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ABSTRACT

Classical audio-visual (AV) speech enhancement (SE) and
separation methods have been successful at operating un-
der constrained environments; however, the speech quality
and intelligibility improvement is significantly reduced in
unconstrained real-world environments where variation in
pose and illumination are encountered. In this paper, we
present a novel privacy-preserving approach for real world
unconstrained pose-invariant AV SE and separation that con-
textually exploits pose-invariant 3D landmark flow features
and noisy speech features to selectively suppress unwanted
background speech and non-speech noises. In addition, we
present a unified architecture that integrates state-of-the-art
transformers with temporal convolution neural networks for
effective pose-invariant AV SE. The preliminary system-
atic experimentation on benchmark multi-pose OuluVS2 and
LRS3-TED corpora demonstrate that the privacy preserving
3D landmark flow features are effective for pose-invariant SE
and separation. In addition, the proposed AV SE model sig-
nificantly outperforms state-of-the-art audio-only SE model,
oracle ideal binary mask, and A-only variant of the proposed
model in speaker and noise independent settings.

Index Terms— Audio-visual speech enhancement, pose-
invariant, multimodal hearing aids

1. INTRODUCTION

Speech enhancement (SE) is used to improve the speech in-
telligibility in the presence of background interfering noises.
SE has been used in diverse real-world applications, includ-
ing hearing aids, smart human-computer interaction systems,
teleconferencing, and automatic speech recognition [1]. De-
spite considerable research efforts in the area of SE, under-
standing speech in the presence of multiple competing back-
ground sources, commonly encountered in cocktail party sce-
narios, has been a major challenge for several decades [2].

Although the incorporation of visual modality in audio-
only SE models [3, 4, 5, 6, 7] demonstrated a notable im-
provement in constraints cocktail party environments (with
near frontal speaker poses), the more general issue of audio-
visual (AV) SE in the context of pose variations remains
largely unexplored in real-world applications. It is to be noted
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that, the majority of state-of-the-art AV SE models employ a
corpus recorded in studio environments [1] with near frontal
face views used for both training and evaluation. As a result,
the performance of such models degrade in real world cock-
tail party like environments. However, in future AV hearing
aids, the speaker may not always face the hearing-impaired
listener, especially when addressing a group of more than two
individuals.

The main objective of this study is to address the per-
formance disparity shown by AV SE models when con-
fronted with pose variations. To this end, we propose a
novel transformer based architecture that leverages visual fea-
tures extracted from the target speaker’s face to isolate their
voice from competing background speech and noise sources.
Specifically, our framework generates an enhanced audio sig-
nal that exclusively contains the target speaker’s voice when
supplied with a noisy audio signal and frontal/non-frontal
target speaker video as inputs. Simultaneously, our frame-
work effectively suppresses background noise (speech and/or
noise) regardless of the target speaker’s pose. An overview of
the new framework is depicted in Figure 1.

The proposed model leverages the complementary strengths
of multi-headed attention, transformer and temporal convo-
lutional networks for optimal AV SE in real-world uncon-
strained environments. Specifically, a unified deep neural
network model effectively learns correlations between noisy
speech and optical flow based 3D landmark flow [8] features
to generate spectral mask irrespective of pose variations.
The application of spectral mask to noisy speech features
retains the target speech dominant regions and suppresses
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Fig. 2. Proposed Speech Separation Model

background noise dominant regions. The enhanced speech
is resynthesised by combining the masked spectogram with
noisy phase. To the best of our knowledge, our study is the
first to propose a privacy-preserving pose-invariant AV SE
framework that is speaker and noise independent.

The rest of the paper is organised as follows: section 2
presents the proposed pose-invariant framework; section 3
provides synthetic AV corpora and data preprocessing; sec-
tion 4 presents the experimental results; and finally section 5
concludes the work and proposes some future directions.

