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Abstract

This chapter evaluates the traditional methods for price prediction and examines, what

we believe, are the most promising machine learning techniques for that task. Asset price

forecasting is one of the fundamental problems in the financial field. Traditional forecast-

ing methods include Capital Asset Pricing Theory (CAPM) or Factor Models to estimate

stocks’ excess returns. More recently, an increasing number of researchers and financial

practitioners began to explore the role of machine learning in asset pricing. We show

how these methods have been already applied in practice and discuss their results. We

also explore the potential use of neural networks in asset pricing as we believe that their

capacity to process large amounts of data together with the ability to accurately capture

non-linear relationships among the variables makes them a great tool for price prediction.

Keywords: machine learning, asset-pricing, neural networks, factor models
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Section 1

Introduction

Asset pricing is a major area of interest within the field of quantitative finance. The

forecasting of the asset price is one of the main fundamental challenges for quantitative

finance practitioners and academics alike. With the rapid development of technology, the

computing power increased, thus making more investment firms and managers point their

attention to machine learning techniques. Data is central to the modern digital economy

and with humans generating and capturing more and more of it each year, there was a

need to apply modern computer science techniques to deal with such a large volume of

this resource.

Machine learning is defined as a mechanism used to train machines to perform a spe-

cific task while handling the data in the most efficient way. Machine learning techniques

are designed to handle highly dimensional, large volumes of data, which make them a

great tool for estimating asset prices. While traditional asset-pricing models are largely

linear, machine learning techniques allow to utilise of new data sources and incorporate

non-linear interactions among variables in making the predictions. With a large body of

documented stock-level factors (Green, Hand, and X. F. Zhang, 2013), (Harvey, Y. Liu,

and H. Zhu, 2016), the question remains which ones to use and how to best capture the

ongoing relationships between them and expected return. Furthermore, Harvey and Y.

Liu (2021), argues that traditional statistical techniques used in evaluating the explana-

tory power of these factors are redundant given the multiplicity issues arising from such

methods. Machine Learning techniques offer a wide range of approaches to deal with

the evaluation of the predictive power of factors, which were proven to be more effective

compared to traditional statistics methods.

In this chapter, we will discuss the issues with traditional factor models and identify

the main constraints when designing an asset-pricing model. From explaining the main

principles of machine learning methods described, to showing their practical application

in the asset-pricing field, we will show the disruptive potential of machine learning tech-

1



SECTION 1. INTRODUCTION

niques in finance. Moreover, the discussion will also highlight the role of neural networks

in asset-pricing as they have been one of the fastest-growing sub-fields of machine learn-

ing recently. Neural networks have been successfully applied in many fields of study and

their ability to capture complicated non-linear relationships in a variable rich environment

makes them a perfect tool for designing an asset-pricing factor model.
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Section 2

Empirical Asset Pricing Models

In this section, we will focus on examining the most popular empirical asset pricing

models in financial markets. These models are the Capital Asset Pricing Model (CAPM),

the Arbitrage Pricing Theory (APT) model and Fama-French 3 & 5 factors model.

2.1 Overview and Rationale

Traditionally, investors were referring to income statements, balance sheets and other

publicly available information on a company to perform their investment choices. With

the increased access to high-quality fundamental data, investors and academics have

begun employing statistical, behavioural and machine learning techniques to facilitate the

asset pricing methods, which gave birth to systematic value investing, first mentioned by

Graham and Dodd (1951). The fundamental property of empirical asset pricing models

is that not all risks should affect the performance of an asset, therefore it is important to

distinguish key factors influencing asset price (Pástor and Stambaugh, 2000). Investors

all over the world continue to use such models to aid their investment decisions.

2.2 Capital Asset Pricing Model (CAPM)

Developed independently by Treynor (1961), Sharpe (1964), Lintner (1965) and

Mossin (1966), Capital Asset Pricing Model (CAPM) is considered the first comprehen-

sible asset pricing model (Perold, 2004). CAPM builds directly on Markowitz’s Modern

Portfolio Theory (MPT) in which achieving higher yields is possible only though taking

on more risky investments (Markowitz, 1952), which is addressed by including market

risk premium in the model’s equation. According to MPT, the risk of an asset consists

of systematic (market) and unsystematic risk (company-specific). Since non-systematic

risk can be fully diversified away, though reducing correlation between returns of the

3



SECTION 2. EMPIRICAL ASSET PRICING MODELS

assets, CAPM assumes that the only relevant metric in determining the expected return

on the asset is market risk, commonly referred to as beta. Therefore the CAPM can be

described as follows:

Ri = Rf + βi ∗ (Rm −Rf ) + eit (2.1)

where:

Ri = the expected return on the investment
Rf = the risk-free rate
βi = the market risk of the investment
Rm = the expected return on the market
eit = the standard error of the linear regression

2.2.1 CAPM Limitations

Although CAPM is one of the most widely taught theory on MBA (Master of

Business Administration), (Womack and Y. Zhang, 2005) and financial economics

courses (Dempsey, 2013), the model has its limitations, mostly resulting from its un-

realistic assumptions and difficulties in beta estimation. Roll (1977), argued that the

CAPM model cannot be tested as creating a market portfolio would require collecting

all of the information about the market from many different industries and sectors which

in practice is impossible. Moreover, Banz (1981), found that the average yields are

contingent on the size-capitalization of the companies, which is especially visible among

small-cap stocks with higher average returns than large-cap ones, further highlighting the

ineffectiveness of CAPM. However, surveys such as that conducted by Partington et al.

(2013), have shown that empirical test performed on CAPM are not so much proving its

validity but rather highlighting the important correlations between variables in respect

to the cross-section of realized returns.

2.3 Multifactor Models

2.3.1 Arbitrage Pricing Theory (APT)

Developed by Ross (1977), Arbitrage Pricing Theory (APT), was created as an al-

ternative to CAPM. It is a multifactor model that builds on the existence of a linear
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SECTION 2. EMPIRICAL ASSET PRICING MODELS

relationship between an asset’s expected return and multiple possible factors influencing

systematic risk. In APT the return of an asset is influenced by a range of macroeconomic

factors such as unemployment, GDP growth, inflation or interest rates. If the APT

holds, there would be no arbitrage opportunities (i.e. creation of riskless profits by tak-

ing positions that are based on security “mispricing”). The more efficient market is, the

quicker the arbitrage opportunities will disappear. The model, due to its simplicity and

flexibility, is commonly used in asset management, cost of capital estimation, portfolio

diversification as well as evaluation of collective investment schemes (e.g. ETFs, Mutual

Funds, Hedge Funds) performance (Huberman, 2005). The mathematical representation

of the model is:

ri = αj + bi1F1 + bi2F2 + ...+ binFn + eit (2.2)

where:

ri = the total return of individual asset i
Fs = the factors affecting the asset’s return
bik = the sensitivity of the ith asset to the factor k
eit = the standard error of the linear regression

The limitations of APT

The main weakness with this theory is the fact that it does not specify what factors

should be chosen. However, the analyst can decide on what factors to choose by regressing

historical portfolio returns against the chosen range of macroeconomic factors. By doing

so they can identify the statistical significance of any of these factors, thus tailor the model

to the specific asset or group of assets. Nevertheless, Dhrymes, Friend, and Gultekin

(1984), found that with the increasing number of securities, the number of determining

factors increases making it gruelling to distinguish between ”priced” and ”non-priced”

risk factors.

