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Abstract 

Purpose – The Government’s investment in infrastructure projects is considerably high, 

especially in bridge construction projects. Government authorities must establish an initial 

forecasted budget to have transparency in transactions. Early cost estimating is challenging for 

Quantity Surveyors due to incomplete project details at the initial stage and the unavailability 

of standard cost estimating techniques for bridge projects. To mitigate the difficulties in the 

traditional preliminary cost estimating methods, there is a requirement to develop a new initial 

cost estimating model which is accurate, user friendly and straightforward. The research was 

carried out in Sri Lanka, and this paper aims to develop the artificial neural network (ANN) 

model for an early cost estimate of concrete bridge systems. 

 

Design/methodology/approach – The construction cost data of 30 concrete bridge projects 

which are in Sri Lanka constructed within the past ten years were trained and tested to develop 

an ANN cost model. Backpropagation technique was used to identify the number of hidden 

layers, iteration and momentum for optimum neural network architectures. 

 

Findings – An ANN cost model was developed, furnishing the best result since it succeeded 

with around 90% validation accuracy. It created a cost estimation model for the public sector 

as an accurate, heuristic, flexible and efficient technique. 

 

Originality/value – The research contributes to the current body of knowledge by providing 

the most accurate early-stage cost estimate for the concrete bridge systems in Sri Lanka. In 

addition, the research findings would be helpful for stakeholders and policymakers to propose 

policy recommendations that positively influence the prediction of the most accurate cost 

estimate for concrete bridge construction projects in Sri Lanka and other developing countries. 
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1. Introduction 

Bridge structures, railways and urban roads play essential roles in the economy, politics, culture 

and national defence (Weiwei and Yoda, 2017). Bridges are also one of the imperative public 

infrastructure projects in any country (Ongkowijoyo et al., 2021). According to the Oxford 

Dictionary, “a bridge structure is built over a road, railway, river, etc., so that people, vehicles, 

etc. can cross from one side to the other”. Accordingly, the bridge is essential to enable, sustain 

and improve community living conditions and economic stability in any country (Ongkowijoyo 

et al., 2021). Building bridges in various sectors is rapid in every country, whether public or 

private institutions fund it (Ongkowijoyo et al., 2021). All major infrastructure bridges are built 

with the public’s money (Ketterer and Powell, 2018). Hence, the bridge’s design must best 

serve the public interest regarding efficiency, economics and elegance (Billington et al., 2023). 

Sri Lanka is a developing, lower-middle-income country with a dynamic economy (OCED, 

2023). Despite challenges relating to the availability of labour and importation of construction 

materials caused by the COVID-19 pandemic, the Government of Sri Lanka persistently 

continued to reinforce the road and infrastructure projects of the country to ensure improved 

urban–rural linkages and thereby reinforce inclusive growth (Central Bank of Sri Lanka, 2021). 

There is uncertainty about the success of large-scale bridge construction projects in terms of 

project aspects such as cost, time and quality (Mahamid, 2013; Gohar et al., 2012). 

Furthermore, public sector transportation funding is limited, and cost increases on one project 

lead to reduced funding for other projects (Odeck, 2014). Hence, completing the infrastructure 

project on the allocated budget is vital. Bridge construction often substantially overruns the 

estimated cost (Fragkakis et al., 2010) due to a longer life span and is subject to a certain level 

of uncertainty regarding demand forecasting and cost estimations (Bruzelius et al., 2002) and 

their cost, a high level of public attention or political interest is also involved (Greiman, 2013), 

increased complexity and a considerable impact on the economy, society and the environment 

(Locatelli et al., 2017). Furthermore, the main problem in the estimation of infrastructure 

project costs is a significant deviation between the estimated costs and the actual construction 

cost due to intentional underestimation in the initial project phases, when the costs are 

evaluated to decide whether the transport infrastructure should be built (Kovacevic et al., 

2021). In most projects, actual costs were significantly higher than initially estimated, e.g. 34% 

higher on average for bridges and tunnels (Flyvbjerg et al., 2002). Although this 

underestimation is not an error, it is prone to subjectivity and may introduce biases in decision- 

making (Flyvbjerg et al., 2002). Therefore, being able to forecast these costs objectively is 

highly desirable. Because most of the major bridges are funded by the Sri Lankan government, 

the Cabinet of Parliament in Sri Lanka should approve the budget allocation for infrastructure 

projects. To overcome this problem, professionals must prepare an early estimate of the final 

cost based on previous experience (Fragkakis et al., 2010). Accordingly, predicting 

construction costs is one of the most important preliminary steps in any construction project 

because cost prediction is crucial to avoid construction delays and ensuring successful project 

completion (Elfaki et al., 2014). 

Literature shows that many studies focused on cost prediction models for building (Ji S-H et al 

.2019; Qian and Ben-Arieh,2008; Hegazy and Ayed,1998; Elfaki et al., 2014; Jiang, 2019; 

Khalaf et al., 2020; Chandanshive and Kambekar, 2019) and a few studies conducted to predict 

the cost on infrastructure projects in early stage (Wang,2017; Du Z, Li B (2017); Amin M 

(2017); El-Sawalhi and Shehatto,2014) ). However, a few studies have been conducted on 

estimating bridge maintenance and repair costs using ANN techniques and not the initial cost 



of the bridge (Bouabaz and Hamami, 2008). Also, Kim and Kim (2010) researched to estimate 

the bridge’s cost. They applied case-based reasoning (CBR)and genetic algorithms (GA) for 

cost estimation of bridge construction projects rather than ANN. Also, he conducted another 

research to investigate the effect of GA on optimising CBR attribute weights for estimating the 

cost of railway bridge projects (Kim, 2011). However, research still needs to concentrate on 

the cost prediction of bridge construction projects using the ANN model. The current practice 

to estimate the early-stage cost of the bridge in Sri Lanka is to determine the initial cost based 

on the Per running meter of span depending upon the structure, type, and foundation depth 

(Ranasinghe, 2019). This technique’s accuracy is limited due to unpredictable, unforeseen 

situations at the construction stage (Oladokun et al., 2013). Accordingly, this research aims to 

develop the ANN prediction model to predict the estimated cost of a bridge construction project 

at an early stage in Sri Lanka. The study assesses the most accurate cost of the concrete 

structure bridge project in Sri Lanka at the early stage.  In addition, the research findings would 

benefit policymakers and government organisations in arriving at the most accurate cost 

estimate at the early stage of the bridge construction project, which helps apply for funding 

approval through the parliaments of Sri Lanka. In return, the public would benefit from having 

completed the bridge construction project due to utilising accurately allocated funding for the 

project and to minimise halting the project due to exceeding the approved budget. The research 

findings would be helpful for stakeholders and policymakers to propose policy 

recommendations that positively influence the prediction of the most accurate cost estimate for 

concrete bridge construction projects in Sri Lanka and other developing countries. 

