestion summetrics.

It is also worth noting that excessively high weight
values for wcong can lead to increased travel time, poten-
tially surpassing that of the initial layout. This outcome
is intuitive since a higher wcong diminishes the relative
importance ofminimising flowdistances (fixed atwdist =
1) in the layout generation process. As depicted in Figure
7, this phenomenon causes facilities to bemore dispersed
and segregated in the layouts as wcong increases. Inter-
estingly, this segregation can also exacerbate congestion.

Table 5. Travel time and congestion metrics of the initial and new layouts

Layouts Travel Time Metric Congestion SumMetric Congestion Max Metric

Initial 80.5 15.36 0.032
LP,wcong = 0.01 35.7 5.14 0.025
ROSA,wcong = 0.01 39.6 8.36 0.022
LP,wcong = 0.1 36.9 4.34 0.023
ROSA,wcong = 0.1 39.0 15.02 0.022
LP,wcong = 1 40.1 8.1 0.027
ROSA,wcong = 1 45.6 16.29 0.027
LP,wcong = 10 55.8 14.42 0.021
ROSA,wcong = 10 79.5 39.0 0.023
LP,wcong = 100 73.5 17.42 0.035
ROSA,wcong = 100 93.5 33.62 0.028
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Figure 8. The Pareto front (see the line connecting LP(wcong = 0.01) and LP(wcong = 0.1) using the travel time and congestion sum
metrics with the initial and new layouts.

Figure 9. Congestion across square meter subregions on layouts generated with safety distance δ = 0.5 (any subregion with zero con-
gestion is coloured gray, subregions with congestion between zero and 0.02 are coloured orange, those with congestion between 0.02
and 0.03 are coloured brown and any subregionwith congestion of at least 0.03 is coloured red.). (a) LP,wcong = 0.01. (b) LP,wcong = 0.1.
(c) LP, wcong = 1. (d) LP, wcong = 10. (e) LP, wcong = 100. (f ) ROSA, wcong = 0.01. (g) ROSA, wcong = 0.1. (h) ROSA, wcong = 1. (i) ROSA,
wcong = 10 and (j) ROSA,wcong = 100.
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The LP and ROSA formulations aim to reduce conges-
tion potential by minimising the overlap of movements
between different facilities when directing them toward
a location along the shortest distance. However, achiev-
ing this goal necessitates distancing the facilities from
each other. Consequently, workers have to travel longer
distances, spending more time in motion, which can
increase the likelihood of encountering other moving
workers. Figure 9 visually demonstrates the congested
areas in the new layouts, and it is evident that the number
of congested areas may increase aswcong rises. Therefore,
to obtain layouts that effectively reduce both travel time
and congestion, it is advisable to employ our methods
with lower weight values for wcong, resulting in layouts
where facilities are reasonably spaced apart.

4.3.1. Evaluation under large safety distance
The layouts illustrated in Figure 9 assume a safety dis-
tance (δ) of half a meter. Among these layouts, those
generated with lower weight values assigned to wcong

have been identified as the most effective, achieving a
reduction in travel time of over 50% compared to the
initial layout. In this section, we aim to explore the poten-
tial for improvement in the new layouts when a larger
safety distance of one meter is considered. Our objective

is to determine whether our methods can still discover
layouts that are significantly superior to the initial lay-
out even when a much larger safety distance needs to
be maintained between facilities. To accomplish this,
we utilise the linear programming method with wcong ∈
{0.01, 0.1, 1} and δ = 1, and we present the resulting lay-
outs in Figure 10, along with their corresponding evalu-
ation metrics.

Firstly, it is worth noting that the layouts with a safety
distance of δ = 1, as depicted in Figure 10, exhibit a
similar structural arrangement to those with δ = 0.5 in
terms of the relative positioning of facilities. The key
distinction is that now the distances between the facili-
ties are more extensive. Evaluating these layouts reveals
significant enhancements compared to the initial lay-
out, with improvements observed in both travel time
and congestion metrics for wcong = 0.01 and wcong =
0.1, which achieve a reduction in travel time by more
than 32%.