2.3.2 Fama-French 3 & 5 Factor Models

Following Roll’s and Banz’s critique of CAPM, Eugene and K. French (1992), devel-

oped a new asset pricing model, which introduced two new variables in explaining the
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SECTION 2. EMPIRICAL ASSET PRICING MODELS

expected asset returns. The size factor adapted from Banz and book equity / market eq-

uity (BE/ME) ratio building on Chan, Hamao, and Lakonishok (1991), who found that

book-to-market (BE/ME) plays a huge role in explaining the cross-section of average

returns. The formula for Fama-French 3 Factor model can be described as follows:

Rit −RFt = αi + βi(RMt −RFt) + βsSMBt + βhHMLt + eit (2.3)

where:

Rit = the total return of individual asset i
RFt = the risk-free rate
RMt = the total market portfolio return
Rit −RFt = the expected excess return
Rit −RFt = the excess return on a market portfolio index
SMBt = the difference between the return of a diversified portfolio of small and

big stocks (size premium)
HMLt = the difference between the returns on a diversified portfolios of high and

low BE/ME stocks (value premium)
βi,s,h = factors’ coefficients
αi = Fama-French three factor alpha
eit = the standard error of the linear regression

To evaluate the effectiveness of their model, Fama and French used a sample of

monthly stock returns from July 1963 until December 1991. Using the data from the

Center for Research in Security Prices (CRSP) they have created 25 separate equity

portfolios based on the size (i.e. Small, 2, 3, 4 and BIG) and BE/ME (i.e. Low, 2, 3,

4, High) factors with Treasury Bill rate as the risk-free rate. The results have shown

the negative correlation between size factor and average yields as well as a positive

relationship between BE/ME indicator and average returns, with the latter being

persistent in all 25 portfolios. Their research showed that this three-factor model was

capable of explaining a significant portion of stock return variation, eventually becoming

a basis for evaluation of other asset classes and different markets.
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SECTION 2. EMPIRICAL ASSET PRICING MODELS

In 2015, having investigated the profitability and investments of the companies, Fama

and French developed their model by adding two more factors:

Rit−RFt = αi+ bi(RMt−RFt)+βsSMBt+βhHMLt+βrRMWt+βcCMAt+ eit (2.4)

where:

Rit = the total return of individual asset i
RFt = the risk-free rate
RMt = the total market portfolio return
Rit −RFt = the expected excess return
RMt −RFt = the excess return on a market portfolio index
SMBt = the difference between the returns on a diversified portfolio of small and

big stocks (size premium)
HMLt = the difference between the returns on a diversified portfolio of high and

low BE/ME stocks (value premium)
RMWt = the difference in returns between the most and least profitable

companies (profitability risk factor)
CMAt = the difference in returns between conservatively and aggressively

investing firms (investment factor)
βi,s,h,r,c = factors’ coefficients
αi = Fama-French five factor alpha
eit = the standard error of the linear regression

Similar tests were performed to evaluate the effectiveness of the model, with additional

22 years of return data from the same source. Although the five-factor model was supe-

rior to the three-factor model when it comes to forecasting asset prices, the researchers

have highlighted the redundancy of value premium factor as it was largely explained by

profitability risk and investment factors (E. F. Fama and K. R. French, 2015). Addition-

ally, their study showed that, within the sample used, small-cap stocks achieved similar

performance to low profitable but highly investing firms.

Fama-French 3 & 5 Models Limitations

Despite satisfactory results of Fama and French models in their research and the wide

adaptation of them among both academics and investment professionals, according to

Blitz et al. (2016), the models fail to account for low-volatility and momentum premiums

and does not attempt to address robustness issues. Even though Fama and French claim

that in long run, the low beta anomaly is addressed by their five-factor model (E. F.

Fama and K. R. French, 2016), there is a lack of significant evidence confirming that
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SECTION 2. EMPIRICAL ASSET PRICING MODELS

higher market beta exposure is rewarded with increased returns. Moreover, later studies

by Dichev (1998) and Campbell, Hilscher, and Szilagyi (2008), have demonstrated the

negative relationship between distress risk and return, confirming the existence of low-risk

premium. Fama-French models do not attempt to account for the momentum premium

and with momentum profits becoming increasingly more important in asset pricing, many

researchers began adding momentum factors resulting in 4- (Carhart, 1997) and 6-factor

variants (Roy and Shijin, 2018). In addition to the lack of robustness of two newly added

factors, the economic rationale for their addition to the updated model is also unclear.

While size and value factors in the three-factor model were justified from the risk-based

perspective (E. F. Fama and K. R. French, 2021), in the five-factor model it is unclear

whether the observed return premiums are associated with systematic risk or behavioural

anomalies.

2.4 Discussion

Although multifactor models are commonly used by investment managers, there is

a discussion regarding their performance in respect to machine learning methods. De-

spite multifactor models being able to explain the historical correlation matrix relatively

well (Chan, Karceski, and Lakonishok, 1999), they deliver poor predictions (Simin, 2008).

Understanding the behaviour of risk premium is crucial in asset pricing. Traditionally,

differences in expected returns were estimated using cross-sectional regressions, which in

addition to the Ordinary Least Squares (OLS) method involved sorting assets into in-

dividual portfolios based on their underlying characteristics (Lewellen, 2014). Whereas,

time-series forecasts of returns were obtained using time-series regressions of entire port-

folio returns, with few macroeconomic predictors tested (Rapach and Zhou, 2013). While

such methods are relatively simple and easy to implement, they pose substantial limita-

tions in contrast to modern machine learning solutions. Evidence suggests that the main

weakness of such methods is their inability to handle a large number of predictors (Gu,

Kelly, and Xiu, 2018), which considering the large body of currently documented possible

predictor variables, is not desirable.

8



Section 3

Machine Learning in Asset Pricing

In this section, we will explore the potential use of machine learning techniques in asset

price forecasting. We will show the rationale behind the application of machine learning

techniques in asset price forecasting. By synthesizing the machine learning methods with

modern empirical asset pricing research, we will show why this particular financial field

has the potential for a successful machine learning application.

3.1 Machine Learning- Overview

Although the definition of machine learning can vary from one scientific field to an-

other, according to Dey (2016), machine learning is generally used to train machines to

perform a specific task while handling the data in the most efficient way. Regardless of

the definition used, the fundamental property of machine learning is its high-dimensional

nature, which is the main reason why its suitable for asset pricing. Machine learning

techniques provide more flexibility compared to traditional econometric methods, thus

allowing to better capture the complexity of the asset pricing problem. However, the

increased flexibility offered by machine learning comes at the cost of a higher probability

of overfitting (Mullainathan and Spiess, 2017). Therefore, it is important to perform

adequate refinements while applying machine learning that would reduce the chance of

overfitting (Cawley and Talbot, 2010).

