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ABSTRACT

DanceMark is an open telemetry framework designed for latency-
sensitive real-time networked immersive experiences, focusing on
online dancing in virtual reality within the DanceGraph platform.
The goal is to minimize end-to-end latency and enhance user ex-
perience, particularly crucial in partnered dancing scenarios where
synchronized movements are integral. DanceMark supports experi-
mentation addressing latency issues through direct sensor-to-display
paths and real-time dance prediction correctives through offline
analysis and online adaptive responses to live captured session data.

Index Terms: H.5.2 [User Interfaces]: User Interfaces—Graphical
user interfaces (GUI); H.5.m [Information Interfaces and Presen-
tation]: Miscellaneous C.2.m [Networks]: Network performance
evaluation—

1 INTRODUCTION

We demonstrate the use of telemetry to measure the end-to-end
latency as used in DanceGraph [18], a developing networking plat-
form intended for online dancing in virtual reality. The project
aims at providing an as-direct-as-possible networking architecture to
mitigate latency to the maximum permissible extent, whilst simulta-
neously predicting users to sidestep latency issues that cannot be thus
reduced. While latency is a factor in many real-time networked ap-
plications, with very definite consequences in user performance [15],
it causes extra challenges with the issue of partnered dancing, where
the time synchronization between user movement is an integral and
ever-present feature of the application. Each dancer must locally
perceive that their movements are in time with those of their remote
partner, and this effective synchronization should persist throughout
the entire experience.

The DanceGraph project mitigates the primary networked dance
latency counter-measures, through the use of two features, a) re-
duced end-to-end latency by providing as-direct-as-possible paths
from sensors to display and, b) Real-time dance correctives applied
as rhythmic motion predictions to present multiple body motions
synchronized with local music for each online dance partner’s expe-
rience. For the first of these points, we must delineate the sources of
latency and for the second provide an informed basis for predictions
to align synchronized dance pose pairs. We call the framework of
components providing this dance synchronization telemetry support,
DanceMark (figure 1).

For local signals, such as dance pose streams from a tracking
camera, we have a relatively straightforward task, since timestamps
can be simply applied and dumped to a local file or output de-
vice. Latency measurements among networked clients, however,
must coordinate among the network recipients all being on different
machines at different locations, with relatively unimpeded signal
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packets transmitted over unidirectional protocols (UDP) with no ac-
knowledgments or handshakes, and further suffering differing clock
synchronizations on the various network nodes.

To this end, each DanceGraph client employs a configurable la-
tency measurement system where servers collect bundled packets
of latency measurements collated on designated clients via Dance-
Graph’s network receivers.

Certain online dance networking signal types also facilitate extra
latency tracking information to report client measurements, e.g., the
latency introduced by body-tracking camera ingest processing times,
and subsequent image processing performance information.

Our flexible open-source telemetry scheme permits both
lightweight live monitoring of low-overhead statistics alongside
deeper capture for aggregated multi-client offline analysis.

2 RELATED WORK

Social VR is an emerging field that uses virtual reality technology
to create immersive digital environments where users, represented
by customizable avatars, can interact with each other in real-time. It
aims to simulate a shared physical space, fostering social interactions
through activities, communication, and collaboration. Several social
VR platforms exist, VRChat, Rec Room, and Facebook Horizon and
some dance focused networked video games (including Dance Cen-
tral and Just Dance), but also research lab originated platforms, like
Ubiq [7] and MOSIM [8]. In particular, Ubiq is a toolkit that enables
the creation of Social VR applications, and as such it focuses on
openness and extensibility. However, scalability is still an issue [6],
in addition to latency, especially when transferring/synchronizing a
high volume of data, which might be necessary for streaming certain
hardware signals such as immersive video streaming [4].

2.1 Latency
To a degree, latency in extended reality can be tolerated in terms
of task performance but degrades the experience in terms of player
experience quality and aesthetics [19]. As such latency is important
in networked applications, and especially in interactive games. Jiang
et al [10] show that players overall notice latencies as low as 50ms
and can tolerate them up to 125ms, although there are variations
across different genres, with FPS and subsequently XR games being
more sensitive to latency than others (e.g. turn-based games).

