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ABSTRACT
Defeating dangerous families of malware like polymorphic and
metamorphic malware have become well studied due to their in-
creased attacks on computer systems and network. Traditional
Machine Learning (ML) models have been used in detecting this
malware, however they are often not resistant to future attacks. In
this paper, an Evolutionary based Generative Adversarial Network
(GAN) inspired approach is proposed as a step towards defeating
metamorphic malware. This method uses an Evolutionary Algo-
rithm as a generator to create malware that are designed to fool a
detector, a deep learning model into classifying them as benign. We
employ a personal information stealing malware family (Dougalek)
as a testbed, selected based on its malicious payload and evaluate
the samples generated based on their adversarial accuracy, mea-
sured based on the number of Antivirus (AV) engines they are able
to fool and their ability to fool a set of ML detectors (k-Nearest
Neighbors algorithm, Support Vector Machine, Decision Trees, and
Multi-Layer Perceptron). The results show that the adversarial sam-
ples are on average able to fool 63% of the AV engines and the ML
detectors are susceptible to the new mutants achieving an accuracy
between 60%-77%.
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1 INTRODUCTION
Malicious attacks continue to pose a challenge to information assets
and computer systems as a whole. This has been heightened due
to ubiquitous computing which implies that every and anything is
now connected to the internet. The recent 2022 global threat report
by Crowdstrike highlights the increase in malware attack with 21
newly named adversaries discovered, 45% increase in interactive
intrusions and 82% increase in ransomware based data leakages [8].

The aforementioned malware attacks originate from various
malware groups. A particularly dangerous category being meta-
morphic malware. This malware change their form between gen-
erations through several code mutation techniques thus evading
detection. These mutation techniques range from garbage code
insertion which adds junk code to the source program or variable
renaming that renames valid variables within the program code
among others [7].

Different techniques have been proposed for detecting metamor-
phic malware such as signature based detection as in [30], heuristic
based detection as in [29], malware normalisation and similarity-
based detection as in [21] among others. However such methods
often fail to detect new mutant variants of malicious code. Recently,
in order to detect metamorphic malware, adversarial learning has
been introduced to create novel mutant variants of malware as
data source which are then used to train ML models. This includes
the use of Evolutionary Algorithms (EAs) [11] - population based
meta-heuristic search technique such as in [3], [4], [5], [2] and [31].

In the previous adversarial learning methods used for defeating
metamorphic malware as in [3] and [5], the idea was to use an
EA to create mutant variants of malware which will then serve
as rich data source for training ML based detectors in detecting
them. However, the task of creating the adversarial samples and
detecting them are considered as two separate tasks. Generative
Adversarial Network (GAN) was introduced in [13] by Ian Good-
fellow in 2014. GAN differs from the gradient-based adversarial
generation method in that rather than training an ML model to
create malicious code against a pre-trained detector, both models
learn through competition with each other. The GAN framework
was designed to build generative models that use an adversarial
approach that trains two distinct models concurrently. This has
been used previously for malware detection by authors such as [18]
and [24].

In this paper, an Evolutionary based GAN-Inspired approach is
proposed to simultaneously create novel mutant variants of mal-
ware by an EA based generator guided by three fitness functions -
evasiveness of the variants, behavioural and structural similarity of
the mutants to their parent malware. Then, an ML based detector
detects the created mutant variants of malware.
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Three research questions are addressed in this paper:

(1) To what extent can an Evolutionary based GAN-Inspired
approach be used in generating novel mutant variants of
malware?

(2) What ML detectors yield the best accuracy in detecting the
novel mutant variants of malware?

(3) How well can the generated variants evade known public
AV detectors?

This paper adds to the body of knowledge in this domain by
proposing an alternativemethod of generating adversarial examples
of mobile metamorphic malware. The method is tested thoroughly
with respect to the quality of themutant variants ofmalware created
i.e., evasiveness and diversity. It also studies the best MLmodels that
detect the new adversarial samples created and their classification
performance.

The rest of the paper is structured as follows. In Section two, we
present a background of the work and review related works. Sec-
tion three presents our methodology. We explain our experimental
design in Section four. Our results are discussed and analysed in
Section five. Section six concludes the paper and presents areas of
future research work.