 

 

2. Literature review 

 
Public expenditure on infrastructure development in Sri Lanka on roads and bridges accounted 
for US$1,906.1m in 2021, 23.9% of the total infrastructure allocation (Ministry of Finance, 
2020). The Ministry of Finance aims to maintain public investment at an average of 5%–6% 
of the GDP annually till 2025. Around 24% of the foreign financing is expected to be disbursed 
during the next two to five years for the road and bridges sector in Sri Lanka (Ministry of 
Finance, 2021). According to the National Road Master Plan (NRMP), 2018–2027, published 
by the Road Development Authority (2018), a total of 37 weak and narrow bridges have been 
selected for reconstruction under the NRMP with the final assistance of The Japan International 
Cooperation Agency. According to Public Finance (2021), LKR 27.1bn was allocated in the 
2021 Sri Lankan government budget to the construction of new bridges, including the new 
Kelani Bridge (LKR 15.5bn), design and construction of flyover and bridge Kohuwala and 
Gatambe (LKR 4.4bn) and construction of flyovers for over railway line (LKR 3.2bn). 
Accordingly, Sri Lankan government investments in public sector infrastructure projects are at 
a considerable level. Also, estimating bridge construction costs is an increasing necessity for 
accurate budgeting and effective funding allocation (Markiz and Jrade, 2022). The success of 
any construction project is evaluated based on the level of closeness between the actual and 
estimated costs (Markiz and Jrade, 2022). Hence, the government needs an effective cost- 
estimating process before the cabinet approval because most infrastructure projects are done 
with foreign funds in developing countries (Raymond, 2008). According to the literature, the 
government must estimate the cost of getting funds from foreign funding sources. An accurate 
early-stage cost estimate is vital to get more done with existing resources, use taxpayers’ money 
more efficiently and make infrastructure projects more attractive to private investors (Bisbey 
et al., 2020). Construction costs and time involved in bridge construction are high (Lee et al., 
2004); transactions should be transparent due to their taxpayers’ money (Bisbey et al., 2020). 
The lack of adequate project preparation budget and skills is widespread in developing 
countries (Hurley et al., 2019). Therefore, there is the possibility of cost overrun during 



construction. To avoid the effect of cost overrun, an accurate early-stage cost estimate should 
be established before construction (Flyvbjerg et al.,2004; Elmousalami, 2020). It shall prevent 
the suspension or termination of the project during its construction (Elmousalami, 2020). 
Concerning bridge construction, the preliminary cost estimation technique is paramount for 
project success (Kim et al., 2004; Markiz and Jrade, 2022). Previous researchers made many 
attempts to predict the early-stage cost estimate for infrastructure projects, which includes 
bridge construction, and different approaches were used to indicate the cost estimate. Table 1 
illustrates various studies that used different approaches to predict the early cost estimate for 
infrastructure projects. 

Table 1: Summary of previous studies on cost prediction in infrastructure projects  



Source  Area of cost prediction  Methods used  

Hegazy, T., & Ayed, A. 

(1998) 

Highway construction 

costs  

ANN Backpropagation, simplex 

optimisation and Genetic 

Algorithm (GA)  

Marcous, G., Bakhoum, 

M.M., Taha, M.A., El-

Said, M.(2001)  

Prediction of the volume of 

concrete and the weight of 

prestressing steel in the 

bridge superstructure  

ANN with a backpropagation 

learning algorithm 

Mostafa, E.M. (2003)  Estimation of the costs of 

bridges and culverts  

Multiple Regression Analysis 

Cheng, M.Y., & Wu, Y.W. 

(2005) 

Prediction of building cost Support Vector Machines (SVM) 

Sodikov J (2005)  Cost estimation of highway 

projects  

ANN 

Wilmot CG, & Mei B 

(2005)  

Forecasting highway 

construction cost  

Neural Network Model and 

regression-based model 

Bouabaz M, & Hamami M 

(2008)  

A cost estimation model 

for repairing bridges  

ANN 

Kim, K.Y., & Kim, 

K.(2010) 

Preliminary cost 

estimations for the bridge 

project  

Case-Based Reasoning (CBR) 

and GA 

Fragkakis, N., 

Lambropoulos, S., 

Tsiambaos, G. (2011) 

Prediction model for bridge 

foundation costs that 

predicted material 

quantities for various types 

of foundations and 

estimated the total 

foundation costs 

Backward Stepwise Regression 

Kim B.S. (2011)  The approximate cost 

estimation model for the 

railway bridge project  

CBR method 

Cirilovic, J., Vajdic, N., 

Mladenovic, G., Queiroz, 

C.(2013) 

Prediction models for the 

unit costs of road 

reconstruction work 

Multiple Regression Analysis 

and ANNs 

Pesko, I., Trivunic, M., 

Cirovic, G., Mucenski, 

V.(2013) 

Estimation of traffic 

infrastructure 

reconstruction costs  

ANN 

Hollar, D.A., Rasdorf, W., 

Liu, M., Hummer, J.E., 

Arocho, I.M. (2013) 

The preliminary cost of 

engineering bridges  

Multiple Regression Analysis 

Elfaki, A.O., Alatawi, S., 

Abushandi, E.(2014) 

Estimation of construction 

costs of buildings  

Machine Learning, Rule-based 

Systems, Evolutionary Systems, 



Source: Hegazy and Ayed (1998); Marcous et al., (2001); Mostafa (2003) ;Cheng and Wu (2005); Sodikov 

(2005); Wilmot and Mei (2005); Bouabaz and Hamami (2008); Kim and Kim (2010); Fragkakis et al., (2011); 

Kim (2011); Cirilovic (2013); Pesko et al., (2013); Hollar et al., (2013); Elfaki et al., (2014); Chou et al., (2015); 

Gunduz and Sahin (2015); Marinelli et al., (2015); Mahalakshmi and Rajasekaran (2019); Tijanic et al., (2020) 

and Markiz and Jrade (2022) 

 

Previous studies have adopted ANN, linear regression and hybrid models for anticipating the 

early-stage cost estimate of infrastructure projects. On the other hand, artificial intelligence and 

machine learning tools offer capabilities, such as learning from experience and knowledge 

generalisation, which make them applicable for early cost estimation models (Juszczyk, 2019). 

Furthermore, Al-Zwainy and Aidan (2017) highlighted that to develop the most accurate early-

stage cost estimate applying artificial intelligence such as ANN and support vector machine is 

an effective tool to use. Especially for bridge projects, developing such models is supposed to 

accurately provide early estimates or forecasts of the final cost (Juszczyk, 2019). According to 

Wegener et al. (2016) and Karasu et al. (2017), neural networks could generate high accuracy 

across various forecasting circumstances. Also, the latest studies conducted by Xu and Zhang 

(2022a), Xu and Zhang (2022b) and Xu and Zhang (2022c) used a neural network approach to 

predict not only building cost but also to predict Canola and soybean oil price, the high-

frequency CSI300 first distant futures trading volume and Steel price index forecasting. Neural 

network prediction model benefit from neural networks’ capabilities of self-learning for 

forecasts and capturing non-linear characteristics data (Xu and Zhang (2022b). Hence, using 

ANN techniques for the cost prediction methods would provide the most accurate prediction 

among other techniques. However, although some previous studies used ANN to predict the 

early-stage cost of infrastructure projects, there are still limited studies to predict the cost of 

bridge construction projects at the early stage in a developing country like Sri Lanka. 

Therefore, the current research adopting ANN to develop the early cost estimation prediction 

model for bridge projects in Sri Lanka was carried out to address the identified literature gap. 