2. POSE-INVARIANT AUDIO-VISUAL SPEECH
ENHANCEMENT

This section describes our proposed deep neural network
(DNN) architecture depicted in Fig. 2. The DNN ingests
optical flow of 3D landmark flow features and a noisy mag-
nitude spectogram to generate an enhanced spectogram as
output. The enhanced spectogram is combined with the noisy
phase to resynthesise enhanced speech.

2.1. Model architecture

The proposed model consists of three parts: a temporal convo-
lutional network [9], Perceiver IO [10] and a fully connected
layer.
1. Temporal convolutional network (TCN): The TCN in-
gests the concatenation of noisy spectogram and upsampled
pose invariant Face Mesh features as input. Specifically, the
TCN consists of multiple temporal blocks with exponential
increase (2i−1 where i varies from 1 to number of temporal
blocks). Each temporal block consists of 4 convolution lay-
ers where the first/third are depth-wise convolutional layers
with a dilation factor 2i−1 and the second/fourth are point-
wise convolutional layers with a dilation factor of 1. Each
convolution layer is followed by batch normalisation, a para-
metric rectified linear unit (PReLU) and a dropout layer. The
TCN part of the proposed model contains 4 temporal blocks
with dilation 1, 2, 4, and 8 respectively. The kernel size and
dropout were set to 3 and 0.05 respectively. The extracted
features are fed to Perceiver IO for further processing.
2. Perceiver IO: The Perceiver IO is a generic DNN architec-

ture that has been shown to achieve state-of-the-art results in
a wide variety of applications including language modelling,
multimodal auto encoding and optical flow prediction. The
model scales linearly in terms of processing time and model
complexity as the input dimension is increased, making it at-
tractive for practical applications. The Perceiver IO mainly
consists of 3 layers: (1) encoder with cross-attention (2) a
series of transformer modules with self attention and (3) de-
coder with self attention. The encoder module maps the in-
puts to a latent space by applying a cross-attention module.
The encoded latent space is then processed using a series of
transformer modules. The processed latent space is then fed
to a decoder module that maps the latent space to the output
dimension after applying cross attention. The input, latent and
output dimensions of the Perceiver IO block are 377, 257 and
257 respectively. The cross attention modules present in the
encoder and decoder layers comprise 4 heads and 16 dimen-
sions each. In addition, the model consists of 3 transformer
modules stacked on top of each other. The self attention head
present in each transformer module consists of 4 heads and 16
dimension per head. The aforementioned parameters leads to
a Perceiver IO module with 6M parameters.
3. Fully connected layer: The fully connected layer con-
sists of 257 neurons with sigmoid activation to predict a time-
frequency mask. The predicted spectral mask is multiplied
with the noisy speech magnitude spectogram to generate a
masked spectogram as the network output. The enhanced
speech is resynthesised by combining the masked magnitude
with the noisy phase.

3. AV DATASET AND PRE-PROCESSING

3.1. Datasets

The models are trained and evaluated using synthetic bench-
mark corpora generated using OuluVS2 [11] and LRS3-
TED [12]. Specifically, two different scenarios were con-
sidered for each corpus: (1) Two speaker mixture (2Mix) -
target speaker mixed with background speaker at a randomly
selected SNR ranging from a uniform distribution between 0
dB and +10 dB (2) Two speaker mixture with real ambient
background noise (2Mix + Noise) - target speaker mixed with



background speaker (at SNR ranging from 0 dB to +10 dB)
and background noise (at SNR ranging from -6 dB to +6 dB).
OuluVS2: The OuluVS2 corpus was recorded for non-rigid
mouth motion analysis with 53 speakers (40 males and 13 fe-
males) and simultaneous recording of five different views: 0◦

(frontal), 30◦ , 45◦, 60◦ and 90◦ (profile). The availability of
multi-view recordings makes the corpus suitable for training
pose-invariant SE model. For training, validation and testing,
the data was split into 37, 6, and 10 speakers respectively.
LRS3-TED: The LRS3-TED corpus consists of videos of
around 4500 speakers collected from TED and TEDx. As
compared to OuluVS2 the data do not consist of explicit fixed
view of the speaker. However, as the speaker naturally moves
across the stage the videos consist of wide variety of facial
postures. For training, validation and testing, the data was
split into 3500, 500, and 412 speakers respectively.
WHAM! Noises: The WHAM corpus [13] was developed to
benchmark SE methods with a more realistic cocktail party
scenario where a two speaker mixture is combined with real-
world ambient noises recorded in coffee shops, restaurants,
and bars in the San Francisco Bay Area. The dataset is used
for generating 2Mix + Noise scenario.