2 BACKGROUND
A number of research works have been proposed to defeat adversar-
ial attacks that often evade detection by standard Antivirus engines.
This includes systems such as ADAM [33], DroidChamelon [27]
among others designed to create adversarial examples using various
code obfuscation techniques.

Among the many techniques used for generating adversarial
samples, includes the use of Evolutionary Algorithms (EAs). This
includes the use of Genetic Programming (GP) as used by the au-
thors in [32] to create adversarial pdf malware. Furthermore, the
authors in [1] also employed GP in creating evasive mobile based
malware. The authors in [3] used a standard EA in the creation
of adversarial samples guided by a fitness function that evolved
for both evasive as well as structurally and behaviourally dissimi-
lar mutant variants of malware. They extended their work in [4]
by using a Multi-dimensional Archive of Phenotypic Elites (MAP-
Elites) algorithm to generate a large set of novel, malicious mutants
that were diverse with respect to their behavioural and structural
similarity to the original mutant.

Furthermore, GAN has been used for malware analysis. For in-
stance, the authors in [18] proposed MalGAN, which comprised of
a generator that produced a suite of adversarial samples against
current detectors which also had the ability to go undetected by
future malware detectors. It trained the generator to trick the de-
tector in a hybrid system which consisted of a stacked generator as
well as a substitute detector. It was also used in [24] which built on
the work of [18] in proposing a graph based adversarial malware
generator using Neural Networks which extracted malicious fea-
tures, ordered them and used them in graphing and encoding of
malicious code to create a model of the behavioural pattern. The
work of [31], proposed and evaluated a Generative Neural Network
(DCGAN) in improving the detection of metamorphic malware
based on behaviour profiling.

In this paper, we propose an EA based GAN for the generation
and detection of novel mutant variants of malware whose samples
are analysed for their adversarial accuracy and a deep learning
based detector detects the created mutant variants of malware. We
also compare four ML models to see which is better at correctly
classifying the mutant variants of malware. As far as we are aware,
this is the first time that an Evolutionary based GAN-Inspired
approach has been used in the exploration of the search space of
metamorphic malware.

3 METHODOLOGY
In this section, we describe the GAN-Inspired network architecture
- the single objective EA used as generator to create a large, evasive
and diverse archive of malware mutants, and the deep learning
model - LSTM used as detector for detecting the generated mutants.

3.1 Network Architecture
The detector model is initially trained and defined using benign
samples from different application categories - education, music,
tools, health and maps, as well as malicious samples. After this, the
generator (single objective EA) is executed first using the original
malware. Then, the EA based generator generates a sample, using
the parameter setting defined in Section 4. The features of this
sample are then extracted which are sequential features (the fea-
ture vector consists of the time-ordered list of the sample’s system
calls). If the sample is guessed correctly - detected as malicious by
the detector, this generated sample is then passed back into the
generator (replacing the original parent malware). Otherwise, if
it does not guess the sample correctly - deems it benign, the pro-
cess is complete, e.g., the detector is unable to detect the generated
mutated sample as malicious. This process is then executed for a
maximum number of times defined at run-time. The overall GAN
framework is given in Fig. 1.

Figure 1: The GAN framework adapted from [14]

3.1.1 Generator - Single Objective EA:. The generator used by the
GAN is a classical EA as in [3] that employs a single objective
performance based fitness function to drive evolution with the goal
of generating novel archive of mutant malware variants that evade
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current detection engines, and are diverse with respect to their
behavioural and structural similarity. The EA is given in Algorithm
1.

The EA begins with an initial random population of solutions
- malware mutants, generated through the application of a single
mutation to the original malware. In creating the mutants, one of
three mutation operators are selected at random and applied to an
existing malware and they include:
• Garbage Code Insertion (GCI) - This inserts a piece of junk
code, e.g. an invalid line number into the original program
code.
• Instructional Reordering (IR)- This adds a goto statement in
the original program code that jumps to a label that does
nothing.
• Variable Renaming (VR) - This renames a variable with an-
other valid variable name in the original program code.