 

Agent-based systems, and 

Hybrid Systems 

Chou, J.S., Lin, C.W., 

Pham, A.D., Shao, 

J.Y.(2015) 

Prediction of bid prices for 

bridge construction 

projects  

Multiple Regression Analysis, 

CBR and ANNs 

Gunduz M, & Sahin H.B. 

(2015)  

An early cost estimation 

model for hydroelectric 

power plant projects 

ANN 

Marinelli, M., Dimitriou, 

L., Fragkakis, N., 

Lambropoulos, S(2015) 

Estimation of concrete 

road bridges' 

Superstructure 

ANN 

Mahalakshmi G, & 

Rajasekaran C (2019)  

Early cost estimation of 

highway projects  

ANN 

Tijanić K, Car-Pušić D, 

Šperac M (2020)  

Cost estimation in road 

construction 

 

ANN Multi-Layer Perceptron 

(MLP), General Regression 

Neural Network (GRNN) 

Nizar Markiz & Ahmad 

Jrade (2022)  

 

Cost estimation and linear 

scheduling at the 

conceptual design stage of 

bridge projects 

Expert system with Bridge 

Information Management System 

(BrIMS) 



3. Research design  

 

To achieve the aim of the study, the research was designed sequentially, as depicted in Figure 

1. The research followed three steps: The first step: this step aimed at identifying the most cost-

significant items in the concrete bridge construction projects. 

 
 Methodology The Purpose of Use Method Analysis  

Step 1 
Semi-

structured 

Interviews 

To identify the most cost-significant items in 

Bridge Construction.  

Content analysis to 

further 

confirmation of 

literature findings. 

  

Step 2  
Document 

Review 

To develop a cost model for a concrete bridge 

in  

Sri Lanka 

Statistical data 

analysis to develop 

a cost model 

  

Step 3  Validate the ANN model 

 

Figure 1:Research process 
 

The second step: in this step, past concrete bridge cost data was collected, and statistical 

analysis was done to develop the ANN model. Such adaptations are proposed by Elbeltagi et 

al. (2014). Finally, the third step is to validate the ANN model using completed concrete bridge 

cost data to estimate the cost deviation based on the actual and prediction. 

 

3.1 Interviews 

The interviewees’ selection was conducted using the purposive sampling technique. This 

technique allows researchers to choose interviewees based on their judgements to address 

research questions (Saunders et al., 2011). As a result, seven professionals having experience 

in bridge construction projects in Sri Lanka were selected to participate in interviews to identify 

the costliest components in the bridge construction projects. The profiles of the interviewees 

are presented in Table 2. 
 

Table 2: Profile of interviewees 

Interviewee 

Code 
Designation 

Experience 

(Years) 

Currently working 

Organization 

(Consultant/ 

Contractor/ Employer) 

QS/01 
Senior Quantity 

Surveyor 
13 Years Consultant Organization 

QS/02 
Senior Quantity 

Surveyor 
21 Years Consultant Organization 

CE/01 Cost Estimator 20 Years Consultant Organization 

CMS/01 
Contact Management 

Specialist 
18 Years Consultant Organization 

QS/03 
Senior Quantity 

Surveyor  
20 Years Consultant Organization 



 

 

 

 

 

 

 

 

Table 2 shows that most interviewees hold essential roles in their organisations and have over 

ten years of experience in bridge projects. This ensures the reliability of interview data in 

identifying the costliest components in bridge construction. Qualitative data from interviews 

were analysed using content analysis to determine the expensive items that apply to the bridge 

construction in Sri Lanka. Accordingly, based on professionals’ opinions, four expensive main 

components of sub-structure and superstructure were identified as listed in Table 3. This cost-

significant component is used to development of the ANN model.  

 

Table 3: Cost significant components in brides 
 

Costly main components in the 

Substructure of the bridge 

Expensive main features in the 

Superstructure of the bridge  

• Piling work • Concrete Slab 

• Pire • Bridge Paving 

• Abutment • Bridge Furniture 

• Pre-stressed Beams • Miscellaneous  

 

 

3.2 Document reviews 

 

The document review technique collects secondary data by referring to the existing documents. 

Accordingly, Creswell (2014) stated that document review records might be public or private, 

written or electronic-based copies. The utmost caution was taken to ensure the confidentiality 

of the records when reviewing documents related to the cost data, as evidenced by Creswell 

(2014). Required permission has been taken to review the cost data documents such as BOQ, 

final accounts, cost plans, cost analysis and drawings of past bridge construction projects. As 

a result, 30 project cost data have been collected. The 21 total vital parameters (i.e. independent 

variables of the bridge construction) for the input layer were selected from the analysis of 

documents review to evaluate the output data (i.e. the cost of the structural systems per linear 

meter), as shown in Table 4. 

 

Table 4: Independent and Dependent Variables of the Cost Model 

Element 
Independent 

Variable 

Data Range Dependent 

Variable 

Data Range 

(LKR) 

Piling Work Pile length (m) 
167- 398 m 

 

Cost of piling 

work 

25,370,128 - 

97,235,534  

QS/04 
Chief Quantity 

Surveyor 
14 Years Contractor Organization 

SDE/01 
Senior Design 

Engineer 
15 Years 

Employer (Bridge Design 

Team - Road 

Development Authority) 



No of Pile cap (nr) 
3-4 nr         

 

 

Piers 

Pier length (m) 7-9m 

Cost of piers 

3,262,976 - 

4,872,751  

 
Pier width (m) 1-2m 

Pier height (m) 6-10m 

No of piers (nr) 1-2 nr 

Abutments 

Abutment wall 

Centre line girth 

(m) 

15-38m 

Cost of 

abutments 

           

4,635,544- 

14,576,857  

 Abutment wall 

height (m) 

4-8m 

Abutment wall 

width (m) 

0.5m-1m 

Pre-stressed 

Beams 

Beam span (m) 10-20m 
Cost of pre-

stressed 

beams 

3,798,301- 

26,159,352 

 
Beam height (mm) 380-850mm 

Beam width (mm) 400mm 

No of beams (nr) 30-57nr 

Concrete Slab 

Slab length (m) 20-73m 

Cost of 

concrete slab 

3,282,737- 

16,076,240 

 
Slab width (m) 6-8m 

Slab thickness 

(mm) 

200-300mm 

Bridge Paving 

Paving length (m) 20-73m 
Cost of bridge 

paving 

368,724-

1,220,407 

 
Paving width (m) 

6-8m 

Bridge 

Furniture 
Bridge length (m) 

20-73m 
Cost of bridge 

furniture 

618,339-

2,277,383 

 

Miscellaneous 

Bridge length (m) 20-73m 
Cost of 

miscellaneous 

121,949- 

403,628 

 
Bridge width (m) 

6-8m 

 

Develop Neural Network with Neuroph Studio – The model has been developed into six 

phases, as shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Steps to train Neural Network 

Source: Gunaydin and Dogan (2004) 
 

 

Step 01 

Normalize the data 

Step 02 

Create a Neuroph project 

Step 03 

Create a training set 

Step 04 

Create neural network 

Step 05 

Train the work 

Step 06 

Test the network 



 

Step 01 – Data Normalisation 

Data normalisation involves adjusting the data set depending on the location and time. 