3.2. Data preprocessing

Audio: The audio signal is resampled to 16000 Hz sam-
pling frequency. The signals are then segmented into 32 ms
frames (512 samples per frame) with a 8 ms frame increment
(128 sample per increment). A short time Fourier transform
(STFT) with hanning window is applied to produce a 257 bin
spectrum. The magnitude of the spectrum is fed as input to
the model.
Video: The videos are resampled at 25 frames per second.
BlazeFace [14] is used to extract the face region from the
video. The region is resized to a square of size 224×224. The
cropped region is then fed to Face Mesh [8] model to extract
486 dimensional 3D facial landmarks per frame. Since there
is high correlation between the audio and lip movements, only
the lip part of Face Mesh features is considered resulting in 40
dimensional 3D lip landmark features per frame (3×40). The
landmark of each current frame is subtracted from the previ-
ous frame to generate an optical flow of landmarks as visual
features. The visual features are upsampled to match the au-
dio feature sampling rate.

4. EXPERIMENTAL RESULTS

4.1. Experimental Setup

The pose-invariant framework is developed in Pytorch and
trained on NVIDIA A100 GPUs. The speakers present in
OuluVS2 and LRS3-TED corpora are split into train (70%),
validation (10%) and test sets (20%) for speaker independent
evaluation. Note that, the speakers are divided to ensure simi-
lar gender representation across all sets. The WHAM! noises

Table 1. OuluVS2 2Mix Results

PESQ STOI CSIG CBAK COVL
Noisy 2.191 0.537 2.951 2.062 2.302
ConvTasNet [15] 2.406 0.541 2.633 1.893 2.051
Proposed A-only 2.712 0.546 3.083 2.095 2.464
Proposed AV 3.082 0.578 3.675 2.220 2.964
Oracle IBM 2.690 0.620 2.373 1.747 1.929
Oracle IRM 3.308 0.640 4.241 2.238 3.446

Table 2. OuluVS2 2Mix+Noise Results

PESQ STOI CSIG CBAK COVL
Noisy 2.191 0.537 2.951 2.062 2.302
ConvTasNet [15] 2.312 0.538 2.995 1.871 2.136
Proposed A-only 2.712 0.546 3.083 2.095 2.464
Proposed AV 3.082 0.578 3.675 2.220 2.964
Oracle IBM 2.690 0.620 2.373 1.747 1.929
Oracle IRM 3.308 0.640 4.241 2.238 3.446

Table 3. LRS3-TED 2Mix Results

PESQ STOI CSIG CBAK COVL
Noisy 1.778 0.606 2.209 1.459 1.733
ConvTasNet [15] 2.472 0.628 2.615 1.966 2.235
Proposed A-only 2.669 0.651 3.099 1.916 2.417
Proposed AV 2.890 0.680 3.632 2.042 2.802
Oracle IBM 2.458 0.695 2.053 1.822 1.922
Oracle IRM 3.076 0.701 4.034 2.389 3.302

Table 4. LRS3-TED 2Mix+Noise Results

PESQ STOI CSIG CBAK COVL
Noisy 1.401 0.479 1.601 1.739 1.292
ConvTasNet [15] 2.432 0.558 1.503 1.871 1.430
Proposed A-only 2.695 0.579 2.521 1.955 2.119
Proposed AV 2.871 0.589 3.438 1.949 2.643
Oracle IBM 2.238 0.590 1.616 1.506 1.383
Oracle IRM 2.822 0.601 3.402 1.840 2.650

are also separated into train, validation and test set to en-
sure noise independent settings. The model is trained with
an Adam optimiser (lr=9e-4) for 50 epochs. The learning rate
is multiplied by 0.8 when the model validation accuracy stops
decreasing for 4 consecutive epochs. The model with best
validation accuracy is used for evaluation.