Notably, the layout with wcong = 0.01 in Figure 10(a),
which demonstrates the most substantial travel time
improvement, bears resemblance to the initial layout
(depicted in Figure 4). However, there are two significant
positioning modifications in this layout. Firstly, facili-
ties 1 and 6 are positioned in close proximity to facility

Figure 10. Congestion across square meter subregions on layouts generated with safety distance δ = 1 via LP method under wcong ∈
{0.01, 0.1, 1} (any subregion with zero congestion is coloured gray, subregions with congestion between zero and 0.02 are coloured
orange, those with congestion between 0.02 and 0.03 are coloured brown and any subregion with congestion of at least 0.03 is coloured
red.). (a) LP, wcong = 0.01, Travel Time Metric: 52.7, Congestion Sum Metric: 10.28, Congestion Max Metric: 0.022. (b) LP, wcong = 0.1,
Travel Time Metric: 54.4, Congestion Sum Metric: 8.52, Congestion Max Metric: 0.021 and (c) LP, wcong = 1, Travel Time Metric: 58.2,
Congestion SumMetric: 16.16, Congestion Max Metric: 0.058.
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7, similar to their placement in the initial layout. How-
ever, in the new layout, facility 7 is precisely positioned
between these two facilities. As mentioned earlier, this
design choice offers advantages in terms of preventing
movement overlap and also leads to reduced travel time.
Secondly, facilities 2 and 3 have exchanged locations,
favouring the placement of facility 3 closer to the centre
instead of facility 2. In other words, the initial layout can
be transformed into the layout depicted in Figure 10(a)
through twominor adjustments. This illustrates that even
small modifications can yield significant improvements
to the initial layout.

5. Discussion and conclusions

This paper introduces two innovative methods for
designing facility layouts in labour-intensive manufac-
turing processes, such as workshops. Unlike automated
manufacturing systems that rely on fixed programming
for robots, labour-intensive processes involve human
workers who exhibit flexible and unpredictable prac-
tices. Consequently, the use of integrative optimisation-
based facility design approaches proposed for auto-
mated systems, which determine both facility locations
and manufacturing process-related decisions (e.g. job
and route assignments), are not suitable for labour-
intensive systems. Instead, this paper proposes less intru-
sive human-centred methods that focus solely on deter-
mining facility locations. By observing workers’ move-
ment data, obtained through indoor localisation sensors,
we learn from their practices, including their adaptability
to changing conditions on the manufacturing floor. This
information is utilised to generate scenarios and develop
new layouts that are robust to evolving work patterns,
while allowing workers to perform tasks according to
their own practices.

In facility layout design, we prioritise minimising flow
distances, aiming to reduce the distances workers travel
whenmoving between facilities. Additionally, we address
the issue of congestion risk in layout generation. Con-
gestion, a spatio-temporal phenomenon where work-
ers occupy the same place simultaneously, cannot be
determined solely based on facility locations. To incor-
porate congestion risk, we employ indirect approaches.
We introduce novel methods by identifying potential
movement overlaps through the relative positioning of
facilities. Our approaches adopt biobjective formulations,
considering both minimising travel distances and con-
gestion risk. The first method utilises linear program-
ming, employing rectilinear distances and four descrip-
tors (left, right, above, below) to determine relative facil-
ity positioning. This model can be efficiently solved
using state-of-the-art optimisation solvers. The second

method employs a quadratic formulation that utilises
Euclidean distances and angle-based identification of
relative positioning. To provide solutions to this formu-
lation, we develop a simulated annealing metaheuristic
called ROSA, which we benchmark against four other
simulated annealing methods for similar facility layout
problems, demonstrating its ability to discover high-
quality solutions.

We conducted a real-world case study on a manual
assembly line with six workers and seven facilities, where
worker movements were tracked using UWB sensors,
capturing their 2D positions over a three-hour shift. Our
two layout generationmethodswere appliedwith varying
weight values for congestion risk, resulting in different
layouts that balanced the objective of minimising travel
distance.We observed that as the weight given to conges-
tion risk increased, facility locations tended to spread out
more on the manufacturing floor, leading to increased
distances. This outcome is intuitive since avoiding move-
ment overlap necessitates different facility alignments,
requiring more floor space. Additionally, our congestion
and distance-aware methods successfully placed facil-
ities in close proximity, especially where high traffic
volumes occurred, while also discovering designs that
completely avoided movement overlap between facili-
ties. These findings demonstrate the effectiveness of our
indirect approaches in incorporating congestion risk into
facility layouts.