According to the opinions, location only affects the cost of the selected projects in Sri Lanka; 

adjustment for the location was not required. Though bridge projects were initiated in different 

years during the ten years, time adjustment was essential for data normalisation. To normalise 

the collected da, the following equation has been used: 

 

𝐀𝐭 = 𝐀 [
𝐈𝐜 − 𝐈𝐛
𝐈𝐛

+ 𝟏] 

 

At  - Time adjusted sub-element amount. 

A  - Sub-element amount before time adjustment 

Ic - Current index published by CIDA (Construction Industry Development Authority, Sri 

Lanka) (current index for first Quarter 2021) 

Ib  - Base index  

To train a neural, The data set had to be normalised to train a neural network from 0 to 1. The 

following formula was used for normalising the data set.   

𝐗𝐧 =
𝐗 − 𝐗𝐦𝐢𝐧

𝐗𝐦𝐚𝐱 − 𝐗𝐦𝐢𝐧
 

Xn - Normalized sub-element amount 

X - Sub element amount before normalisation  

Xmin - Minimum value of X 

Xmax - Maximum value of X 

 

Step 02 – Create a Neuroph project 

A project name can be given (i.e. Piling Works), and select a suitable project location to save 

the file. Then, by clicking on the ‘Finish’ button, the new Neuroph project was created. 

 

Step 03 – Create a Training set. 

A new training data set can be created by clicking on the new project and selecting ‘New’ and 

‘Training set’. Then, the name for the data set and type was chosen as ‘Supervised’ training. 

Supervised training was selected to minimise error prediction through an iterative procedure 

and the most common way of data training in a neural network. Supervised training can succeed 

by giving sample data to the neural network and anticipating outputs from each data set. Then, 

that sample would be collected data using an MS Excel database. In the supervised training 

procedure, the neural network was taken through several iterations until the neural network 

matched the anticipated output with a low error rate.  

 

Step 04 – Creating a Neural Network 

To create a first neural network, right-click the project in the ‘Projects’ window and then click 

‘New’ and ‘Neural Network’. First, the project’s name and network must be entered into the 

wizard. Multi-layer perceptron was used since it is the most widely used neural network 

classifier. It can model complex functions, is robust (ignore irrelevant inputs and noise), and 

adapt its weights and/or topology in response to environmental changes. As well as the multi-

layer perceptron is easy to understand; it implements a black-box point of view and can be used 

with little knowledge about the relationship of the function to be modelled.   

After selecting the network file type, click the ‘Next’ button, which is directed to a new 

window, where some more parameters must be set. The number of inputs and outputs is the 



same in several inputs and the number of results in training the data set. After that, several 

hidden layers and the number of neurons had to be selected. 

In the next window, tick ‘Use Bias Neurons’ and ‘Sigmoid’ as a transfer function. 

‘Backpropagation with Momentum’ was chosen as a learning rule since it is the most 

commonly used technique and one of the more accurate techniques. Momentum is added to the 

backpropagation since it improves the algorithm’s efficiency.  

 

 

 

Step 05 – Training the Neural Network 

Once create a neural network, it needs to train with the training data set. First, select the training 

data set and click ‘Train’. Then a new window appeared, which had to set learning parameters. 

The maximum error was entered as 0.01, and several architectures were trained using different 

learning rates and momentums. The learning rate is the size of the ‘step’ the algorithm will take 

when minimising the error function in an iterative process, changing the error in respect of 

every iteration. 

 

Step 06 – Testing the Neural Network 

The same neural network has to be tested by clicking the test button. Every data set's Mean 

Square Error (MSE) will appear in the next window. The optimum neural network, which gives 

minimum MSE, must be selected from several neural networks.  

 

4. Research findings 

The main elements of a concrete bridge, dependent and independent variables, were identified 

during the interviews, as shown in Table 4. Separate neural networks were created for each 

bridge component, and the data set identified through document review was trained and tested 

within each neural network. Each aspect was introduced and experimented with different 

hidden layers, momentums and learning rates. Accordingly, the tested and trained results were 

presented and discussed for each element separately (Figure 3). 

 

 

Figure 3: Neuroph Project for Data Analysis 
 

 

Piling Work 

The preliminary cost estimate for piling works includes the cost of the following items in the 

concrete bridge construction. 

• Auguring for in-situ bored piles. 

• Reinforcement for bored piles. 

• Concrete for bored piles. 

• Pile hacking. 



• Pile testing. 

• Concrete for pile caps. 

• Reinforcement for pile caps. 

• Formwork for pile caps. 

• Additional borehole testing. 

• Concrete screed for pile caps. 

Seven NN architectures were created and trained to obtain optimum NN for piling works, as 

shown in Table . One to four hidden layers were tested, while the number of inputs and outputs 

of the NN was two and one, respectively. All the training attempt’s learning rates were between 

0.1 to 0.3, and momentum was 0.6 to 0.8. Training attempt 5 was successful, as shown in Table 

5, with three hidden layers, 0.2 learning rate, 0.7 momentum and 0.0246 minimum MSE.  

 

Table 5: Neural Network Training Result for Piling Work  
 

Training 

Attempts 
Inputs Outputs 

Hidden 

Layers 

Learning 

Rate 
Momentum Iterations MSE 

01 2 1 1 0.2 0.7 10000 0.0499 

02 2 1 2 0.1 0.6 10000 0.0310 

03 2 1 2 0.2 0.7 10000 0.0289 

04 2 1 3 0.1 0.6 10000 0.0301 

05 2 1 3 0.2 0.7 10000 0.0246 

06 2 1 4 0.1 0.6 10000 0.0287 

07 2 1 3 0.3 0.8 10000 0.0334 

 

 

The selected data set that was trained had only pile foundations and identified two bridges that 

bared higher cost than the other bridges. Therefore, those two projects were disregarded to gain 

the accuracy of the cost model. Accordingly, it is recommended that this cost model be used 

for the concrete pile foundation. With time, more than 50% of the total cost of most bridges 

was apportioned to the piling work construction, according to the data set. The cost of piling 

works in a concrete bridge covers nearly ten sub-items mentioned above. Therefore, it took 

time to identify the relationship between the inputs and the output and challenging to create the 

optimum neural network architecture for the piling works. For example, a pile foundation’s 

length was drastically changed according to the site conditions. Most bridges constructed to 

create the neural network cost model were across the rivers. Therefore, there was a high 

possibility of changing the soil condition location. Most of the time superstructure of the 

bridges was altered according to the site condition. Hence, it was tough to identify the 

relationship between the parameters of the piling works. Though 30 project data were trained 

and tested, insufficient data affected the accurate output of the cost model. Cost of constriction 

of cofferdams and cost of detraining was excluded from the trained data, and output shall give 

accordingly. Because the construction of cofferdams and dewatering were allocated lump sum 

prices in the estimates, those costs were highly unpredictable. To avoid the inaccurate output 

of the cost model, those items were excluded from the calculation. The independent parameters 

selected showed a clear relationship between the pile length and the number of pile caps. 