The machine learning algorithms work by extracting the patterns from historical data,

in the process known as ”training” and therefore applying these findings to accurately

predict new data. After the process is completed, the created predictions need to be

tested, allowing for theirs performance evaluation.

9



SECTION 3. MACHINE LEARNING IN ASSET PRICING

3.2 The Case for Machine Learning in Asset Pricing

As shown in the first chapter the prevailing question in forecasting a future price of

an asset was to predict the risk premium. The tests performed by Fama-French on their

5 Factor Model showed the R2 ranging from 0.91 to 0.93 (E. F. Fama and K. R. French,

2015). However, even when the model can almost perfectly observe the expected results,

the remaining issue is how well it explains its behaviour, which requires additional test-

ing. Additionally, with market efficiency making the risk premium estimation limited to

news headlines response, there is a need to update traditional asset pricing methods by

exploring new predictor variables. Nevertheless, calculating the risk premium remains the

conditional function of future expected excess return. Therefore, thanks to its predictive

capabilities resulting from combining forces of statistics and computer science (Das and

Behera, 2017), machine learning makes a perfect tool for this task. If applied correctly, it

has the chance to revolutionize the asset pricing (Arnott, Harvey, and Markowitz, 2019).

Another issue with traditional approaches to factor models, as highlighted by Harvey,

Y. Liu, and H. Zhu (2016), is the way the explanatory power of the factors is evaluated.

Typically, the statistical significance of the factor explanatory power is reported as the t-

statistics, with factors scoring t-statistics of at least 2.0 considered significant. Although

when testing a single factor it is unlikely for the t-statistics of 2.0 or greater to occur

by chance, with the number of factors and therefore the number of tests increasing, the

probability of t-statistics achieving such levels by chance is significantly higher. The issue

has been also investigated by Harvey and Y. Liu (2014) and Bailey et al. (2015), both

rising concerns regarding the use of traditional significance criteria for newly discovered

factors. Harvey and Y. Liu (2021), argue that given the test statistic multiplicity in a

numerous factors environment, some of the factors found to be significant have only be

deemed so because of luck rather than their actual predictive power (i.e. ”Lucky Fac-

tors”). The authors of the paper suggest that to evaluate the significance of the factor it

is important to perform the out-of-sample testing procedure which will prove whether the

examined factor or group of factors are explaining the risk premium well enough to be

included in the asset pricing model. Moreover, they propose a new method for evaluating

the significance of tested factors based on the number of the variables that have been

10
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tested.

Moreover, since the creation of CAPM, researchers and academics alike were testing

various financial and economic predictors that show forecasting capabilities, with more

than 300 stock level factors used to describe return on the asset (Green, Hand, and

X. F. Zhang, 2013), (Harvey, Y. Liu, and H. Zhu, 2016). Although identifying the whole

array of factors with high predictive power is relatively simple, traditional methods break

down when the number of predictors is close to or higher, compared to the number of

observations. Additionally, such models are also subject to failure resulting from high

multicollinearity, which considering the similar nature of many possible predictors is in-

evitable. Thanks to the broad availability of dimension reduction tools (i.e. Principle

Component Analysis, Random Forest, Factor Analysis), machine learning offers degrees

of freedom optimization and condenses the variance among predictors (Fodor, 2002).

As mentioned before, in traditional asset pricing models the interactions among the

predictors were linear, more precisely modelled using the OLS method, possibly due to

its simplicity of application. However, the relationship among the independent variables

can be also nonlinear. The lack of documented guidance regarding the functional form

of the predictors poses a huge problem when designing an asset pricing model. Luck-

ily, machine learning offers a broad range of unique techniques from generalised linear

methods, thorough regression trees to neural networks, offering high diversity in creating

the model (i.e. high number of functional forms). Together with highly controllable pa-

rameter penalization and strict criteria for model selection, the created models are less

likely to overfit or be subject to false discovery. Moreover, some of the machine learning

algorithms can help to eliminate unnecessary factors from the model and extracting the

underlying relationships that are likely to be true in the future, thus reducing the esti-

mation error.

To summarize there are four main challenges when it comes to designing a factor

model:

• Predicting the Risk Premium

• Determining the Functional Form

• Variable Selection

11
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• Managing the Estimation Error

3.2.1 Machine Learning and Modern Portfolio Theory

According to MPT, it is possible to construct an ”efficient frontier” that would consist

of optimal portfolios, offering the maximum possible expected return for a given level of

risk. To determine optimal weights for the portfolio, MPT suggests using mean-variance

analysis. However, the main issue with using this approach is the large numbers of

estimates required even for a smaller portfolio (Hirschberger, Qi, and Steuer, 2010). The

high number of estimates leads to high estimation error, effectively making it impossible

to compute 100% accurate efficient frontier. While multi-factor models such as these

described in section 2 address some of the MPT issues by including multiple sources

of risk, thus in theory reducing the estimation error and improving the quality of the

estimates. Nevertheless, as mentioned in the previous section, traditional approaches

to factor models pose some limitations as well. We believe that by applying machine

learning techniques, it is possible to design an effective factor model that, by solving the

issues highlighted in 3.2, would more accurately estimate the risk premium. With the

quality of the estimates improved, investors could make better investment decisions (i.e.

superior portfolio allocation, better stocks picks etc.), hence moving the efficient frontier

above the optimal level, see figure 3.1. The final result would be the portfolio with a

higher Sharpe ratio (3.1) (i.e. move from red star to orange one on the figure 3.1).

SharpeRatio =
E[Ri −Rf ]

σa

(3.1)

where:

Ri = the expected return on the asset i
Rf = the risk free return
σi = standard deviation of an asset i
Ri −Rf = the risk premium

12
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Figure 3.1: This figure shows the improved efficient frontier. We believe that incorpo-
rating machine learning techniques into the portfolio creation process would shift the
efficient frontier up and improve the Sharpe ratio (move from red to orange star).

13



Section 4

Machine Learning Methods in Asset

Pricing

There is a growing body of literature that recognizes the importance of machine learn-

ing in asset pricing (Ayodele, 2010). This results in a wide assortment of machine learning

algorithms that can be applied to the asset pricing problem, which we will further explore

in this section. Due to the nature of an asset pricing problem, most academics classify

it as a supervised learning problem (Henrique, Sobreiro, and Kimura, 2019), (Krollner,

Vanstone, and Finnie, 2010). In supervised learning parameters used for prediction need

to be user-defined (i.e. labelled data), with both input and output data provided for

training. Whereas unsupervised learning requires only input data with the purpose of

finding the unknown patterns.

This chapter will describe the possible machine learning methods that are best suited

to address issues from 3.2 in two fundamental areas. From providing a statistical back-

ground for each of the machine learning methods that can be used in risk premium

estimation to discussing its possible application in the financial field through real-world

applications.