To gain a comprehensive understanding of the per-
formance of the layouts generated by our methods in
relation to time-dependent factors, we conducted simu-
lations and evaluated the layouts using time-annotated
work patterns and potential worker paths in the new
layouts. We employed a genetic algorithm to generate
likely paths for workers, enabling evaluation based on
time-based measures. Specifically, we considered aver-
age travel time and spatio-temporal congestionmeasures.
Our objective was to evaluate the new layouts under these
measures and compare them to the current layout, inves-
tigating the potential improvement achievable through
layout changes. The evaluation revealed that both of our
methods produced layouts that outperformed the current
layout significantly in terms of both measures. How-
ever, we observed that the best layouts were obtained
when assigning lower weight values to congestion risk,
allowing for congestion risk to be accommodated with-
out excessively spreading out the facilities on the
floor.

Both of our methods are able to generate layouts for
different number of workers or facilities. Potentially, as
the methods have to consider more layout options (as
A or/and R increase), the amount of time required to
generate the layouts can increase. This can be more of a
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challenge for our second method, the simulated anneal-
ing. However, our linear programming approach will still
be able to generate layouts in amatter of seconds even for
very large numbers of workers and facilities. Therefore,
given that the linear formulation can provide high qual-
ity solutions while being more computationally efficient
than the simulated annealing, this method can be more
advantageous in practice.

Overall, our study highlights a crucial application of
location tracking sensors within manufacturing envi-
ronments, showcasing their capacity to enhance facil-
ity layout based on the data they generate. This insight
can assist production engineers in making informed
decisions regarding the implementation of these sensors,
aiding them in assessing the potential value and benefits
of such an investment.

Future research can explore alternative approaches to
address congestion risks based on facility locations. Addi-
tionally, methods can be developed for dynamic facil-
ity layout design, especially for flexible systems capable
of accommodating layout changes. Leveraging suitable
sensor data would enable a more informed approach
in this regard. This might involve tracking not only
worker movement data but also multi-source sensor data
related to workers, materials, equipment, and machines.
By doing so, it becomes possible to detect temporal pat-
terns and identify optimal moments for design changes.
This, in turn, could lead to significant improvements in
reducing travel time for workers and mitigating conges-
tion risks. Adopting such an informed approach might
offer advantages over changing the layout at fixed time
intervals. One important limitation of our paper is that
when aiming to ease worker movement between facili-
ties for a more human-centric facility layout, the weight
of the materials workers transfer should also be con-
sidered. Future research could incorporate these differ-
ences in weights and seek to better facilitate movement
for transfers involving heavy materials. Methodologi-
cally, the primary limitation of our study lies in our
dependence on simulations to assess layouts and our
assumption that workers will consistently opt for the
shortest paths when moving between stations. However,
this assumption may not always align with actual worker
behaviour. Future research could address this by integrat-
ing behavioural insights fromworkers into the simulation
process, potentially through methods like conducting
surveys.

Notes

1. https://www.gurobi.com/
2. https://www.promtools.org/

Acknowledgements

For the purpose of open access, the authors have applied a Cre-
ative Commons Attribution (CC BY) licence to any Author
Accepted Manuscript version arising from this submission.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the Engineering and Physical Sci-
ences Research Council, UK [grant number EP/V051113/1 -
Productivity and Sustainability Management in the Responsive
Factory].

Notes on contributors

Ayse Aslan was a research fellow in
the School of Computing, Engineering
and the Built environment at Edinburgh
Napier University. She is an applied math-
ematician specialised in operational
research and data science. Her expertise
lies in using stochastic modelling, sim-
ulation, optimisation, dynamic/sequential

decision-making tools, and machine learning techniques to
effectively model, analyse, and provide analytical and data-
driven decision support for complex real-world
problems.

Gokula Vasantha is an associate profes-
sor of engineering design and informat-
ics at the School of Computing, Engi-
neering and the Built Environment at
Edinburgh Napier University. His inter-
ests include predictive engineering design
modelling, engineering design informat-
ics, integrated product-service systems,

collaborative product development environment, smart man-
ufacturing, modelling and management of engineering design,
and crowdsourcing design and manufacturing processes.

Hanane El-Raoui is a lecturer in the
department of Management Science at
the University of Strathclyde. Her cur-
rent research interests include behaviour
modelling and simulation, organisational
safety, risk management.

John Quigley is a Professor in the depart-
ment of Management Science at the Uni-
versity of Strathclyde, and an Industrial
Statistician with expertise in develop-
ing and applying statistical and stochas-
tic methods to build decision support
models.

https://www.gurobi.com/
https://www.promtools.org/


INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 1351

Jack Hanson is a research associate at the
University of Edinburgh. He completed an
MEng in mechanical engineering at Liv-
erpool John Moores University in Eng-
land in 2017 before completing a PhD
in fluid mechanics at the University of
Edinburgh. His current research interests
include additive manufacture of tuneable

metal lattices and the characterisation of human movement in
industrial settings.