Nevertheless, the iteration of the pile work’s optimum architecture was increased due to 

insufficient data and cost changes due to the site condition’s unpredictability. However, 



optimum neural network architecture was created with satisfactory hidden layers, learning rate, 

momentum and MSE, as shown in Figure 4. 

 

  

Figure 4: Total Network Error Graph for Optimum Neural Network for Piling Works- 
 

 

Piers 

The preliminary cost estimate for piers includes the cost of the following items in the concrete 

bridge construction. 

• Concrete for piers. 

• Formwork for piers. 

• Reinforcement for piers. 

• Excavation, backfilling and compaction. 

Ten NN architectures were created and trained to obtain optimum NN for piers. One to three 

hidden layers were tested, while the number of inputs and outputs of the NN was four and one, 

respectively. In addition, a strong relationship was built between independent and dependent 

variables by creating an NN architecture, indicated in Table 6. Ultimately, identified optimum 

neural network architecture details were used to develop a cost model for piers.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 6: Neural Network Training Result for Piers 
 

Training 

Attempts 
Inputs Outputs 

Hidden 

Layers 

Learning 

Rate 
Momentum Iterations MSE 

01 4 1 1 0.2 0.7 50.000 0.0174 

02 4 1 1 0.1 0.6 10.000 0.0187 

03 4 1 2 0.2 0.7 34.000 0.0158 

04 4 1 2 0.1 0.6 8.000 0.0182 

05 4 1 3 0.2 0.7 15.000 0.0168 

06 4 1 2 0.3 0.8 12.000 0.0155 

07 4 1 2 0.4 0.8 160.000 0.0130 

08 4 1 2 0.5 0.7 38.000 0.0141 

09 4 1 2 0.4 0.7 18.000 0.0151 

10 4 1 2 0.4 0.9 2.000 0.0101 

 

All the training attempt’s learning rates were between 0.1 and 0.5, and momentum was 0.6–

0.9. Training attempt 10 was successful, as shown in Table 6, having two number of hidden 

layers, 0.4 learning rate, 0.9 momentum and 0.0101 minimum MSE. The training of the Piers 

data set was successful, as evidenced by the decreasing iterations shown in Table 6 and the 

total network error shown in Figure 5. The low level of iteration indicates that the optimum 

neural network was decisive in output. This may be generated due to a strong relationship 

between the selected parameters for inputs and output. However, the number of trained data 

was insufficient to create an optimum neural network. Because the training data set must be 

taught several times and has top several neural network architectures to get the optimum neural 

network for piling works in concrete bridges. The selected data set contained piers. The length 

of the piers was approximately equal to a two-lane road between 6.67 and 8.55 m. Therefore, 

it shall be effective to use a developed cost model for two-lane bridges, which will be estimated 

accurately. The concrete piers bore approximately 5%–10% of the total cost. The cost of 

constructing piers in a concrete bridge covers nearly four sub-items in the abovementioned cost 

model. To determine the relationship between the piers’ inputs and output, optimum neural 

network architectures for the piers were created. Sometimes, it was challenging to identify the 

relationships between inputs and outputs because the design was changed according to the 

location. For example, the pier was altered according to the site conditions because all the 

construction projects were river bridges. Hence, a pier’s height must be changed according to 

the river’s water level. There was a high possibility of changing the river’s water level from 

location to location. The bridges’ superstructure and piers were mainly altered according to the 

site condition. Consequently, it was tough to identify the relationship between the parameters 

of the piers, the same as piling works. However, 30 project data were trained and tested, and 

insufficient data affected the cost model’s accurate output. The accuracy of the estimation 

through the cost model shall depend on the number of trained data. However, the cost of piers 

is more related to the pier length, height, width and the number of piers. Low iteration in the 

tenth training attempt, as shown in Table 6, indicated strong relationships between parameters. 

Several hidden layers, learning rate, iteration, momentum and MSE, were used to develop a 

cost model for piers. 

 

 

 

 



 

 

Figure 5: Total Network Error Graph for Optimum Neural Network for pier 
 

 

Abutments 

The preliminary cost estimate for abutments includes the cost of the following items in the 

concrete bridge construction. 

• Concrete for abutments. 

• Reinforcement for abutments. 

• Excavation, backfilling, and compaction. 

• Weep holes 

• Clay puddled. 

• Formwork for abutments. 

• Excavation and backfilling. 

• Granular filter medium. 

• Aggregate backfilling for wing walls. 

• End plastic in concrete. 

• Geotextiles. 

Eight NN architectures were created and trained to obtain optimum NN for abutments. One to 

three hidden layers were tested, while the number of inputs and outputs of the NN were three 

and one, respectively. All the training attempt’s learning rates were between 0.1 to 0.4, and 

momentum was 0.6 to 0.9. Training attempt 06 was successful, as shown in table 7, having two 

no of hidden layers, 0.4 learning rate, 0.9 momentum and 0.0072 minimum MSE.  

 

 

 

 

 

 

 

 

 

 



Table 7: Neural Network Training Result for Abutments-'Source: Author's own creation' 
Training 

Attempts 
Inputs Outputs 

Hidden 

Layers 

Learning 

Rate 
Momentum Iterations MSE 

01 3 1 1 0.2 0.7 50.000 0.0168 

02 3 1 1 0.1 0.6 108.000 0.0186 

03 3 1 1 0.3 0.8 30.000 0.0140 

04 3 1 2 0.2 0.7 18.000 0.0170 

05 3 1 2 0.3 0.8 18.000 0.0152 

06 3 1 2 0.4 0.9 9.000 0.0072 

07 3 1 3 0.2 0.7 10.500 0.0171 

08 3 1 3 0.4 0.9 17.000 0.0121 

 

Similarly, as in piers, the length of abutments is approximately equal to two-lane roads. But 

abutments are comprised of wing walls beside the abutments. Therefore, the length of the 

abutments was calculated and incorporated with the length of the wing walls. Consequently, it 

shall be effective to use a developed cost model for two-lane bridges, which will be estimated 

accurately. The concrete abutments bore approximately 5% to 15% of the total cost. As 

mentioned above, the cost of abutments in a concrete bridge covered nearly eleven sub-items 

in the cost model. Therefore, it was required to identify the relationships between those eleven 

cost elements and the abutment’s parameters. The optimum neural network architecture for the 

abutments was created in the 6th training attempt to recognise the relationship between the 

abutments' inputs and output. Sometimes it was challenging to identify the relationships 

between inputs and outputs because the design was changed according to the location. For 

example, abutment height was altered according to the site conditions and wing wall designs 

were adjusted according to the water level of the river and soil condition of the embankments. 

Hence, abutment height and wing wall designs must be changed according to the river's water 

level and the embankments' soil conditions. Most loads imposed on the beam bridge were 

transferred to the rock strata through abutments. Therefore, there was a high possibility of 

changing the design of the abutments and wing walls. Most of the time, the bridges' 

superstructure, including abutments and wing walls, were altered according to the site 

condition. Accordingly, it was tough to identify the relationship between the parameters of the 

abutments. Insufficient data affected the accurate output of the cost model through 30 project 

data were trained and tested in the cost model. The estimation accuracy through the cost 

depended on the number of trained data. However, abutment cost was more related to the centre 

abutment wall's centre line girth, height, and width iteration in the 06th training attempt, as 

shown in Figure 6, indicating strong relationships between parameters in abutments.  