Each of the mutants are then evaluated using a fitness function
which isminimised by the algorithm - the smaller the value themore
evasive the mutant and the more it is behaviourally and structurally
dissimilar to the original malware. Since the original malware is
in the form of an executable apk file, to generate mutants, it is
necessary to reverse engineer the apk by converting it to a smali
format using apktool1. Then, a mutation operator is applied to the
smali code. Furthermore, the smali is recompile to apk to test that
the created mutant is executable. The recompiled apk is then signed
using apksigner2 and aligned using zipalign3. The fitness of the
mutant is then calculated using Equation 3.1.1 and returns a value
between 0 and 1.

𝑓 (𝑥) =
{
1 if variant not executable
𝑤0𝐷𝑅(𝑥) +𝑤1𝐵𝑆 (𝑥) +𝑤2𝑆𝑆 (𝑥) otherwise

subject to 0 ≤ 𝐷𝑅(𝑥), 𝐵𝑆 (𝑥), 𝑆𝑆 (𝑥) ≤ 1
The fitness defined above is either set to 1 for non executable

variants which are not taken into account or equals the weighted
sum of three metrics - DR(x), BS(x) and SS(x). These are the detec-
tion rate of the new mutant, the behavioural similarity between
the original malware and its mutant and the code level similarity
between the original malware and its mutant respectively.

DR(x) measures the detection rate of the malware mutants. It
does this by checking the mutants’ ability to evade detection by a
set of well known Antivirus engines. The malware mutant variants
are evaluated using Virustotal4 which consists of 63 up-to-date
Antivirus engines and reports the number of its engines that flag
a sample as malicious. Thus DR(x) returns the percentage of the
Antivirus engines that fail to detect a mutant with a value of 0
denoting no engine detected the mutant while a value of 1 denotes
all the engines detected the mutant.

BS(x) computes the behavioural similarity between the original
malware and its mutants by carrying out their behavioural analysis.
This involves utilising Strace5 for monitoring the system calls of the

1APKTOOL - http://ibotpeaches.github.io/Apktool
2APKSIGNER - https://developer.android.com/studio/command-line/apksigner
3ZIPALIGN - https://developer.android.com/studio/command-line/zipalign
4Virustotal - https://developers.virustotal.com/reference#getting-started
5Strace - https://linux.die.net/man/1/strace

original malware and its mutants as well as using Monkey runner6
to simulate user action. This generates a log which is employed
in constructing a feature vector with each element corresponding
to the frequency of 251 possible system calls made by the mutant.
The behavioural similarity between the original malware and its
mutants is computed as the cosine similarity between their system
call vectors, which returns a value between 0 and 1, where the
former indicates that the original malware and the mutant share
no behavioral similarity while 1 means the original malware and
the mutant have equivalent behaviour.

SS(x) measures the structural similarity between the original
malware and its mutant variants using both text similarity met-
rics (Cosine Similarity, Levenshtein Distance [17] and Fuzzy String
Match [10]) and source code similarity metrics (Jplag and Sher-
lock Plagiarism detectors [16] as well as normalised compression
distance [26]). The structural similarity is then the average of all
the similarity metrics used where a value of 0 means the original
malware and its mutant variants are completely dissimilar and 1
means the original malware and its mutant variants are identical.

3.1.2 Detector - Recurrent Neural Network (RNN). This is a deep
learning algorithm designed for learning from time series sequence
data. It consists of connected layers done in such a way that they
go from the output of one layer to the input of the next layer and
comprise of feedback loops returning to the previous layer. An
RNN learns from arrays of time series data, specifically, where
temporary information is derived from the sequences and used
in finding associations that exist between data and the expected
network output [22].

In this work, a Long Short-Term Memory (LSTM) is used in de-
tecting the sequential data (preprocessed malware mutants), which
is a neural network particularly created for learning long term de-
pendencies from such data. It comprises of gates that are able to
hold, recover and forget information over a long time span. Tradi-
tional neurons in the hidden layer are replaced with memory blocks
in LSTM with these blocks accepting inputs from the network via
the input node and outputs from the output gate multiplication
as seen in Fig. 2 [14]. Although deep-learning models, such as
LSTM network, have demonstrated their advantage in handling
time-ordered information in other problem domains, they are less
explored in malware detection [23], [9], [28].