4.1 Penalized Linear Regression

4.1.1 Statistical Overview

Although a simple linear model becomes inefficient when the number of predictors is

close to or larger than the number of observations, by using penalization techniques the

number of parameters can be limited. Considering that a large percentage of stock data

consist of noise, an unmodified linear model with a large number of parameters will often

overfit such noise rather than extracting valuable information. To avoid such a situa-

14



SECTION 4. MACHINE LEARNING METHODS IN ASSET PRICING

tion, machine learning proposes the introduction of a regularization parameter that will

adequately penalize each factor by reducing the variance of the estimated regression pa-

rameters (P. Bruce, A. Bruce, and Gedeck, 2020). However, while this solution minimizes

the error term, it also reduces the complexity of the model eventually adding the bias to

the final estimation. The OLS regression finds the optimal value of the coefficients by

minimizing the residual sum of squares (RSS) through finding the adequate coefficients:

RSS(β) =
N∑
i=1

(Yi − β0 − β1Xi1 − · · · − βpXip)
2 (4.1)

where:

RSS(β) = residual sum of squares for coeffcient β
Yi = the response variable
Xis = the predictor variables
βs = coefficients

To prevent less contributive variables from impacting the forecast, penalizing methods

reduces the coefficients’ values towards zero, hence excluding such variables from the final

model. There are several regularization methods that can be applied to the linear models.

The general form of the penalization methods for linear models can be described as:

β = arg minβ

(
N∑
i=1

(yi − (Xβ)i)
2 + λP (β)

)
(4.2)

The solution for the vector of the regression coefficient, β, is calculated through min-

imizing the RSS function based on the established penalty on the regression coefficients

(λP(β)). The parameter λ, known as the shrinkage parameter sets the shrinkage on

the regression coefficients. It is a non-negative number and the bigger it gets the more

penalty is applied to the regression coefficients. Although, current academic research pro-

poses a wealth of penalization methods, the most popular ones are LASSO (Tibshirani,

1996); Elastic net (Zou and Hastie, 2005) and Adaptive LASSO (Zou, 2006). The main

difference between these methods lies down in the form that penalty takes, see table 4.1.
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Regression Regularization Methods

Method Penalty Equation Description

LASSO
∑p

j=1 | βj |< λ The penalty is placed on the

L1 norm of the regression

coefficient, indicating it

reduces overfitting by

estimating the median of the

data. Each factor is

adequately penalized.

Elastic net
∑p

j=1 | βj |< λ1 and
∑p

j=1 β
2
j < λ2 It combines the L1 penalty

with the L2. The L2 penalty

tries to estimate the mean

instead of the median of the

data to avoid overfitting.

The method uses two

shrinkage parameters (i.e.

λ1 andλ2), which allows for

more flexibility compared to

the LASSO method.

Adaptive LASSO
∑p

j=1

(
| βj | / | β̂j

)
< λ Similarly to the LASSO, the

penalty is placed on the L1

norm of the regression

coefficient, however, in the

adaptive LASSO, the user

can assign different penalty

weights to different

coefficients.

Table 4.1: Popular Regularization Methods
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4.1.2 Application in Asset Pricing

In their paper, Kelly and Pruitt (2015), propose a method called three-pass regression

filter (3PRF) in asset price forecasting using many predictors. By applying regulariza-

tion techniques to OLS regression, 3PRF separates the factors that highly influence the

target variable, while discarding irrelevant ones. While, high percentage of methods deal-

ing with problems involving many predictors relied on Principal Component Regression

(PCR) (Stock and Watson, 2012), (J. Bai and S. Ng, 2006), (Boivin and S. Ng, 2006),

Kelly and Pruitt (2015) argue that 3PRF method delivers better performance. The main

difference between 3PRF and PCR is that the former condenses the cross-section size in

accordance with covariance with the forecast target, while the latter does it using covari-

ance within the predictors. As a result, the 3PRF process estimates only relevant factors,

hence making it more efficient while dealing with a large number of predictors. The supe-

riority of 3PRF, compared to other regularization methods is especially noticeable when

dealing with small samples. Moreover, Kelly and Pruitt (ibid.), provide empirical results

that prove superiority of 3PRF estimating market returns compared to PCR from Stock

and Watson (2002), Lest Absolute Residuals (LAR), proposed by De Mol, Giannone,

and Reichlin (2008) as well as Quasi–Maximum Likelihood Approach, developed by Doz,

Giannone, and Reichlin (2012). It is important to mention that all of the tests, evaluat-

ing the effectiveness of their method, were performed out-of-sample, demonstrating the

competitive forecasting performance compared to other method tested.

Regarding to the issues stated in 3.2, the 3PRF method effectively addresses four

issues with the designing factor model listed in 3.2. Apart from being an effective tool

for risk premium estimation, it allows to improve models of linear functional form, helps

to isolate the most influential variables which translate to fewer estimations required,

thus decreases the estimation error. Furthermore, as the model is evaluated using out-

of-sample forecasting, the probability of tested factors being ”lucky” is relatively small.

However, Kelly and Pruitt (2015) have applied 3PRF only to linear models, therefore, its

performance when dealing with non-linear models is yet to be tested.
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4.2 Regression Trees

4.2.1 Statistical Overview

Although we previously showed how regularization techniques can improve the linear

forecasting models, parameters penalization fails to deliver desirable results when the

number of estimators is larger than the sample size. Considering a large number of doc-

umented possible predictors as highlighted in 3.2, the issue lies not only in choosing the

most appropriate factors but also to account for interactions among them. In statistics,

the interaction effect refers to a situation in which the effect of the predictor on the

dependent variable is subject to changes in one or more other regressands. Traditional

statistics methods offer variance analysis (i.e. one-way and two-way ANOVA) to cap-

ture interaction effects among independent variables. However, creating a model using

ANOVA methods, considering a large body of available factors, would be infeasible as all

combinations of parameters would have to be tested. The machine learning alternative

to incorporate multi-way predictor interactions are regression trees. Given their intelligi-

bility and simplicity, they become one of the most popular machine learning techniques

in data mining1 (Wu et al., 2008). The regression tree starts by identifying the groups of

observations that show some similarities to each other. Therefore through a process of

binary recursive partition, that splits the data into partitions (i.e. branches), the tree is

built until the split that further reduces impurity cannot be found. In the Classification

And Regression Tree (CART) algorithm, proposed by Breiman et al. (1984), when it

comes to regression trees the impurity methods that can be used are:

• Mean Square Error (MSE)- where the split is based on the minimized value of the

residual sum of squares between the observation and the mean in each node.

• Least Absolute Deviation (LAD)- in which the mean absolute deviation is minimized

from the median within a node.

Figure 4.1 shows the basic regression tree example with two variables (i.e. size and

investment factor) in accordance with the CART algorithm. The yellow rectangles are

1Data mining- the process of finding anomalies, patterns and correlations within large data sets to
predict outcomes.