Jonathan Corney is a Professor of Digital
Manufacturing at the University of Edin-
burgh. His interests include manufactur-
ing applications of crowdsourcing; cloud
interfaces for manufacturing, the interac-
tive search of digital media and, the cre-
ation of predictive CAD systems by lever-
aging data analytics.

Andrew Sherlock is a Director of Data-
Driven Manufacturing at National Manu-
facturing Institute Scotland and a Profes-
sor of Practice at the University of Strath-
clyde.His career has focussed on the appli-
cation of AI, data science and search tech-
niques to design and manufacturing.

Data availability statement

Data available within the article or its supplementarymaterials.
The authors will share source codes of the methods presented
in this research article upon request.

References

Anjos, Miguel F., and Manuel V. C. Vieira. 2017. “Mathe-
matical Optimization Approaches for Facility Layout Prob-
lems: The State-Of-the-Art and Future Research Direc-
tions.” European Journal of Operational Research 261 (1):
1–16. https://doi.org/10.1016/j.ejor.2017.01.049.

Aslan, Ayse, Hanane El-Raoui, Jack Hanson, Gokula Vasan-
tha, JohnQuigley, and Jonathan Corney. 2024. “Data-Driven
Discovery of Manufacturing Processes and Performance
fromWorker Localisation.” InFlexible Automation and Intel-
ligent Manufacturing: Establishing Bridges for More Sustain-
able Manufacturing Systems, 592–602. Switzerland: Springer
Nature.

Aslan, Ayse, Hanane El-Raoui, Jack Hanson, Gokula Vasan-
tha, John Quigley, Jonathan Corney, and Andrew Sherlock.
2023. “UsingWorker PositionData forHuman-DrivenDeci-
sion Support in Labour-Intensive Manufacturing.” Sensors
23 (10): 4928. https://doi.org/10.3390/s23104928.

Burggräf, Peter, Tobias Adlon, Viviane Hahn, and Timm
Schulz-Isenbeck. 2021. “Fields of Action Towards Auto-
mated Facility Layout Design and Optimization in Factory
Planning – a Systematic Literature Review.” CIRP Jour-
nal of Manufacturing Science and Technology 35:864–871.
https://doi.org/10.1016/j.cirpj.2021.09.013.

Butt, Steven E., and Tom M. Cavalier. 1997. “Facility Location
in the Presence of Congested Regions with the Rectilinear
Distance Metric.” Socio-Economic Planning Sciences 31 (2):
103–113. https://doi.org/10.1016/s0038-0121(96)00017-1.

Chang, Ping-Chen, and Yi-Kuei Lin. 2015. “Fuzzy-Based Sys-
tem Reliability of a Labour-Intensive Manufacturing Net-
work with Repair.” International Journal of Production
Research 53 (7): 1980–1995. https://doi.org/10.1080/002075
43.2014.944279.

Chen, Chen, and Lee Kong Tiong. 2019. “Using Queuing
Theory and Simulated Annealing to Design the Facil-
ity Layout in An AGV-based Modular Manufacturing
System.” International Journal of Production Research 57
(17): 5538–5555. https://doi.org/10.1080/00207543.2018.15
33654.

Chwif, Leonardo, Marcos R. Pereira Barretto, and Lucas Anto-
nio Moscato. 1998. “A Solution to the Facility Layout Prob-
lem Using Simulated Annealing.” Computers in Industry 36
(1–2): 125–132. https://doi.org/10.1016/s0166-3615(97)001
06-1.

Delamare, Mickael, Fabrice Duval, and Remi Boutteau. 2020.
“A New Dataset of People Flow in An Industrial Site with
UWB and Motion Capture Systems.” Sensors 20 (16): 4511.
https://doi.org/10.3390/s20164511.

dos Santos Garcia, Cleiton, Alex Meincheim, Elio Ribeiro
Faria Junior, Marcelo Rosano Dallagassa, Denise Maria
Vecino Sato, Deborah Ribeiro Carvalho, Eduardo Alves
Portela Santos, and Edson Emilio Scalabrin. 2019. “Process
Mining Techniques and Applications – a Systematic Map-
ping Study.” Expert Systems with Applications 133:260–295.
https://doi.org/10.1016/j.eswa.2019.05.003.