4 EXPERIMENTAL DESIGN
The original malware used in this work was selected from the
Contagio Minidump7 which consists of Android malware archived
as APKs and it belongs to the Dougalek8 family. Dougalek family of
malware represent the personal information thieves that steal users’
personal information from mobile phones such as account details,
test messages, contacts among others. They do this by gaining
unauthorised remote control of mobile phones.

The EA (generator) begins with a population size of 20. Parents
are selected using tournament selection [12] with 𝑘 = 5, for a fair

6Monkeyrunner - https://developer.android.com/studio/test/monkey
7Contagio Minidump - http://contagiominidump.blogspot.com/2015/01/android-
hideicon-malware-samples.html
8Dougalek - https://www.trendmicro.com/vinfo/us/threat-
encyclopedia/malware/androidosdougalek.a
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Algorithm 1: GAN-Inspired Evolutionary Algorithm

1: define and train detector model
2: while𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 not reached do
3: initialize population P of size 𝑛.
4: assign fitness 𝑓 (𝑥) to each mutant 𝑥 ∈ 𝑃
5: while𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 not reached do
6: 𝑅 ← randomly select 𝑘 variants from 𝑃

7: 𝑥𝑏𝑒𝑠𝑡 ← argmin {𝑓 (𝑥), 𝑥 ∈ 𝑅}
8: 𝑚𝑢𝑡_𝑡𝑦𝑝𝑒 ← select a mutation operator at random with

uniform probability
9: 𝑥𝑛𝑒𝑤 ←𝑚𝑢𝑡𝑎𝑡𝑒 (𝑚𝑢𝑡_𝑡𝑦𝑝𝑒, 𝑥𝑏𝑒𝑠𝑡 )
10: 𝑓 𝑖𝑡𝑛𝑒𝑤 ← 𝑓 (𝑥𝑛𝑒𝑤)
11: 𝑥𝑤𝑜𝑟𝑠𝑡 ← argmax {𝑓 (𝑥), 𝑥 ∈ 𝑃}
12: 𝑓 𝑖𝑡𝑤𝑜𝑟𝑠𝑡 ← 𝑓 (𝑥𝑤𝑜𝑟𝑠𝑡 )

13: if 𝑓 𝑖𝑡𝑛𝑒𝑤 < 𝑓 𝑖𝑡𝑤𝑜𝑟𝑠𝑡 then
14: replace 𝑥𝑤𝑜𝑟𝑠𝑡 in 𝑃 with 𝑥𝑛𝑒𝑤
15: end if
16: end while
17: 𝑥𝑏𝑒𝑠𝑡𝑝𝑜𝑝 ← argmax {𝑓 (𝑥), 𝑥 ∈ 𝑃},
18: return 𝑥𝑏𝑒𝑠𝑡𝑝𝑜𝑝
19: if 𝑥𝑏𝑒𝑠𝑡𝑝𝑜𝑝 is detected as malicious then
20: add 𝑥𝑏𝑒𝑠𝑡𝑝𝑜𝑝 to P
21: else
22: break
23: end if
24: end while

Figure 2: An example LSTM memory block where the con-
nections with weights proceeding from the cells to the gates
are illustrated using dashes and the black circles are multi-
plications [14]

level of selection pressure. The EA uses uniform mutation with a
mutation rate of 1; this value is chosen to ensure that mutation
always occurs, given that this is the only variation operator used,
as crossover is not used in the experiments. The crossover operator

is not used, as it leads to the generation of non-executable variants.
The best of the 𝑘 selected parents is mutated by adding either
garbage codes, reordering its variables or distorting the program
code’s control flow through the insertion of a goto statement that
jumps to a label that does nothing as described in Section 3.1.1.
The EA is then run 10 times for 100 iterations, and the best mutant
generated in each of the 10 runs is recorded. The EA parameter
settings are summarised in Table 1.