18



SECTION 4. MACHINE LEARNING METHODS IN ASSET PRICING

the factors used in the regression tree, with teal, blue and green rectangles representing

the terminal nodes (i.e. leafs) of the tree. In this case, the sample of individual stocks is

divided into three categories based on the value of only two characteristics. Each terminal

node is defined as a simple average of all observations within the subset. Before each split

the algorithm would minimize the impurity, using the equation that can be written as:

minimise : J(k, tk) =
mleft

m
Gleft +

mright

m
Gright (4.3)

where:

k = the feature in a subset
tk = the threshold for a split
Gs = the impurity of a subset s
ms = the number of instances in each subset

Note that k and tk are chosen as to produce the purest subsets.

Figure 4.1: This figure shows the diagram of the regression tree using two variables.
The category 1,2 and 3 rectangles are the terminal nodes (i.e. leafs). In this case, the
algorithm divided the sample of stock data into three categories based on the values of
size and investment factors.

Ideally, we would grow the tree until the best predictor variable and its value is

found so that the forecast error is minimized. However, as Bramer (2007) points out,

the decision trees are prone to overfitting, as excessive growing could lead to each of the

leafs containing only one instance. For that reason, regression trees need to be highly

regularized so that the final model will also be optimal, apart from being accurate. As

Wolpert (1996), suggest without assumptions about the data, there is no reason to prefer
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one model from another. Instead of relying on the results of one algorithm, it is desirable

to aggregate the results of multiple models in the technique known as Ensemble Learning.

Regression Tree Boosting

First proposed by Schapire (1990), as a way to improve the performance of weak

learners for the classification problem, boosting techniques were extended to the concept

of gradient boosted regression tree by Friedman (2001). The operating principle behind

”boosting” is to combine forecast from multiple over-simplified trees. In theory that

should lead to the creation of a ”strong-learner” that would not only be superior to the

single complex tree in terms of predictive power but also will be characterized by greater

stability and less computational cost. The algorithm starts by fitting the shallow tree

with only two branches. Therefore, the second shallow tree is used but this time to fit

the residuals from the first regression tree. The procedure is repeated by adding other

trees fitting the residuals from previous models, however, at each step the estimated

values from the new tree are penalized by a tuning parameter, to prevent overfitting the

residuals. The algorithm stops when the pre-specified number of trees is reached. The

final model can be described as:

ĝB(B, v, L, z) =
B∑
b=1

vf̂b(·) (4.4)

where:

ĝB = the final ensemble predictor
b = the step of the algorithm
z = data used for the regression
B = the total number of trees in a ensemble
L = the depth of each tree
v = the tuning parameter

f̂ b = the single over-simplified regression tree function

Random Forest Regression

Similarly to regression tree boosting, random forest is an ensemble method used to

improve the accuracy of the model by aggregating the forecasts from many different trees.

However, unlike the boosting, the random forest method builds on bootstrap aggregating,
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commonly known as bagging. In bagging, the regression tree is trained on various subsets

of data, which are sampled with replacement (i.e. multiple subsets can include the same

instance). Random forests build on bagging, however, instead of searching for the best

feature when splitting a node it tries to find it among the random subset of features

(Breiman, 2001). By doing so it addresses the limitations of simple bagging by producing

more diverse trees with weaker correlation among bootstrap samples. Moreover, the

method trades higher bias for a lower variance (see figure 4.2), which addresses the

biggest drawback of regression trees which is overfitting. Bias refers to errors resulting

from simplifying assumptions made by the model to make the target function easier to

approximate (i.e. underfitting). Variance error comes from too much sensitivity to the

fluctuations in data (i.e. overfitting). The bias-variance trade-off refers to the inability

to reduce both variance and bias at the same time, hence the most optimal solution is to

minimize the total error, which is roughly at the intersection of bias and variance (Von

Luxburg and Schölkopf, 2011).

Figure 4.2: This figure is the graphical representation of the bias/variance trade-off.
The optimal model will be the one that minimizes the bias error (i.e. underfitting)
and at the same time minimizes the variance error (i.e. overfitting). At that point,
further minimization of either bias or variance errors will cause one of them to increase
significantly as they are negatively correlated.
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The final output of random forest is the average output of all trees used for the

ensemble, which can be described as:

ĝB(L,B, z) =
1

B

B∑
b=1

f̂b(·) (4.5)

where:

gB = the final ensemble predictor
b = the current number of bootstrap sample
B = the total number of trees in a ensemble
z = the data for the regression
L = the depth of each tree

f̂ b = the single regression tree

4.2.2 Application in Asset Pricing

E. Fama and MacBeth (1973), introduced the multivariate regressions to address the

issue of cross-predictor interactions. Their model allows exploring the marginal effect on

each predictor with other variables being controlled for. However, the issue arises when

variables are considered jointly (i.e. multi-way interactions). For example, even in a 50

variable model, accounting for only two-way interactions would result in 1275 regression

coefficients, which is significantly larger than sample sizes splits proposed by E. F. Fama

and K. R. French (2008). Moreover, the results from their model can be extremely

vulnerable to outliers (i.e. extreme returns) in the data. To address these issues Moritz

and Zimmermann (2016), proposed the random forest regression approach to establish

portfolio sorts and therefore combined all estimates from each tree into final prediction.

As shown in 4.2.1 random forests allow producing de-correlated trees, which in that

respect allow spotting many different, yet related predictors. Additionally, the problem

of overfitting is addressed as each tree is trained only on the subset of data. Apart from

classic accounting variables (i.e. book-to-market ratio) they also test their framework

using return-based variables, arguing for the importance of momentum factors. By testing

126 return-based factors from many different time horizons, on various company sizes

(i.e. large, small and micro firms according to E. F. Fama and K. R. French (2008))

and conclude that more recent past returns are more relevant than intermediate past
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returns in return forecasting. Therefore, they combine the most influential return-based

indicators into the one model using random forest method with a total of 200 independent

trees (i.e. 200 different portfolio sorts) each using 8 out of 25 possible regressors (roughly

30%) as suggested by Breiman (2001). To test their method, they employ a simple

strategy of going long on the stocks with the highest decile of predicted returns and

shorting the lowest decile of predicted returns, using the CRSP data from 1963 to 2012.

To test the out-of-sample performance of their model they employ a pseudo-out-of-sample

procedure, which works by training the model using the data only available at a given

time t and then computing all of the forecasts outside of the training set (i.e. t +

1, t + 2, · · · , t + n). Additionally to confirm the importance of momentum factors they

supplement their model with 86 different accounting factors such as book-to-market,

leverage, gross profitability etc. with the momentum factors continuing to be the most

influential. Their result shows that, when applied to the tested data, their strategy would

deliver a positive annual return for the past 45 years from 1967 to 2012, see figure 4.3.

Moreover, despite most of the momentum strategies delivering negative returns during the

Global Financial Crisis (GFC), their strategy would not lose money in that period either.

Their algorithm was able to detect the reversal in momentum factors soon enough, thus

avoid the drawdown in 2009. Overall their strategy delivered a superior information ratio2

compared to the standard Fama-Macbeth framework (2.9 vs 1.3 per month). However, its

performance begins to deteriorate from early 2000, suggesting that the algorithm was not

able to capture momentum movements soon enough to match its previous performance.