Elbamby et al. [5] highlight latency as one of the potential adop-
tion issues of networked VR applications over 5G networks and
suggest solutions such as millimeter-wave communications, multi-
access edge computing (MEC) caching and prediction, although
they do not delve into specifics on the software side of these ap-
proaches. Chaccour et al. [3] suggest using the Terahertz band for
wireless VR to provide a high-rate and high-reliability low-latency
communication, which requires the software to make good use of
such a networking architecture and sufficient availability of those
hardware network services.

Jiang et al. [11] highlight the importance of identifying the
sources of latency and identify and characterize different sources
of delay in the networking infrastructure. Their work focuses on
the networking infrastructure, and while VR (and music) is taken
into account, as an application class with the lowest latency and
highest data rate requirements, they do not expand on the software



Figure 1: An illustration of the networking latency issues that DanceGraph attempts to solve

requirements or additional sensor data that can be used in immersive
applications.

As networking infrastructure is not typically controlled by ap-
plication developers, latency in software has to be mitigated with
software-based methods. Liu et al. [14] developed a taxonomy for
latency compensation techniques for games, and identified four main
groups: feedback, prediction, time manipulation, and world adjust-
ment, where most techniques (in terms of the number of publications)
are based on prediction in the form of extrapolation. In the wider
literature on motion prediction research often a large time window
of sequences of poses or indeed the whole sequence is necessary for
accurate results, whilst in the live networked case processing entire
sequences is cost prohibitive and the stability of sequence frames
can be erratic due to network conditions. In DanceGraph latency
countermeasures for prediction are informed by DanceMark teleme-
try data capture operating within the transformer components of the
architecture, e.g. a rhythmic dance prediction transformer [18].

2.2 Telemetry

Telemetry systems for interactive experiences are critical to not
only improving the overall performance of the system throughout
development, e.g. in multiplayer first-person shooters [17], but to
informing with live data for adaptive real-time responses, as used in
racing games [12].

The client-server telemetry architecture for the gathering latency
timings was chosen since it mirrors and integrates with an already in-
place architecture in DanceGraph [18]. Ajayi et al [1] demonstrate
that using a publisher-subscriber model to collect data from Internet-
of-Things applications provides for more efficient gathering in their
use-case, but identified inefficiency as primarily due to the time cost
of their client-server model keeping a dedicated connection open.
Since DanceGraph’s clients are constantly transmitting and receiving
signal data to and from the server over the same network connection,
DanceMark folds into this cost as part of normal operation.

DanceMark telemetry gathering is similar in spirit to the much
more general approaches of Hyun et al [9] and Lin et al [13], where
suitably equipped network nodes append timestamps to packets
passing through them so that the end note has a complete record of

the packet’s latency profile.

3 INTEGRATING DANCEMARK PROFILING IN DANCEGRAPH

DanceGraph is implemented as a server-client based system, with
a thin server passing user signals (body tracking data, or micro-
phone audio) and environment signals (global gameworld-related
information, such as avatar appearances, usernames and so forth),
between clients, as well as control signals, signals between server
and client which primarily alter and update the state of the network.
The use-case for DanceGraph is a non-competitive environment, so
there is less emphasis on the server adjudicating a true common
global state of the virtual world and its participants compared with
a competitive networked game environment that ideally requires it.
This further affords local dance pose malleability according to the
ideal perceptual dance experience of each dancer local to their live
body posture and flow in concert with the virtual representation of
their remote partner.

Maximizing operational flexibility, the DanceMark attempts to
decouple the generation, processing, and visualization of the various
network signals it handles. Typical users will be connecting via a
game engine, such as Unity or Unreal interfaced with DanceGraph,
and viewing the results in a 3D gameworld on a Virtual Reality
Headset.