Dridi, Imen Harbaoui, Essia Ben Alaïa, Pierre Borne, and
Hanen Bouchriha. 2019. “Optimisation of the Multi-
Depots Pick-Up and Delivery Problems with Time Win-
dows and Multi-Vehicles Using PSO Algorithm.” Interna-
tional Journal of Production Research 58 (14): 4201–4214.
https://doi.org/10.1080/00207543.2019.1650975.

Erfani, Behrad, Sadoullah Ebrahimnejad, and Amirhossein
Moosavi. 2020. “An Integrated Dynamic Facility Layout and
Job Shop Scheduling Problem: AHybrid NSGA-II and Local
Search Algorithm.” Journal of Industrial & Management
Optimization 16 (4): 1801–1834. https://doi.org/10.3934/
jimo.2019030.

Flapper, Simme Douwe, Jean-Philippe Gayon, and Lâm Lau-
rent Lim. 2014. “On the Optimal Control of Manufactur-
ing and Remanufacturing Activities with a Single Shared
Server.” European Journal of Operational Research 234 (1):
86–98. https://doi.org/10.1016/j.ejor.2013.10.049.

Foead, Daniel, Alifio Ghifari, Marchel Budi Kusuma, Novita
Hanafiah, and Eric Gunawan. 2021. “A Systematic Liter-
ature Review of A∗ Pathfinding.” Procedia Computer Sci-
ence 179:507–514. https://doi.org/10.1016/j.procs.2021.01.
034.

Hasan, Raed Abdulkareem,Mostafa Abdulgafoor Mohammed,
Nicolae Tapus, and Omar Abdulmaged Hammood. 2017,
September. “A Comprehensive Study: Ant Colony Opti-
mization (ACO) for Facility Layout Problem.” In 2017
16th RoEduNet Conference: Networking in Education and
Research (RoEduNet). Targu-Mures: IEEE. https://doi.org/
10.1109/ROEDUNET.2017.8123738.

Hosseini-Nasab, Hasan, Sepideh Fereidouni, Seyyed Moham-
mad Taghi Fatemi Ghomi, and Mohammad Bagher
Fakhrzad. 2018. “Classification of Facility Layout Prob-
lems: A Review Study.” The International Journal of
Advanced Manufacturing Technology 94 (1–4): 957–977.
https://doi.org/10.1007/s00170-017-0895-8.

https://doi.org/10.1016/j.ejor.2017.01.049
https://doi.org/10.3390/s23104928
https://doi.org/10.1016/j.cirpj.2021.09.013
https://doi.org/10.1016/s0038-0121(96)00017-1
https://doi.org/10.1080/00207543.2014.944279
https://doi.org/10.1080/00207543.2018.1533654
https://doi.org/10.1016/s0166-3615(97)00106-1
https://doi.org/10.3390/s20164511
https://doi.org/10.1016/j.eswa.2019.05.003
https://doi.org/10.1080/00207543.2019.1650975
https://doi.org/10.3934/jimo.2019030
https://doi.org/10.1016/j.ejor.2013.10.049
https://doi.org/10.1016/j.procs.2021.01.034
https://doi.org/10.1109/ROEDUNET.2017.8123738
https://doi.org/10.1007/s00170-017-0895-8


1352 A. ASLAN ET AL.

Hosseini, Seyed Shamsodin, Parham Azimi, Mani Sharifi, and
Mostafa Zandieh. 2021. “A New Soft Computing Algorithm
Based on Cloud Theory for Dynamic Facility Layout
Problem.” RAIRO – Operations Research 55:S2433–S2453.
https://doi.org/10.1051/ro/2020127.

Kirkpatrick, S., C. D. Gelatt, andM. P. Vecchi. 1983. “Optimiza-
tion by Simulated Annealing.” Science (New York, N.Y.) 220
(4598): 671–680. https://doi.org/10.1126/science.220.4598.
671.

Kuo, Yiyo, Yen-Po Chen, and Yu-Cheng Wang. 2018. “Opera-
tor Assignment with Cell Loading and Product Sequencing
in Labour-Intensive Assembly Cells – a Case Study of a Bicy-
cle Assembly Company.” International Journal of Production
Research 56 (16): 5495–5510. https://doi.org/10.1080/0020
7543.2018.1470345.

Leemans, Sander J. J., Dirk Fahland, and Wil M. P. van der
Aalst. 2013. “Discovering Block-Structured Process Models
fromEvent Logs –AConstructive Approach.” InApplication
and Theory of Petri Nets and Concurrency, 311–329. Berlin
Heidelberg: Springer.