2Information ratio is the metric used to compare excess active return (i.e. above the benchmark) of
the investment, considering the overall volatility of those returns in a given time period.
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Figure 4.3: This figure shows the annual percentage return of researchers strategy. The
algorithm used to create an investing strategy was random forests based on momentum
factors. It delivered positive returns, even during the 1980’s crisis. However, its perfor-
mance deteriorated noticeably from the beginning of the 21st century and failed to match
the previous performance in a given time period.

Source: Moritz and Zimmermann (2016)

In respect to the issues highlighted in 3.2, Moritz and Zimmermann (2016) model does

generally a good job at predicting the risk premium and managing the estimation error.

Furthermore, the effectiveness of their method is supported by the out-of-sample testing,

limiting the probability of ”lucky factors”. However, as regression trees are non-linear

models, the issue of functional form remains as the model cannot be simply summarized

in a linear equation, thus complicating the interpretation of the results. Additionally

considering the decrease in performance of the model from the early 2000s onward, the

question remains whether the momentum factors proposed by them will continue to

have high predictive power in the future. Nevertheless, with the framework constructed

around tree-based conditional portfolio sorts, they hope for an increased level of scientific

discovery regarding asset pricing in the years to come.

24



SECTION 4. MACHINE LEARNING METHODS IN ASSET PRICING

4.3 Support Vector Regression (SVR)

4.3.1 Statistical Overview

According to Efficient Market Hypothesis (EMH), it is impossible to consistently

achieve above-market returns. However, the theory has been questioned since its intro-

duction (Malkiel, 2003). Moreover, considering the computational advancements over

the past decade, the use of machine learning techniques in asset pricing is constantly

growing (Gerlein et al., 2016). Studies by Ballings et al. (2015) or Nayak, Mishra, and

Rath (2015) show the successful application of Support Vector Machines (SVM) in asset

pricing. However, as SVM are primarily used for classification problems, the methods

above were focusing on determining only the direction of asset prices, rather than esti-

mating their exact value. The goal of SVR algorithm is to find function f(x), with at

most ϵ-deviation from the target y. The problem can be written as:

min
1

2
∥ w ∥2

s.t. : yi − w1 ∗ xi − b ≤ ϵ;

w1 ∗ xi + b− yi ≤ ϵ

(4.6)

where:

yi = the target variable
ws = the weighted coefficients
b = the intercept
xi = the factor used for the regression
ϵ = the precision (tolerance) level

The graphical representation of linear SVR in a two-variable environment can be seen

in figure 4.4. The SVR tries to fit as many instances (purple dots) within the decision

boundaries (yellow lines), as possible, while limiting the number of margin violations.

The green line is the final equation used to predict continuous output (i.e. hyperplane).

Errors are ignored as long as they are within the earlier set decision boundaries. The

decision margin can be either soft or hard. While the soft decision boundaries allow for

some margin violations, hard margins strictly impose that all instances have to be within

decision boundaries. The hard decision boundaries are infeasible where data consists of
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a large number of outliers.

Figure 4.4: This figure is the graphical representation of how Support Vector Regression
works. The purple dots are the data points and the algorithm tries to find the optimal
hyperplane (green line) that will predict the final output while keeping the number of
margin violations outside of the decision boundaries (yellow lines) to the minimum.

However, SVRs are not only limited to describe linear relationships. Using the so-

called kernel trick allows for the data to be transformed into a higher-dimensional space

without the need for data transformations. By doing so the explicit mapping needed for

linear algorithms to capture non-linear interactions is avoided. Kernels allow finding a

hyperplane in the higher dimensional space without a huge increase in computational

cost. Table 4.2 shows three most commonly used kernels along with their mathematical

functions and brief descriptions.
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Types of Kernels for SVR

Kernel Mathematical Function Description

Linear Kernel K(x, y) = (xT y) With x and y as the vectors

computed from training the

model

Polynomial

Kernel

K(x, y) = (xT y + 1)d With d being the degree of the

polynomials. In addition to

examining the features of the

given sample, the polynomial

kernel allows for exploring their

combinations, known as

interaction features.

Radial Basis

Function (RBF)

Kernel

K(x, y) = exp(−λ ∥ x− y ∥2) With λ being a free parameter,

that cannot be calculated

precisely and must be estimated

and ∥ x− y ∥2 being the squared

euclidean distance between the

two feature vectors. The RBF

kernel works by transforming

the data in accordance with the

similarity between instances in

the range from 0 (far away) to 1

(identical).

Table 4.2: Popular SVR Kernels

4.3.2 Application in Asset Pricing

According to Awad and Khanna (2015), one of the main advantages of SVR is that its

computational complexity does not depend on the dimensionality of the data. Thanks to

the earlier described kernel trick, SVRs can easily deal with a large number of variables,

maintaining high prediction accuracy. Henrique, Sobreiro, and Kimura (2018), used SVR

to predict stock prices for firms of various sizes coming from different markets. Similarly
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to the methods described in 4.2.2, the authors focus on momentum-based factors. Using

the SVR’s ability to capture high dimensional non-linear interactions among the variables

they evaluate the significance of technical analysis (TA) indicators including Simple Mov-

ing Average (SMA), Weighted Moving Average (WMA), Relative Strength Index (RSI),

the Accumulation/Distribution Oscillator (ADO) and the Average True Range (ATR).

They employed their model on Brazilian, American and Chinese stocks with three blue-

chip and three small-cap stocks for each country, resulting in 18 assets total. The model

was tested in three different scenarios. The first one considered daily price changes over

15 year period (2002-2017). Second used up-to-the-minute price changes from 3 months

(03/2017-05/2017). Lastly as 3 months period is unlikely to include all possible market

conditions, they evaluated their model using 2-year up-to-the-minute prices, this time

using solely Brazilian stocks. Although the second environment might seem too short to

determine the effectiveness of any asset-pricing model, note that as the test considered

one-minute price data, there are over 33000 observations, making it computationally ex-

pensive even for SVR. For the up-to-the-minute data sets, the prediction model starts

10 minutes after the beginning of the trading session. Firstly, they run multiple SVRs

using normalized TA indicators to determine the optimal degree of polynomials for the

polynomial kernel as well as the optimal λ parameter for the radial kernel. Therefore,

by applying the optimal parameters they run the test in each of the earlier defined envi-

ronments using three different kernels (i.e. linear, polynomial and radial). To determine

test and training sample they used k-fold cross-validation. This process differs from boot-

strapping as resampling is done without replacement, hence surrogate datasets are smaller

than the original. One of their key findings was that the linear kernel performed the best

across all three tests with the smallest Mean Absolute Percentage Error (MAPE). They

compared their method with the random walk theory of E. F. Fama and Malkiel, 1970.