DanceGraph’s architecture is engine-agnostic with only a thin
layer of glue code between the adaptor for the game engine and the
network client software. Such adaptors may not necessarily reach
out to the network, such as utility configurations that connect to a
standalone motion capture client using shared memory inter-process
communication (IPC). Integrated clients may indeed be applied
to live link with digital content creation (DCCs) tools or headless
machine learning frameworks with no inherent loss of performance.
Small, command-line DanceGraph clients are also implemented for
the purpose of testing and monitoring, as well as the recording and
replaying of signal data for analysis and validation.

The decoupling of signal generation from signal propagation is
implemented through the use of ’consumer’ and ’producer’ modules.
’Producers’ are typically specific hardware drivers or network lis-
teners that feed the signal data to the Signal Manager, the central



portion of the DanceGraph Client which routes the signal transport
layer. ’Consumers’ receive signals from the signal manager and
dispatch them to the local system appropriately; a consumer can
send a signal to a game engine for rendering, write signal data to a
file, or dump information about the signal on the screen. Usually,
though not always, a consumer will be agnostic to the exact type of
signal being processed.

To illustrate this, a typical use-case for DanceGraph would be the
transport of the pose information from a Stereolabs ZED 21 depth
camera. Initially, the dancer is captured by the camera hardware,
and a producer module called from the Signal Manager’s main loop,
would use the ZED SDK to obtain the image data and process it into
a lightly compressed pose-tracked skeleton-data signal. The Signal
Manager then passes pointers to the data to one or more consumers,
including one to the adapter for the game engine, as well as to the
network server, which transmits the pose data to a remote client.
This remote client then dispatches the signal to the corresponding
consumers for visualization and use by the remote user. In bypassing
the game engine’s dependencies on the ZED SDK and game engine’s
networking facilities, DanceGraph already allows for a significant
reduction in latency due to local signal transport.

3.1 Multithreading
The DanceGraph architecture is extensible in terms of supported
hardware signals, such as audio, haptics, camera, generated from
different devices using bespoke bytestreams. In high-level terms,
using ’producer’ functions that utilize external libraries to generate
signal data. Such signals can take a variable amount of time to gen-
erate, so it is not good practice for a signal producer to be dependent
on other signal producers to complete. As such, signal producers
operate in different threads, that are children of the native client
thread. Typical hardware signals utilized in a client are expected to
be well below the average number of hardware threads in a modern
system, so there is no issue of thread starvation or suboptimal use of
threads.

The native client also runs in its own thread, independent of the
adapter endpoint (e.g Unity) that it is called from. This is essential
for decoupling the update rates of networking and the endpoint ap-
plication. The application is expected to run typically at 60Hz, and
if the networking system is coupled to this rate, then we can only
poll for data every 16ms. To prevent this artificial rate limiter, we
decouple the execution of DanceGraph from the adapter application,
via running DanceGraph in its own thread, with a user-defined up-
date rate normally a the highest service rate of connected producer
hardware sensors. As a result, the data is received at the DanceGraph
client as soon as possible, whereupon other work can be done im-
mediately (such as using transformers on received signals), without
having to wait for the adapter endpoint’s typically erratic and slower
update function.

By using the telemetry system explained later in 3.2, we measure
the latency of an artificially produced signal through DanceGraph
to another local client at about 2.29 milliseconds, compared with
the same types of signals being passed through DanceGraph while
coupled to the engine tick rate at 6.88 milliseconds. Both engine
tick and camera producer rates here are far from the worst-case; the
body tracking function from the SDK of our ZED cameras can easily
block the ZED pose producer for well over fifty milliseconds.

3.2 DanceMark Telemetry
The architecture supports telemetry of signal data, which is generally
useful to have for debugging and general data analysis purposes. The
data can be used to: measure the performance of the networking
architecture, identify bottlenecks, track lost UDP messages, iden-
tify latency between clients, and for any other task that requires
knowledge of a signal’s journey from the source to all destinations.

1https://www.stereolabs.com/zed-2/

The telemetry system records each signal packet from its gen-
eration until consumed by any client. Such signal packet records
include:

• Client ID: which client generated the signal.
• Signal type: what type of signal it is [body pose, voice, etc].
• Packet ID: a unique serial number for that signal type of the

owning client.
• Stage: the stage in the signal journey.
• Timestamp: when did this packet ID arrive at this stage
• Signal data: optional data record, due to the additional re-

quirements in storage and transfer.