Li, Jinying, Xin Tan, and Jinchao Li. 2018. “Research on
Dynamic Facility Layout Problem of Manufacturing Unit
Considering Human Factors.” Mathematical Problems in
Engineering 2018:1–13. https://doi.org/10.1155/2018/6040
561.

Matai, Rajesh, S. P. Singh, and M. L. Mittal. 2013. “Modified
Simulated Annealing Based Approach for Multi Objective
Facility Layout Problem.” International Journal of Production
Research 51 (14): 4273–4288. https://doi.org/10.1080/0020
7543.2013.765078.

McKendall, Alan R., Jin Shang, and Saravanan Kuppusamy.
2006. “Simulated Annealing Heuristics for the Dynamic
Facility Layout Problem.” Computers & Operations Research
33 (8): 2431–2444. https://doi.org/10.1016/j.cor.2005.02.
021.

Mouzon, Gilles, Mehmet B. Yildirim, and Janet Twomey.
2007. “Operational Methods for Minimization of Energy
Consumption of Manufacturing Equipment.” International
Journal of Production Research45 (18–19): 4247–4271.
https://doi.org/10.1080/00207540701450013.

Nanni, Mirco, and Dino Pedreschi. 2006. “Time-Focused Clus-
tering of Trajectories of Moving Objects.” Journal of Intelli-
gent Information Systems 27 (3): 267–289. https://doi.org/10.
1007/s10844-006-9953-7.

Nazarahari, Milad, Esmaeel Khanmirza, and Samira Doostie.
2019. “Multi-Objective Multi-Robot Path Planning in Con-
tinuous Environment Using An Enhanced Genetic
Algorithm.” Expert Systems with Applications 115:106–120.
https://doi.org/10.1016/j.eswa.2018.08.008.

Paydar, Mohammad Mahdi, Mohammad Saidi-Mehrabad,
and Ebrahim Teimoury. 2014. “A Robust Optimisation
Model for Generalised Cell Formation ProblemConsidering
Machine Layout and Supplier Selection.” International Jour-
nal of Computer Integrated Manufacturing 27 (8): 772–786.
https://doi.org/10.1080/0951192x.2013.834476.

Peng, Yunfang, Tian Zeng, Lingzhi Fan, YajuanHan, andBeixin
Xia. 2018. “An Improved Genetic Algorithm Based Robust
Approach for Stochastic Dynamic Facility Layout Prob-
lem.” Discrete Dynamics in Nature and Society 2018:1–8.
https://doi.org/10.1155/2018/1529058.

Pérez-Gosende, Pablo, Josefa Mula, and Manuel
Díaz-Madroñero. 2020. “Overview of Dynamic Facility

Layout Planning As a Sustainability Strategy.” Sustainability
12 (19): 8277. https://doi.org/10.3390/su12198277.

Pérez-Gosende, Pablo, Josefa Mula, and Manuel
Díaz-Madroñero. 2021. “Facility Layout Planning. An
Extended Literature Review.” International Journal of Pro-
duction Research 59 (12): 3777–3816. https://doi.org/10.
1080/00207543.2021.1897176.

Pillai, V. Madhusudanan, Irappa Basappa Hunagund, and
Krishna K. Krishnan. 2011. “Design of Robust Layout for
Dynamic Plant Layout Problems.” Computers & Industrial
Engineering 61 (3): 813–823. https://doi.org/10.1016/j.cie.
2011.05.014.

Pourhassan, Mohammad Reza, and Sadigh Raissi. 2017. “An
Integrated Simulation-Based Optimization Technique for
Multi-Objective Dynamic Facility Layout Problem.” Journal
of Industrial Information Integration 8:49–58. https://doi.org/
10.1016/j.jii.2017.06.001.

Pourhassan, Mohammad Reza, and Sadigh Raissi. 2019, Jan-
uary. “A Hybrid Genetic and Particle Swarm Optimization
Algorithms for Dynamic Facility Layout Problem with Mul-
tiple Transporters.” In 2019 15th Iran International Industrial
Engineering Conference (IIIEC). Historic City of Yazd: IEEE.
https://doi.org/10.1109/IIIEC.2019.8720630.

Pournaderi, N., V. R. Ghezavati, and M. Mozafari. 2019.
“Developing a Mathematical Model for the Dynamic Facil-
ity Layout Problem Considering Material Handling Sys-
tem and Optimizing it Using Cloud Theory-Based Sim-
ulated Annealing Algorithm.” SN Applied Sciences 1 (8):
1–17. https://doi.org/10.1007/s42452-019-0865-x.