The LSTM (detector) and its hyper-parameters were empirically
tuned. Due to its documented success in terms of its accuracy and
computational power, “Adam” optimiser [20] was used. Batch sizes
between 10 and 500 were employed, and we experimented using
either 1 or 2 layers of LSTM. Following this, we chose LSTM with 2
layers: each layer has 128 neurons. The binary cross entropy func-
tion was employed as the loss function (this function was chosen
as our classification is binary). Furthermore, since our problem is a
classification problem, a Dense output layer was used consisting
of one neuron with a sigmoid activation function. We employed
a batch size of 50 so as to space out the updates of weight. The
LSTM was initially trained on a dataset that comprised of 30 benign
samples (sourced from Google play store10 and downloaded using
Apkdownloader11) and 30 malicious samples (selected from Conta-
gio Minidump). An average training loss of 0.69 was gotten, which
although is high, the focus of the paper is on the analysis of the
adversarial accuracy of the generator in generating an archive of
malware samples. However, with more experimental work in tun-
ing the hyper-parameters and potentially the use of other models,
the result could be improved.

As a separate task done for evaluation purposes, four ML models
are used for evaluating the evasiveness of the generated mutant
variants of malware and they are - k-Nearest Neighbors algorithm
(kNN), Support Vector Machine (SVM), Decision Tree (DT), and
Multi-Layer Perceptron (MLP) and they are briefly explained.

• k-Nearest Neighbour (kNN): This algorithm seeks to iden-
tify instances in the training data in anN-dimensional feature

10Google Play - https://play.google.com/store?hl=en
11Apkdownloader -https://apps.evozi.com/apk-downloader/
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space that are nearest to the instance to be classified. It as-
sumes that if an instance is close together in the feature space
with the instance to be classified, then it is likely to be simi-
lar and have the same class as the instance to be classified.
Although, it is one of the simplest ML models to implement,
it is highly sensitive to the occurrence of parameters that
are irrelevant [25].
• Support Vector Machine (SVM): SVM has as its goal, find-
ing a hyper plane in an N-dimensional feature space which
classifies data points uniquely. The hyper plane identified is
ideally one that maximises the distance between data points
of the classes i.e., has the maximum margin. This leads to
increased confidence in future classification attempts. SVM
needs minimal computational power yet producing high
performance [19].
• Decision Trees (DT): A binary decision tree is derived from
the split of a node into two child nodes severally, beginning
with the root node which consists of the whole learning
sample [6].
• Multilayer Perceptron (MLP): MLP is a deep artificial
neural network with several layers consisting of at least an
input layer, a hidden layer and an output layer. The input
layer is often employed for input reception, the hidden layer
is the computation engine and the output layer is utilised
for decision making or predictive analysis [15].

The ML models were trained on a dataset containing two classes,
benign (0) and malware (1). Both of these classes comprised of 30
samples. In addition to this, a further 20 benign samples were col-
lected. The benign sampleswere sourced fromGoogle play store and
also downloaded using Apkdownloader. The benign samples were
selected from various categories such as entertainment, gaming,
communication among others and were all individually executed
to ensure that they worked correctly. For the malware samples, 30
samples were selected from Contagio Minidump.

5 RESULTS AND ANALYSIS
The experiments then were conducted and results are analysed in
the subsections below to answer our research questions.

5.1 To what extent can an Evolutionary based
GAN-Inspired approach be used in
generating novel mutant variants of
malware?

In answering the first research question, we run the Evolutionary
based GAN in order to create an archive of malware mutants and
measure their adversary accuracy (average percentage of Antivirus
detection engines that detect the generated samples) as well as
evaluate the fitness of the best mutants recorded as described in
Section 4. Recall that the EA evolves for variants that are able to
evade detection by more detectors than the original malware and
are also behaviourally and structurally dissimilar to the original
malware. As the fitness is the equally weighted sum of functions
- DR(x), BS(x) and SS(x) (weight is set to 1), we analyse the best
mutants with respect to these metrics.

(a) Analysis of fitness in terms of Detection Rate
(𝐷𝑅 (𝑥 ) , Behavioral Similarity (𝐵𝑆 (𝑥 )) and Struc-
tural Similarity (𝑆𝑆 (𝑥 )) of the best mutants

(b) Boxplot of best fitness of the EA where the fit-
ness is a weighted combination of 𝐷𝑅 (𝑥 ) , 𝐵𝑆 (𝑥 )
and 𝑆𝑆 (𝑥 ) as given in Eq. 3.1.1 in Section 3 for
GAN-Inspired EA (DR(x)+BS(x)+SS(x)-GAN) and
EA in [3] (DR(x)+BS(x)+SS(x))