 

 



 

 

Figure 6: Total Network Error Graph for Optimum Neural Network for Abutments 
 

 

Pre-stressed Beams 

The preliminary cost estimate for pre-stressed beams includes the cost of the following items 

in the concrete bridge construction. 

• Pre-stressed beams supply to the site. 

• Pre-stressed beams launched to the position.  

• Cost of bearing strips. 

• Bituminous sealing felt under capping beams of abutments. 

Table 8: Neural Network Training Result for Pre-stressed Beams 

 

 

Ten NN architectures were created and trained to obtain optimum NN for pre-stressed beams. 

One to three hidden layers were tested, while the number of inputs and outputs of the NN were 

three and one, respectively. All the training attempt’s learning rates were between 0.1 to 0.5, 

and momentum was 0.6 to 0.9. Training attempt 08 was successful, as shown in Table 8, having 

two no of hidden layers, 0.4 learning rate, 0.9 momentum and 0.0035 minimum MSE.  The 

selected data set, which was trained, had only pre-stressed concrete beams constructed 

Training 

Attempts 
Inputs Outputs 

Hidden 

Layers 

Learning 

Rate 
Momentum Iterations MSE 

01 3 1 1 0.2 0.7 3.000 0.0156 

02 3 1 1 0.1 0.6 80.000 0.0189 

03 3 1 1 0.3 0.8 4.000 0.0185 

04 3 1 2 0.2 0.7 6.000 0.0188 

05 3 1 2 0.1 0.6 42.000 0.0188 

06 3 1 2 0.3 0.8 3.000 0.0060 

07 3 1 3 0.2 0.7 9.000 0.0166 

08 3 1 2 0.4 0.9 6.000 0.0035 

09 3 1 2 0.4 0.8 13.000 0.0140 

10 3 1 2 0.5 0.9 33.500 0.0119 



according to the standard sizes of the UK pre-stressed concrete Association (PCA). Therefore, 

using a developed cost model of pre-stressed concrete beams shall be effective and estimated 

accurately. The pre-stressed concrete forms bore approximately 10% to 20% of the total cost. 

The cost of pre-stressed concrete beams in a concrete bridge covered nearly four sub-items in 

the cost model. As mentioned above, pre-stressed concrete beams were a significant portion of 

the total cost. Therefore, it was required to identify the relationships between those four cost 

elements and the pre-stressed concrete beam’s parameters. To recognise the relationship 

between the inputs and the output of the pre-stressed concrete beams, the optimum neural 

network architecture for the abutments was created in the 08th training attempt. Pre-stressed 

concrete beam span significantly affects the bridge's cost because the number of piers has to 

be improved when the beam's span is increased. Therefore, it was essential to define the cost 

model for the range of the selected beam. Trained and tested data sets were between 10m to 

20m approximately. Hence, this cost model shall be effective for such a span. Identifying the 

relationships between parameters and the cost of the pre-stressed beams was not tricky because 

the beams were designed according to the standards. However, insufficient data affected the 

accurate output of the cost model through project data that were trained and tested in the cost 

model. Nevertheless, the cost of pre-stressed concrete beams was more related to the beam 

span, height, and width. Low iteration in the 8th training attempt, as shown in figure 7, 

indicated strong relationships between parameters in pre-stressed.  

Concrete beams. Training and testing were carried out to identify the strong relationship 

between variables.   

 
 

 

Figure 7: Total Network Error Graph for Optimum Neural Network for Pre-stressed Beams-

'Source: Author's own creation' 
 

 

Concrete Slab 

The preliminary cost estimate for the concrete slab includes the cost of the following items in 

the concrete bridge construction. 

• Concrete for a concrete slab. 

• Reinforcement for a concrete slab. 

• Stainless steel dowel bars. 



• Formwork for approach slab. 

• Formwork for a concrete slab. 

• Cost for expansion joints. 

• Concrete for approach slab. 

• Reinforcement for approach slab. 

Fourteen NN architectures were created and trained to obtain the optimum NN for a concrete 

slab. One to three hidden layers were tested, while the number of inputs and outputs of the NN 

were three and one, respectively. All the training attempt’s learning rates were between 0.1 to 

0.5, and momentum was 0.6 to 0.9.  

 

Table 9: Neural Network Training Result for Concrete Slab 
 

 

 

Attempt 09 was successful, as shown in Table 9, having two no of hidden layers, 0.5 learning 

rate, 0.8 momentum and 0.0069 minimum MSE. Optimum neural network architect data were 

used to develop a cost model for a concrete slab. The data set that was trained and tested had 

only precast concrete panels, and concrete slabs were constructed on top of the pre-stressed 

concrete beams. Therefore, a developed cost model for bridges with precast concrete panels 

and concrete slabs will be effective. The concrete slab bore approximately 5% to 10% of the 

total cost. Therefore, the cost of the concrete slab in a concrete bridge construction covered 

nearly sub-item in the abovementioned cost model. Consequently, it was required to identify 

the relationships between those eight cost elements and the concrete slab’s parameters. To 

recognise the relationship between the inputs and the output of the concrete slab, optimum 

neural network architecture for the abutments was created in the 09th training attempt—low 

iteration, obtained during the training data set, and strong relationships between parameters, as 

shown in figure 8. The design of the concrete slab was not much affected by the cost model, 

and it was given accurate figures according to the strong connections between parameters. 

However, there was insufficient data concerning the cost model's accuracy, though 30 project 

data were trained and tested in the cost model. According to selected and trained data, it was 

proved that the cost of concrete slab was more related to the slab length, width, and thickness.  

Training 

Attempts 
Inputs Outputs 

Hidden 

Layers 

Learning 

Rate 
Momentum Iterations MSE 

01 3 1 1 0.2 0.7 11.000 0.0172 

02 3 1 1 0.1 0.6 600.000 0.0188 

03 3 1 1 0.3 0.8 7.000 0.0127 

04 3 1 1 0.4 0.9 10000 0.0676 

05 3 1 2 0.2 0.7 7.000 0.0138 

06 3 1 2 0.3 0.8 11.000 0.0128 

07 3 1 2 0.4 0.9 4.000 0.0062 

08 3 1 2 0.5 0.9 5.000 0.0109 

09 3 1 2 0.5 0.8 5.000 0.0069 

10 3 1 2 0.5 0.7 3.000 0.0128 

11 3 1 3 0.2 0.7 9.000 0.0164 

12 3 1 2 0.4 0.8 9.000 0.0096 

13 3 1 2 0.4 0.7 9.000 0.0142 

14 3 1 2 0.4 0.6 12.000 0.0145 



 

 

 

Figure 8: Total Network Error Graph for Optimum Neural Network for Concrete Slab-

'Source: Author's own creation' 
 

 

Bridge Paving 

The preliminary cost estimate for bridge paving includes the cost of the following items in the 

concrete bridge construction. 