Pourvaziri, Hani, Henri Pierreval, and Helene Marian. 2021.
“Integrating Facility Layout Design and Aisle Structure in
Manufacturing Systems: Formulation and Exact Solution.”
European Journal of Operational Research 290 (2): 499–513.
https://doi.org/10.1016/j.ejor.2020.08.012.

Pourvaziri, Hani, Saeideh Salimpour, Seyed Taghi Akhavan
Niaki, and Ahmed Azab. 2021. “Robust Facility Layout
Design for Flexible Manufacturing: A Doe-Based Heuris-
tic.” International Journal of Production Research 60 (18):
5633–5654. https://doi.org/10.1080/00207543.2021.1967500.

Rempe, Felix, Gerhard Huber, and Klaus Bogenberger. 2016.
“Spatio-Temporal Congestion Patterns in Urban Traffic
Networks.” Transportation Research Procedia 15:513–524.
https://doi.org/10.1016/j.trpro.2016.06.043.

Renzi, C., F. Leali, M. Cavazzuti, and A. O. Andrisano. 2014. “A
Review onArtificial IntelligenceApplications to theOptimal
Design ofDedicated andReconfigurableManufacturing Sys-
tems.” The International Journal of Advanced Manufacturing
Technology 72 (1–4): 403–418. https://doi.org/10.1007/s001
70-014-5674-1.

Rezaee, M., E. Shakeri, A. Ardeshir, and H. Malekitabar.
2021. “Optimizing Travel Distance of Construction Work-
ers Considering Their Behavioral Uncertainty Using Fuzzy
Graph Theory.” Automation in Construction 124:103574.
https://doi.org/10.1016/j.autcon.2021.103574.

Rozinat, A., R. S. Mans, M. Song, and W. M. P. van der Aalst.
2009. “Discovering Simulation Models.” Information Sys-
tems 34 (3): 305–327. https://doi.org/10.1016/j.is.2008.09.
002.

Salimpour, Saeideh, Hani Pourvaziri, and Ahmed Azab. 2021.
“Semi-Robust Layout Design for Cellular Manufacturing in
aDynamic Environment.”Computers&Operations Research
133:105367. https://doi.org/10.1016/j.cor.2021.105367.

https://doi.org/10.1051/ro/2020127
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1080/00207543.2018.1470345
https://doi.org/10.1155/2018/6040561
https://doi.org/10.1080/00207543.2013.765078
https://doi.org/10.1016/j.cor.2005.02.021
https://doi.org/10.1080/00207540701450013
https://doi.org/10.1007/s10844-006-9953-7
https://doi.org/10.1016/j.eswa.2018.08.008
https://doi.org/10.1080/0951192x.2013.834476
https://doi.org/10.1155/2018/1529058
https://doi.org/10.3390/su12198277
https://doi.org/10.1080/00207543.2021.1897176
https://doi.org/10.1016/j.cie.2011.05.014
https://doi.org/10.1016/j.jii.2017.06.001
https://doi.org/10.1109/IIIEC.2019.8720630
https://doi.org/10.1007/s42452-019-0865-x
https://doi.org/10.1016/j.ejor.2020.08.012
https://doi.org/10.1080/00207543.2021.1967500
https://doi.org/10.1016/j.trpro.2016.06.043
https://doi.org/10.1007/s00170-014-5674-1
https://doi.org/10.1016/j.autcon.2021.103574
https://doi.org/10.1016/j.is.2008.09.002
https://doi.org/10.1016/j.cor.2021.105367


INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 1353

Sarkar, Avijit, Rajan Batta, and RakeshNagi. 2005. “Planar Area
Location/layout Problem in the Presence of Generalized
Congested Regions with the Rectilinear Distance Metric.”
IIE Transactions 37 (1): 35–50. https://doi.org/10.1080/074
08170590516809.

Şenol, Mehmet Burak, and Ekrem Alper Murat. 2023. “A
Sequential SolutionHeuristic for Continuous Facility Layout
Problems.” Annals of Operations Research 320 (1): 355–377.
https://doi.org/10.1007/s10479-022-04907-w.

Singh, S. P., and R. R. K. Sharma. 2006. “A Review of Differ-
ent Approaches to the Facility Layout Problems.” The Inter-
national Journal of Advanced Manufacturing Technology 30
(5–6): 425–433. https://doi.org/10.1007/s00170-005-0087-9.