The stages of the signal journey include generation, sending to
server, received at server, received at some native DanceGraph
client and received at some client’s adapter application, etc. . For
the client stages we make a distinction because the data will arrive
as soon as possible at the native client, but the adapter application
might cause additional latency due to having its own application
update rate which might be different from the native client’s update
rate.

3.3 Telemetry Bundling
Sending telemetry data continuously can unnecessarily hurt network
performance due to the additional load imposed by the extra data,
therefore we need to be able to optionally enable and disable teleme-
try according to requirements. At the same time we need to be
able to request data that have already been recorded. To solve this
issue, we split the telemetry process into two parts: service and
request. The service part runs continuously in all clients and server
(if telemetry might be desired) and records locally, in memory, all
required data. This is a very low-cost process as the records are
small (if we don’t request signal data) and the effect on performance
is insignificant. The request part is executed on-demand: the server
sends a message to all clients requesting telemetry data (this request
could contain a filter for a time range, signal type, client subset or
any other criteria). The clients, upon receipt of the message, start
bundling their relevant recorded data into packets that are intermit-
tently sent to the server. The server receives all data and integrates
its own recorded data in order to produce a telemetry file (in our
case, a simple CSV document) which can be analyzed at a later time
(see Figure 3.5)

3.4 Timer Source of Truth
Telemetry data sourced from different clients contain timestamps
using the local time for a client, which is typically not identical. In
order to do meaningful data analysis we need as consistent date and
time info among the server and clients as possible, and we achieve
that (up to a small error) using NTP server queries. All clients and
server measure their time offset to a per session, pre-set NTP server,
calculated using an average offset from a number of queries executed
when the server/clients start. When the clients connect to server,
the server stores their time offsets, so that when signal timestamps
arrive from clients as part of telemetry data, the server can offset the
timestamps so that they are converted to the server’s local time. This
enables an as-synchronous-as-possible common frame of reference
in terms of timing, that makes telemetry data analysis possible.

3.5 Live Adaptability
The capability of always-on low-cost recording of data with optional
recording of signal data and on-demand requests for gathering data at
the server allows the telemetry system to operate in different modes,
a runtime mode where performance is prioritized, where signal data
is not recorded but upon server request the data is collected for a
specific set of parameters (specific clients, time range, signals), but
also a diagnostic mode where everything can be recorded (including



signal data), enabling on-demand replay of the networked applica-
tion as it’s feasible to setup clients that can process incoming signal
data based on telemetry diagnostic data.

Importantly, this also provides a framework for live adaption
and animation of predicted remote motion poses to a reliable lo-
cal time frame critical to experimentation with DanceGraph signal
transformers (section 4.1).

Figure 2: A pair dance instance of DanceGraph running a live
Meringue server session between two clients and the raw teleme-
try data illustrated below.

4 PROTOTYPE IMPLEMENTATIONS

The flexibility of DanceMark integrated with the DanceGraph ar-
chitecture allows the creation of prototype applications that can
communicate with each other using the core networking component
for setting up a server and the scene context for the clients: envi-
ronment and related signals, and client-specific signals. Some of
the different developed components include the native core library,
different client signal libraries, server applications (GUI or headless),
and client applications (native/C++ or Unity).

The native core library includes all the networking functionality
required to set up a DanceGraph client/server environment. The
different signal libraries are separate independent modules, compiled
to DLLs that can be dynamically loaded by DanceGraph applications.
We provide implementations for ZED camera, microphone data, and
a number of test signals, with open adaptibility to MEMs sensor

signals, haptics signals and beyond. The server application is used to
distribute information, set up the environment and record telemetry,
so it is developed as a C++ application, with headless and GUI
variants. Client applications (adapter endpoints) are developed in a
flexible way: as long as they link to a DanceGraph client DLL and
use the exported API appropriately, the application can participate
in the networked environment sessions. As such, we provide a
Unity adapter that can use VR, ZED camera, and a number of other
signals to visualize and participate in a scene (figure 3.5), but we
also provide simple native adapters that can be used for testing, for
example spawning a large number of ”virtual” clients playing pre-
recorded animations in order to test performance and presence in
group situations.