• Bituminous emulsion tack coat 

• Asphaltic surfacing 

Table 10: Neural Network Training Result for Bridge Paving 

Training 

Attempts 
Inputs Outputs 

Hidden 

Layers 

Learning 

Rate 
Momentum Iterations MSE 

01 2 1 1 0.2 0.7 16.000 0.0161 

02 2 1 1 0.3 0.8 11.000 0.0120 

03 2 1 1 0.4 0.9 22.000 0.0113 

04 2 1 1 0.5 0.9 15.000 0.0083 

05 2 1 1 0.6 0.9 17.000 0.0218 

06 2 1 1 0.5 0.8 8.000 0.0136 

07 2 1 1 0.5 0.7 7.000 0.0098 

08 2 1 1 0.5 0.6 14.000 0.0134 

09 2 1 2 0.2 0.7 17.000 0.0151 

10 2 1 2 0.3 0.8 5.000 0.0124 

11 2 1 2 0.5 0.9 10000 0.1172 

12 2 1 2 0.4 0.9 2.000 0.0177 

13 2 1 3 0.2 0.7 9.000 0.0143 

14 2 1 3 0.3 0.8 6.000 0.0077 

15 2 1 3 0.4 0.9 11.000 0.0145 

16 2 1 3 0.3 0.7 7.000 0.0152 

17 2 1 3 0.3 0.9 4.000 0.0091 



 

Nineteen NN architectures were created and trained to obtain optimum NN for bridge paving. 

One to three hidden layers were tested, while the number of inputs and outputs of the NN was 

two and one, respectively. All the training attempt’s learning rates were between 0.2 to 0.5, 

and momentum was 0.6 to 0.9. Training attempt 18 was successful, having three no of hidden 

layers, 0.4 learning rate, 0.8 momentum and 0.0067 minimum MSE. The cost of bridge paving 

in a concrete bridge construction covered nearly two sub-items in the cost model mentioned 

above, and bridge paving was borne less from the total cost. However, this portion was not 

much affected by the total cost; it was required to identify the relationships between those two 

cost elements and the bridge paving parameters. To determine the relationship between the 

bridge’s inputs and output, paving optimum neural network architectures for the abutments 

were created in the 18th training attempt. The cost model development did not affect bridge 

paving design because standard mix designs were used. However, insufficient data involved 

the cost model's accurate output through several project data that were trained and tested in the 

cost model. 19 training attempts were carried out to get the optimum neural network for the 

cost model, as shown in Figure 9.   However, the cost of bridge paving was more related to the 

paving length and paving width. Low iteration in the 18th training attempt, as shown in Table 

10, indicated strong relationships between parameters in bridge paving.  

 

 

Figure 9: Total Network Error Graph for Optimum Neural Network for Bridge Paving 
 

Bridge Furniture 

The preliminary cost estimate for bridge furniture includes the cost of the following items in 

the concrete bridge construction.  

• Cost of precast kerbs 

• Railings 

• Guard stones 

18 2 1 3 0.4 0.8 3.000 0.0067 

19 2 1 3 0.5 0.8 6.000 0.0079 



• Light posts 

Fifteen NN architectures were created and trained to obtain optimum NN for bridge furniture. 

One to three hidden layers were tested, while several inputs and outputs of the NN were one. 

All the training attempt’s learning rates were between 0.2 to 0.5, and momentum was 0.6 to 

0.8. Training attempt 12 was successful, as shown in Table 11, having three no of hidden layers, 

0.4 learning rate, 0.7 momentum and 0.0023 minimum MSE.  

Table 51: Neural Network Training Result for Bridge Furniture 
 

Training 

Attempts 
Inputs Outputs 

Hidden 

Layers 

Learning 

Rate 
Momentum Iterations MSE 

01 1 1 1 0.2 0.7 9.000 0.0148 

02 1 1 1 0.3 0.8 78.000 0.0175 

03 1 1 1 0.2 0.6 18.000 0.0160 

04 1 1 1 0.3 0.7 18.000 0.0117 

05 1 1 1 0.4 0.7 28.000 0.0106 

06 1 1 1 0.5 0.7 10000 0.0832 

07 1 1 2 0.4 0.7 35.000 0.0148 

08 1 1 2 0.3 0.7 3.000 0.0078 

09 1 1 2 0.2 0.7 26.000 0.0144 

10 1 1 3 0.3 0.7 8.000 0.0115 

11 1 1 3 0.2 0.7 7.000 0.0045 

12 1 1 3 0.4 0.7 2.000 0.0023 

13 1 1 3 0.5 0.7 2.000 0.0034 

14 1 1 3 0.4 0.6 7.000 0.0122 

15 1 1 3 0.4 0.8 2.000 0.0148 

The bridge furniture bared approximately 1% to 2% of the total cost. This portion was less 

percentage compared with the concrete bridge's total cost. The cost of bridge furniture in a 

concrete bridge construction covered nearly four sub-items in the cost model mentioned above, 

and bridge furniture was borne less from the total cost. To recognise the relationship between 

the inputs and the output of the bridge furniture, the optimum neural network architecture for 

the abutments was created in the 12th training attempt. Bridge furniture design was not much 

affected by the cost model development. However, insufficient data concerning the cost 

model's accurate output through 30 project data were trained and tested in the cost model. 15 

training attempts were carried out to get the optimum neural network for the Cost model. 

However, the cost of bridge paving was more related to the bridge length. Most of the sub-

items in the bridge furniture created a relationship between the bridge's span. Therefore, there 

was less possibility of deviating the estimated cost from the actual cost other than insufficient 

trained and tested data.  Low iteration in the 12th training attempt, as shown in Figure 10, 

indicated strong relationships between parameters in bridge furniture. 

 



 

Figure 10: Total Network Error Graph for Optimum Neural Network for Bridge Furniture 

 

Miscellaneous 

The preliminary cost estimate for miscellaneous includes the cost of the following items in the 

concrete bridge construction. Most of the items listed below were related to the services of the 

bridge.  

• Rainwater outlets. 

• Dowel bars to abutments and wing walls. 

• Drainpipes. 

• Service ducts. 

Ten NN architectures were created and trained to obtain optimum NN for miscellaneous. One 

to three hidden layers were tested, while the number of inputs and outputs of the NN was two 

and one, respectively. All the training attempt’s learning rates were between 0.2 to 0.4, and 

momentum was 0.7 to 0.9. Training attempt 04 was successful, as shown in Table 12, having 

one no of hidden layers, 0.3 learning rate, 0.9 momentum and 0.0083 minimum MSE.  

Table 6: Neural Network Training Result for Miscellaneous 
 

Training 

Attempts 
Inputs Outputs 

Hidden 

Layers 

Learning 

Rate 
Momentum Iterations MSE 

01 2 1 1 0.2 0.7 18.000 0.0147 

02 2 1 1 0.3 0.8 10.000 0.0132 

03 2 1 1 0.4 0.9 10000 0.0535 

04 2 1 1 0.3 0.9 41.000 0.0083 

05 2 1 1 0.3 0.7 34.000 0.0148 

06 2 1 2 0.3 0.9 5.000 0.0107 



According to the selected data set, approximately less than 1% of the total cost was borne by 

the miscellaneous. Miscellaneous expenses in a concrete bridge construction covered nearly 

four sub-items in the cost model mentioned above, and miscellaneous were delivered less than 

the total cost. However, this portion was relatively unaffected by the total cost; it was required 

to identify the relationships between those four cost elements and the various parameters. To 

recognise the relationship between the inputs and the output of the different optimum neural 

network architectures for the abutments were created in the 04th training attempt. However, 

insufficient data affected the accurate output of the cost model through several projects. Data 

were trained and tested in the cost model. 10 training attempts were carried out to get the 

optimum neural network for the cost model.   However, the cost of miscellaneous was more 

related to the paving length. Low iteration in the 04th training attempt shall indicate strong 

relationships between parameters in Figure 11.  