Süer, Gürsel A. 1996. “Optimal Operator Assignment and
Cell Loading in Labor-Intensive Manufacturing Cells.”
Computers & Industrial Engineering 31 (1–2): 155–158.
https://doi.org/10.1016/0360-8352(96)00101-5.

Tamburis, Oscar, and Christian Esposito. 2020. “Process Min-
ing As Support to Simulation Modeling: A Hospital-Based
Case Study.” Simulation Modelling Practice and Theory
104:102149. https://doi.org/10.1016/j.simpat.2020.102149.

Tayal, Akash, Arun Solanki, and Simar Preet Singh. 2020. “Inte-
grated FrameWork for Identifying Sustainable Manufactur-
ing Layouts Based on Big Data, Machine Learning, Meta-
Heuristic and Data Envelopment Analysis.” Sustainable
Cities and Society 62:102383. https://doi.org/10.1016/j.scs.
2020.102383.

van der Aalst,W.M. P. 2009. “Business ProcessModeling Nota-
tion.” In Encyclopedia of Database Systems, 293–294. US:
Springer.

Vitayasak, Srisatja, and Pupong Pongcharoen. 2018. “Perfor-
mance Improvement of Teaching-Learning-Based Optimi-
sation for Robust Machine Layout Design.” Expert Systems
with Applications 98:129–152. https://doi.org/10.1016/j.
eswa.2018.01.005.

Wang, Weidong, Yaoguang Hu, Xi Xiao, and Yu Guan. 2019.
“Joint Optimization of Dynamic Facility Layout and Pro-
duction Planning Based on Petri Net.” Procedia CIRP
81:1207–1212. https://doi.org/10.1016/j.procir.2019.03.293.

Yelles-Chaouche, Abdelkrim R., Evgeny Gurevsky, Nadjib
Brahimi, and Alexandre Dolgui. 2021. “Reconfigurable
Manufacturing Systems From An Optimisation Perspective:
A Focused Review of Literature.” International Journal of
Production Research 59 (21): 6400–6418. https://doi.org/10.
1080/00207543.2020.1813913.

Zha, Shanshan, Yu Guo, Shaohua Huang, Falin Wang, and
Xiao Huang. 2017. “Robust Facility Layout Design Under
Uncertain Product Demands.” Procedia CIRP 63:354–359.
https://doi.org/10.1016/j.procir.2017.03.079.

Zhang, Min, Rajan Batta, and Rakesh Nagi. 2011. “Designing
Manufacturing Facility Layouts toMitigate Congestion.” IIE
Transactions 43 (10): 689–702. https://doi.org/10.1080/0740
817x.2010.546386.

Zhu, Tianyuan, Jaydeep Balakrishnan, and Chun Hung
Cheng. 2018. “Recent Advances in Dynamic Facility Lay-
out Research.” INFOR: Information Systems and Operational
Research 56 (4): 428–456. https://doi.org/10.1080/03155986.
2017.1363591.

https://doi.org/10.1080/07408170590516809
https://doi.org/10.1007/s10479-022-04907-w
https://doi.org/10.1007/s00170-005-0087-9
https://doi.org/10.1016/0360-8352(96)00101-5
https://doi.org/10.1016/j.simpat.2020.102149
https://doi.org/10.1016/j.scs.2020.102383
https://doi.org/10.1016/j.eswa.2018.01.005
https://doi.org/10.1016/j.procir.2019.03.293
https://doi.org/10.1080/00207543.2020.1813913
https://doi.org/10.1016/j.procir.2017.03.079
https://doi.org/10.1080/0740817x.2010.546386
https://doi.org/10.1080/03155986.2017.1363591

	1. Introduction
	2. Related literature
	3. Methodology
	3.1. Data processing
	3.2. Layout generation procedures
	3.2.1. Mixed-integer linear programming model with rectilinear distances
	3.2.2. Simulated annealing metaheuristic for the quadratic formulation

	3.3. Evaluation of layouts in simulations

	4. Case study
	4.1. Flow patterns from the UWB data and the initial layout
	4.2. Generating new layouts
	4.2.1. Tuning the simulated annealing metaheuristic to solve the quadratic formulation
	4.2.2. Benchmarking the simulated annealing metaheuristic

	4.3. Evaluating new layouts against the initial layout
	4.3.1. Evaluation under large safety distance


	5. Discussion and conclusions
	Notes
	Acknowledgements
	Disclosure statement
	Funding
	Data availability statement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [609.704 794.013]
>> setpagedevice