Although in a fixed training period their SVR model delivered worse predictions than

random walk model, when periodically updated3 up-to-the-minute models predictions,

using the linear kernel, were more accurate than random walk model ones for the major-

ity of the stocks. They claim that missing data was the main obstacle to their models

3Each of the tested models was updated in accordance to the periodicity of its data e.g. for up-
to-the-minute observations the model was updated every minute, every time with next minute’s closing
price serving as a test observation.
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achieving better results, especially in the one-minute data sets.

Considering the issues listed in 3.2, the models proposed by Henrique, Sobreiro, and

Kimura (2018) do not address any of the four issues well enough. Although the authors

showed their models have some predictive power, considering the small sample period

it is impossible to validate that claim. Moreover, the variables proposed were strictly

momentum-based and the fact that their model failed to deliver consistent outcomes

across all of the stocks, remains a huge issue especially if the model was to be used by

other investors. Finally, the fact that their model uses TA indicators in estimating asset

price, poses the concern as TA methods lack substantial empirical evidence. Overall,

while SVRs have the potential to be utilised in asset pricing, thanks to their numerous

advantages, in this case, it is impossible to determine whether the models discussed are

indeed good asset pricing tools.

4.4 Markov Switching Models (MSM)

4.4.1 Statistical Overview

Traditional factor models assume that the comovement among the variables is con-

stant over time. In other words, regardless of the state of the economy or business cycle,

factors within these models are assumed to have the same effect on the estimated asset

price. However, in reality, markets fluctuate between regimes of growth characterised

by low volatility as well as periods of economic downturn often accompanied by high

volatility and negative returns. Therefore, it is crucial to not only be able to identify

these regime changes but also be able to adequately adjust the asset-pricing models to

exploit such events. Clarke and Silva (1998), showed that by adjusting the investment

exposure in accordance to the present regime, investors can improve their efficient fron-

tier. To model these state changes, the Markov model assumes that the future state

depends solely on the current state (Gagniuc, 2017). Following that assumption, one can

estimate the probability distributions of future shifts in non-stationary predictor vari-

ables and adequately update their coefficients with respect to the regime identified. In

1989, Hamilton introduced Markov switching model of regime change in which he rec-
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ognized the presence of periods of faster and slow economic growth in the US economy.

Therefore, using autoregressive process 1 (AR1), he modelled long-term economic trends

incorporating the transition between the states. The transition between the states is

governed using a first-order Markov chain in which the probability of subsequent state

(St+1) is based only on the immediately preceding state (St), see 4.7. Note that there are

higher-order Markov chains in which the probability of the transition depends on more

than one preceding states.

P (St+1, | S0, · · · , St) = P (St+1 | St) (4.7)

The Markov chains own their popularity mainly thanks to their simplicity. Apart

from providing a model that is easy to specify, they also allow for network extension.

Each of the modelled future states can be used to perform the additional test in data

considering various environments.

4.4.2 Application in Asset Pricing

Building on the model of Hamilton (1989), J. Chen and Kawaguchi (2018), applied

Markov Regime Switches on multi-factor asset pricing models. The two states they rec-

ognized were bull and bear market and they used Hamilton’s framework to model the

transition between these states. The rationale for their model was the fact that as size

factor (SMB) and value factor (HML) originate for the stocks in the market and return

series come from the market itself, it is sensible that these factors may vary over time.

Therefore, they extend the Fama-French three-factor model shown in 2.3.2 with Markov

Switching, creating the MR-FF3 Model. They assume that the betas for the three factors

in the model are regime-dependent and adequately estimate them for bull and bear mar-

kets using Markov chains. To test their model they use Chinese stock market data from

1995 to 2015. One of their key findings was that in the bear market the risk premiums

of SMB and HML factors are higher than in the bull market. Such phenomenon is pos-

sible since, during bear periods, investors seek a higher return on size- and value-related

risks (Cochrane, 2009). Additionally, they found that in a bear market, betas for SMB
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and HML4 factors increased. It not only highlights the ability of the size factor to capture

the risk-return relationship but also the capacity of the value factor to explain the return

dispersions between low and high BE/ME stocks in a bear market. Furthermore, their

tests using time-series regression on stocks proved the presence of the regime-dependent

risk exposure pattern in the data. Finally, to confirm their findings they performed one-

step-ahead out-of-sample forecasting on all of the tested portfolios. The average root

means squared error (RMSE) in out-of-sample tests was 0.0188, indicating the high pre-

dictive ability of the MR-FF3 model across the Chinese stock market.

This particular model proved not only to explain risk premiums well but also is clear

on its functional form and the variables required. By building on the already existing

Fama-French three-factor model, MR-FF3 creates a powerful and relatively simple to

implement method for asset price forecasting. It allows capturing bull and bear cycles

effects on asset price while providing the explanation between investigated relationships.

Moreover, by keeping the number of factors low the estimation error is kept at an ac-

ceptable level. However, to ultimately confirm the predictive ability of the model further

test are required. Possibly testing it on different markets and using bootstrapping pro-

cedure would allow to test its effectiveness and also highlight other regime-dependent

relationships between the variables.

4Only for the high BE/ME firms
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Section 5

Artificial Neural Networks (ANNs) in

Asset Pricing

While Neural Networks are an indispensable part of machine learning, their extraor-

dinary ability to deal with a large number of variables makes neural networks potentially

very useful in asset pricing. There are many types of neural networks, however, in this

section, we will discuss, what we believe, are the two most prominent types when it comes

to asset price forecasting.

5.1 Artificial Neural Networks- Overview

The main idea behind Artificial Neural Networks is to teach computers to process

data the way humans do. Traditionally potential predictors in a factor model were tested

on basis of the hypotheses, which results determined whether to include given variables

in the final model. In contrast, the ANNs’ output is algorithmically engineered, meaning

that thousands of different combinations of trainable parameters are tested to finally max-

imize the explanatory power of the network. Thanks to their ability to model non-linear

processes, neural networks (NNs)1 have been successfully applied in medical diagnosis,

see Jiang, Trundle, and Ren (2010) and Sengupta, Sahidullah, and Saha (2016), auto-

mated trading, see Azzini and Tettamanzi (2008), speech Abdel-Hamid et al. (2014) and

handwritten text Maitra, Bhattacharya, and Parui (2015), recognition as well as finance,

see J. French (2017), to name a few. According to Hornik, Stinchcombe, and White

(1989), NNs are one of the most powerful modelling techniques in machine learning.

There are four main components of every ANN:

• Neurons- the main component of all NNs. Neurons are divided into input and

1For the purpose of this chapter the terms Neural Networks (NNs) and Artificial Neural Networks
(ANNs) will be used interchangeably.
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output neurons. The former consist of either feature from the training set or outputs

from the previous layer of neurons, while the latter is simply a successor of input

neurons.

• Connections and Weights- Each NN consist of connections that connect input

with output neurons. Every connection will have assigned weight based on the

algorithm’s learning.

• Propagation Function- It is used to compute the input of a neuron based on its

predecessor neurons. It establishes the initial connections’ weights by minimizing

the observed errors considering sample observations.