 

 Figure 11: Total Network Error Graph for Optimum Neural Network for Miscellaneous 
 

 

Development of a Cost Model 
 

According to Table 13, eight optimum neural networks were created, which gives a more 

accurate estimate of the cost of each element. Most of the optimum neural networks comprised 

2 or 3 hidden layers and a 0.4 learning rate. The momentum of those optimum neural networks 

was between 0.7 and 0.9. Other than high iteration in piling works, other elements were trained 

in low iterations, giving an accurate figure. Finally, the selected optimum neural network 

architectures were used to develop a cost model which offers minimum MSE. 

 

07 2 1 2 0.2 0.7 12.000 0.0136 

08 2 1 3 0.3 0.9 28.500 0.0124 

09 2 1 3 0.2 0.7 4.000 0.0168 

10 2 1 3 0.3 0.8 5.000 0.0094 



Table 7: Summary of the Optimum Neural Network Training Results for Elements 

Element 
Inpu

ts 

Output

s 

Hidde

n 

Layers 

Learnin

g Rate 

Momentu

m 

Iteration

s 
MSE 

Piling Works 2 1 3 0.2 0.7 10000 0.0246 

Piers 4 1 2 0.4 0.9 2.000 0.0101 

Abutments 3 1 2 0.4 0.9 9.000 0.0072 

Pre-stressed 

Beams 
3 1 2 0.4 0.9 6.000 0.0035 

Concrete Slab 3 1 2 0.4 0.9 5.000 0.0062 

Bridge Paving 2 1 3 0.4 0.8 3.000 0.0067 

Bridge 

Furniture 
1 1 3 0.4 0.7 2.000 0.0023 

Miscellaneous 2 1 1 0.3 0.9 41.000 0.0083 

According to the optimum neural network architectures, several inputs, outputs and hidden 

layers were decided, and the value for learning rate, momentum and iteration was selected. 

Finally, the “Concrete Bridge Cost Estimator” was developed using the cost model's data and 

user interfaces, as shown in Figure 12. 

 

 

 

 

Figure 12: User Interface for Developed Cost Model 
 

 

 

 

 

 

 

 



 

 

 

 

 

Once clicking the “Getting Start” user interface, the cost mode category selection interface 

shall appear, as shown in Figure 12. Bridge elements for cost estimation can be selected in the 

following user interface. The required element button can enter parameters in the next user 

interface. For example, pile length and the number of pile caps should be included as element 

parameters to get an estimated value for piling works. This interface varies from element to 

element since different parts have different parameters. Once parameters are entered, the 

predicated cost for a particular element can be obtained by clicking the ‘calculate’ button. The 

cost model user interfaces were created using NetBeans (8.0 version) and the Java platform, 

which is user-friendly and most accessible among software developers. 

 

Validation of Neural Network Cost Model 
 

The developed cost model was validated using the basic project cost details to validate the 

neural network cost model. The cost model, developed based on optimum neural network 

architectures, was used to calculate the estimated cost for the selected project. According to the 



final accounts, almost all the optimum neural networks for bridge elements were compared 

with the actual construction cost. Nevertheless, it is noticed that the accumulation of the given 

element cost does not represent the total cost of the construction. As described, some 

expenditures were excluded from the cost model. Therefore, estimators should be aware of 

those expenditures and add the sum to the estimated construction cost. 

When considering all the deviations as a percentage, most of the variations were in the range 

of 610.00%, as shown in Table 14. Therefore, this deviation was within the estimated cost 

deviation at the inception stage. Hence, it can be concluded that the developed neural network 

cost model has performed at the expected accuracy level in the research. Consequently, this 

cost model can be a more reliable preliminary cost-estimating tool than traditional techniques. 

 

 

 

Table 8: Validation of Cost Model 
 

Element 
Actual Cost 

(LKR) 

Estimated 

Cost (LKR) 

Deviation 

(LKR) 

Deviation 

as a 

Percentage 

Project 01 

Piling Work 46,764,877.45 42,322,214.09 (4,442,663.36) 9.50% 

Pier 4,575,017.48 4,834,420.97 259,403.49 -5.67% 

Abutment 10,082,023.33 9,500,290.58 (581,732.75) 5.77% 

Pre-stressed 

Beam 
11,629,147.30 11,234,919.21 (394,228.09) 3.39% 

Concrete Slab 5,362,897.47 5,923,320.26 560,442.79 -10.45% 

Bridge Paving 602,372.21 564,904.66 (37,467.55) 6.22% 

Bridge Furniture 1,139,044.99 1,084,484.73 (54,560.26) 4.79% 

Miscellaneous 199,223.99 202,829.94 3,605.95 -1.81% 

Project 02 

Piling Work 55,595,741.71 57,130,184.18 1,534,442.47 -2.76% 

Pier 6,454,746.87 6,734,882.88 280,136.01 -4.34% 

Abutment 8,685,887.52 8,306,314.24 (379,573.28) 4.37% 

Pre-stressed 

Beam 
16,521,695.70 17,863,257.39 1,341,561.69 -8.12% 

Concrete Slab 8,536,857.20 8,300,386.26 (236,470.94) 2.77% 

Bridge Paving 767,102.57 654,491.91 (112,610.66) 14.68% 

Bridge Furniture 1,269,221.57 1,291,179.10 21,957.53 -1.73% 

Miscellaneous 253,705.65 236,326.81 (17,378.84) 6.85% 

 

 

5. Conclusions  

 

The accurate data required to perform the neural network cost model was more significant. 

Therefore, the developed neural network cost model shall be used as a detailed estimation, 

giving separate estimates for each element. Ultimately, Neuroph Studio, which has neural 

network development ability, was used to create optimum neural network architectures for 

identified elements of the bridge construction. Though reducing the learning rate minimises 

MSE, iteration value tends to increase. Therefore, the learning rate should be a manageable 

size. According to the statistical data analysis, optimum neural network architectures have 



around 0.01 minimum MSE. Almost all the neural networks gained 90% accuracy during the 

cost model validation compared to the actual construction. The cost model was developed using 

Java programming language and NetBeans software, recognised as powerful software 

development tools. However, the study limitations are that the actual project’stotal construction 

cost was not covered in the full estimation of this cost model development stage. Some items 

were excluded from the model, e.g. the cost of cofferdam construction and dewatering. The 

ANN model was developed based on the material price indices of CIDA published in January 

2021. This model is only capable of calculating the cost of river bridges since the cost model 

was developed based on the river concrete beam bridges which were already constructed. When 

applying the ANN model to practice, the estimated cost obtained using the model must be 

adjusted to the time factor using CIDA price indices %. Further studies, therefore, can be 

conducted on similar research within other developing countries and for different types of 

public sector infrastructure projects such as roads and tunnels. 
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