Figure 3: Boxplots of Best Fitness for Dougalek family

In terms of the average adversarial accuracy of the malware
mutants, this was 0.366 i.e., on average only 36.6% of the Antivirus
engines detected the novel mutants. As the original malware had
an adversarial accuracy of 0.597 - 59.7% of the Antivirus engines
detected the original malware, this shows that we are able to create
more evasive mutants than the original malware. Furthermore, we
see from Fig. 3(a), that we were able to create mutant variants of
malware in which the best one has a detection rate of 0.3 and all the
ten best mutants recorded have values less than 0.47. In addition, it
can be seen that we were able to create variants that are on aver-
age 32% behaviourally (𝐵𝑆 (𝑥)) similar to the original malware and
59% structurally (𝑆𝑆 (𝑥)) similar to the original malware, indicating
behavioural and structural diversity.
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Table 1: Evolutionary based Parameter Settings

Parameters Settings
Selection Tournament

Population size 20
Iterations 100

Mutation rate 1

When all the functions in the fitness function are combined as
given in Equation 3.1.1, we were able to create a diverse set of mu-
tants that are executable, evasive and behaviourally and structurally
dissimilar to the original malware with a median weighted fitness
value of 0.42 compared to the original malware which would have
a weighted fitness value of 0.8657 (with a value 0.597 for DR(x), 1
for BS(x) and SS(x)), as seen in Fig.3(b). In Fig.3(b), we also show
that the evolutionary based GAN-Inspired approach with a median
weighted fitness value of 0.42 outperforms our previous work in
[3] which uses a standard EA (a median weighted fitness value of
0.44) in creating mutant variants of malware.

5.2 What ML detectors yield the best accuracy
in detecting the novel mutant variants of
malware

To answer the second research question, we compared the perfor-
mance of the four ML algorithms described in Section 4, trained
using the sequential features of the samples - feature vector consists
of the time-ordered list of the sample’s system calls with the train-
ing data described in Section 4, to see which one produces the best
performance in terms of classification accuracy, precision, recall, F1
Score and ROC AUC score in detecting the new malware mutants.
From Table 2, we see that the best performance is achieved by the
kNN model with values of 0.77 - accuracy, 0.61 - precision, 1 - recall,
0.76 - F1 score and 0.82 - ROC AUC and the worst performance by
both DT and MLP with values of 0.6 - accuracy, 0.48 - precision, 1 -
recall, 0.65 - F1 score and 0.68 - ROC AUC. It can be seen that the
ML models are susceptible to the new malware mutants achieving
an accuracy between 60%-77%.

5.3 How well can the generated variants evade
known public AV detectors?

In order to gainmore insight intowhich engines aremost vulnerable
to potential mutated variants of the original malware, we determine
the percentage of new variants evolved using the Evolutionary
based GAN-Inspired approach that a detector fails to recognise.
Only the engines which recognised the original parent malware
are considered in this analysis so as to understand which engines
are susceptible to potential mutants and which remain capable of
detecting the malware. The results are shown in Fig. 4.

It can be seen from Fig. 4, that 13 of the 37 engines that de-
tected the original parent malware also recognise all of the mutants
evolved by the Evolutionary based GAN-Inspired approach. Exam-
ples include Kaspersky, Avast and AVG. Eleven of the engines on
the other hand, failed to recognise 100% of the newly generated
mutants — AegisLab, AVware and SophosAV among others.

Figure 4: Percentage of the mutants evolved from the Evolu-
tionary based GAN-Inspired approach that a given detection
engine failed to recognise

6 CONCLUSION
It has been established that metamorphic malware transform their
program codes over generations thus representing a difficult class
of malware for detectors to detect, particularly those trained on
static datasets. In this work, we have shown that an Evolutionary
based GAN-Inspired approach is capable of creating an archive of
evasive and diverse set of mutants which are able to evade about
63% of well known AV engines as compared to the parent malware
from which they were created which was only able to evade 40%
of the AV engines. We also show that the ML models we tested on
are susceptible to the new mutants achieving an accuracy between
60%-77%.

For future work, we plan to combine the GAN model with a
Quality-Diversity EA to see if this improves the performance of the
mutants created and if this improves their detection. More families
of malware will be tested to see if the proposed approach generalises
to other classes of malware.
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