The ’producer’ and ’consumer’ abstractions for the DanceGraph
Client provide natural boundaries where third parties can add mod-
ules to the project; these are implemented as dynamically linked
libraries using C-style naming conventions with a small number of
functions. Consumers and producers only require three functions
each, with ’initialization’ and ’shutdown’ functions being called at
the beginning and end of their lifecycle, respectively. Every tick,
producers that are not busy are called and asked to place their signal
data at a given memory pointer, and return the size of the data, and
consumers will be provided with the pointer and data size. For users
who wish to implement entirely new signal types, another ’config’
DLL is required, which is called once at the initialization phase, and
whose primary function is to inform the DanceGraph core software
of the data sizes to facilitate appropriate memory allocations.

4.1 Interception and Modification of signals

The transformer section of DanceGraph, only briefly touched upon
in prior literature, is the portion of the architecture which converts
one or more signals, to another signal. This has a number of uses
within the primary use-case for DanceGraph, where it can be used
to predict remote user movements to mitigate latency, stylize body
motion, or apply processing to incoming audio or outgoing video
signals to reflect gameworld information.

The implementation of the transformer is that it is connected to
the system as both a producer and a consumer module, with the
associated API interfaces. Unfortunately, the naive API approach -
that of having the transformer writer implement both the consumer-
side and producer-side functions, has a couple of issues.

Firstly, individual producer calls take place in their own dedi-
cated threads to avoid calls to hardware drivers blocking the main
event loops in the game engine and network client, which in turn
means that the ’consumer’ API calls and the ’producer’ API calls
are inside different threads (see section 3.1) and signal information
must be passed between them. This also means that every ’naive’
transformer would contain significant amounts of very similar, and
rather nontrivial code to do the job of passing consumed signal data
to the producers.

To resolve this, DanceGraph’s ’consumer’ API calls are taken out
of the hands of the module writer and are replaced by a class that
stores a series of fixed-length queues of the relevant past signals,
and which are accessible to the transformer via method calls.

4.2 Availability

The DanceGraph Software is open source, via two publicly available
Github2 repositories.

One repository contains the core DanceGraph software, written
in C++20 for Windows 10 and above, which compiles using Visual
Studio 22. The major external dependency for the core software will
be the ZED SDK 4.0, with CUDA, which is an optional software
driver required to facilitate body tracking using the ZED2 Depth
Camera.

2https://github.com/CarouselDancing/DanceGraph



The other repository contains a Unity project with code and assets
used to visualize the dancers; the repository’s dependencies, other
than larger project dependencies such as the Unity Client software
itself, are contained within the project.

Further, various assets for environments are available open ac-
cess 3. As an open project community contributions are welcomed
along with updates according to the CAROUSEL+ (EU grant No.
101017779) dancing online project developments and further future
projects.

5 CONCLUSION

We show that our system designed for the transport of signals for
online-dancing can seamlessly incorporate the use of telemetry for
measurement of the recording of timings in network traffic for later
statistical analysis and act as a framework for live adaption use cases.

6 FUTURE WORK

DanceMark provides a framework for telemetry capture and use
within the DanceGraph platform currently in development and there
are a number of planned and potential continuations of the current
work.

As DanceGraph operates in a fashion largely decoupled from the
game engine used to display the application to the user, new game
engine endpoints can be supported merely by implementing a thin
adpator plugin to handle signal import and export, and support for
engines such as Unreal or Godot and beyond.

With older works of analytic physics based prediction schemes
[2] along with the rapid advances in machine learning for body
tracking [16] give rise to the notion that state-of-the-art techniques
for short-term motion prediction can be implemented as part of
the prediction pipeline via transformers adapted to the challenge of
real-time networked dancing partners.

The core component of the DanceGraph software is a generic
low-latency signal transport agent, suggesting it’s ability to be repur-
posed for other decentralized latency-sensitive, real-time multimodal
networking applications, by implementing new modules for other
use-cases.
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