4.2. Results

In order to evaluate the quality and intelligibility of the en-
hanced speech, five widely used objective evaluation metrics
are used that aim to approximate the speech quality with-
out conducting subjective listening tests, specifically: (1)
PESQ [16]: one of the most widely used metrics to approx-



Fig. 3. Spectogram comparison for LRS3-TED : 2 Female + Noise mixture

imate subjective listening test score and ranges from [-0.5,
4.5] (2) STOI [17]: used to approximate speech intelligi-
bility and ranges from [0,1] (3) CSIG [18]: used to predict
speech distortion and ranges from [1, 5] (4) CBAK [18]: used
to predict background distortion and ranges from [1, 5] (5)
COVL [18]: predicts the overall quality and ranges from [1,
5].

The proposed AV model is compared with an A-only
variant, Conv-TasNet [15] and ideal time frequency magni-
tude masks including ideal binary mask (IBM) and ideal
ratio mask (IRM). The objective evaluation comparison
of ConvTasNet, our proposed AV, A-only, IBM and IRM
for OuluVS2 (2Mix), OuluVS2 (2Mix+Noise), LRS3-TED
(2Mix) and LRS3-TED (2Mix+noise) are presented in Ta-
ble 1, 2, 3, and 4 respectively. It can be seen that for all
objective measures the proposed pose-invariant AV model
significantly outperforms ConvTasNet, A-only model, and
IBM across both corpora and experimental scenarios (i.e.
2Mix and 2Mix + Noise). In addition, the AV model achieves
performance similar to oracle IRM.

Figure 3 depicts a spectogram of resynthesised speech
generated using IBM, IRM, A-only model, and AV model for
a randomly selected utterance from LRS3 (2Mix + Noise) test
set. The spectogram is compared with both reference (clean)
speech and degraded (noisy) speech. It can be seen that, both
our proposed A-only and AV models achieve near ideal recon-
struction. However, the A-only model failed to reconstruct the
highlighted speech region.

4.3. Limitations

The main limitations of our proposed framework are outlined
as follows (1) the 3D facial mesh features cannot be extracted
for profile posture (i.e. ±90◦) (2) the visual feature extraction

model extrapolates the unseen part of the face to predict 3D
landmark points and the accuracy of extrapolation decreases
as the angle increases from 0◦ to 90◦ (a decreasing angle leads
to enhanced performance). (3) The OuluVS2 corpus com-
prises fixed angle (0◦, 30◦, 45◦, 60◦, and 90◦) facial postures.

5. CONCLUSIONS

This paper presented a novel pose invariant audio-visual (AV)
speech enhancement (SE) and separation framework to ad-
dress the challenging issue of pose variation in real-world un-
constrained scenarios by exploiting privacy-preserving opti-
cal flow of 3D landmark features. The proposed framework
is based on an innovative end-to-end deep neural architecture
that unifies state-of-the-art transformers and temporal convo-
lutional networks for pose-invariant SE. Comparative simula-
tion results in terms of objective evaluation metrics (PESQ,
STOI, CSIG, CBAK, COVL) revealed significant improve-
ment of our proposed AV model compared to Conv-TasNet,
oracle ideal binary mask, and A-only variant of the proposed
model. Ongoing work includes subjective intelligibility eval-
uation of proposed framework with state-of-the-art AV SE
models and more challenging real-world corpora along with
a detailed theoretical, complexity and latency analysis. In
future, we intend to explore sparse and generative adversar-
ial networks for more robust and real-time pose-invariant AV
speech separation.
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