• Learning Rule- It is used to adjust the connections’ weights, by compensating for

each error found during the learning process. It uses stochastic gradient descent or

other optimization methods to compute gradient descent with respect to weights,

thus improve the accuracy of the NN.

The ANN consist of input and output neurons, connected by weighted synapses.

Figure 5.1 shows the simple ANN with only one output layer (i.e. one layer NN). Neural

Networks are usually divided into shallow networks with 1 to 3 layers and deep networks

with more than 3 layers. The learning process involves adjusting the weights of the

synapses in accordance to minimized observed errors. Usually the more data available

(i.e. bigger data sets), the better NN will learn, thus more accurate predictions. The

learning process starts from forward propagation in which data is transformed from the

input to the output layer, with each of the neurons adequately processing the input data.

The next step is backpropagation in which the weights of the connections are adjusted

so that the errors will be minimized.
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Figure 5.1: This figure is the graphical representation of a simple neural network in which
the inputs are transformed into the outputs in accordance with weights, (Ws), associated
with each neuron.

5.2 Feed-Forward Neural Networks (FFNs)

The FFNs are considered one of the simplest type of neural networks. In addition to

the input layer of raw predictors, they also have one or more hidden layers that interact

with each other and perform nonlinear transformations of the data. The output layer

in FNNs is aggregating hidden layers into the final prediction, hence capturing more

predictive associations within the data set. Figure 5.2 shows a simple FNN with only

one hidden layer between inputs and output. The hidden layer consists of additional

neurons that take the set of weighted inputs and returns the output through the activation

function. For example, the second neuron from the hidden layer in figure 5.2, (S2), is the

weighted sum of all of its input neurons:

XS2 = w1 ∗ x1 + w2 ∗ x2 + w3 ∗ x3 + w4 ∗ x4 (5.1)

where:

XS2 = the output variable for S2

wis = the weight for each of the input neurons
xis = the inputs from input neurons
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Figure 5.2: This figure shows the neural network with a single hidden layer. Each of
the hidden layer’s neurons has an activation function upon which the algorithm decides
whether to activate the neuron. The final output is the weighted sum of all active neurons.

Therefore, the final output forecast consists of results from aggregated neurons, similarly

to the formula 5.1, however this time using all active neurons. Using the example from

the figure 5.2 there are a total of 31 = (4+ 1) ∗ 5+ 6 parameters, with five parameters to

reach each neuron and six different weights used to aggregate the neurons into the single

forecast.

The person responsible for structuring the FNN has to decide on the number of hidden

layers, the number of neurons within each layer and finally how the neurons are connected.

The results from Eldan and Shamir (2016), show that deepening the FNNs (i.e. more

hidden layers) is more valuable than increasing width (i.e. adding more neurons in the

layer), with algorithms achieving similar accuracy using fewer parameters. It is important

to mention that each of the hidden layer’s neurons is subject to the activation function

which determines whether it is used for the final prediction or not. If the activation

function is not applied, the output would be a linear function, thus the more complex

non-linear interactions would not be captured. Table 5.1 shows three main activation

functions along with their mathematical functions and brief descriptions.
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Penalized Regression Methods

Activation

Function

Mathematical

Function

Description

Rectified Linear

Activation

Function (ReLU)

max(0.0, x) If the input value x is negative the value 0.0 is

returned (i.e. dead neuron) if not, the value x is

returned. The main advantage of ReLU is that it

does not activate all neurons at the same time

being more computationally efficient. However,

during the backpropagation process, the weights

of such neurons will not be updated, resulting in

never activated neurons.

Sigmoid Hidden

Layer Activation

Function

1.0
(1.0+e−x)

The e is the mathematical constant, which is the

base of the natural logarithm. The sigmoid

activation function returns the output between 0

and 1, therefore it is especially useful when

predicting probability. However, for large negative

or positive numbers, the function flattens,

resulting in a small gradient. If the local gradient

becomes too small, the backpropagation process

will not work properly.

Tanh Hidden

Layer Activation

Function (TanH)

(ex−e−x)
ex+e−x)

The function takes and real value and returns the

output value between -1 and 1. The main

advantages of TanH are that strongly negative

inputs will be mapped strongly negative and

near-zero inputs will be mapped near zero.

However, similarly to the sigmoid function, it is

subject to the vanishing gradient problem.

Table 5.1: Popular Activation Functions For FNNs

The choice of activation function is data specific and will determine the learning rate of

FNN. The higher the learning rate the shorter the training time, however, at the cost of

diminished accuracy (Y. Bai, H. Zhang, and Hao, 2009).
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5.3 Recurrent Neural Networks (RNN)

While in FNNs allows for the signals to travel only one way (i.e. from input to

output), RNNs can have signals travelling in both directions. It is possible through the

introduction of loops in the network. The main assumption of forward NNs is that the

input and outputs are independent of each other. By introducing self-loops, the RNNs

have the capability to memorize the data. The memorized data is affecting the activation

of other neurons within the hidden layer, therefore affecting the ultimate forecast. Figure

5.3 shows the simple RNN, with the recurrence process highlighted. Note that recurrence

can involve all neurons from the hidden layer.

Figure 5.3: This figure shows the recurrent neural network with two hidden layers. In
RNNs the signal can travel in both directions, therefore allows for the network to capture
underlying relationships over time. This allows for the NN to build up memory which
can affect the activation of other neurons, thus the final output.
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RNNs can be viewed as multiple copies of the same network, each time with the signal

passed onto the successor. To define values of hidden units, RNNs often use the following

equation:

ht = f(h(t−1), xt; θ) (5.2)

where:

ht = the state of current neuron in a hidden layer at the time step t
xt = the variable value at time step t
θ = the weight parameter for current synapse determined by the activation function

and learning process

As explained in 4.4, many macroeconomic variables are non-stationary. Thanks to

its ability to recognize past sequences of data, RNNs can find the adequate station-

ary transformation of the variables so that their dynamics can explain asset prices (L.

Chen, Pelger, and J. Zhu, 2020). In contrast to Markov Model, RNNs can learn impor-

tant variable interactions across different states using information from both current and

past states. Additionally, RNNs can detect changes over time, which is impossible with

FNN (Gencay and T. Liu, 1997). Nevertheless, all that extra information used in RNNs,

makes them more computationally expensive and often complicates the training as such

NNs are prone to problems of gradient vanishing (Li et al., 2018).

5.4 Ensemble Neural Networks

One of the major drawbacks of neural networks, similarly to other non-linear models,

is that they are prone to high variance. Recall the 4.2 in which we discussed the use of

ensemble methods to deal with excessive over-fitting. Such methods can also be applied

to NNs. By combining the predictions from numerous NNs, the variance can be reduced,

thus a smaller chance of over-fitting. Table 5.2 shows the three main ensemble types

used in ANNs. However, the choice of ensemble method is problem dependant. Usually,

the constants of the problem can help in determining the optimal ensemble method. For

example, if we were dealing with low amounts of data, the varying models or combinations

methods would be probably a better choice than varying training data.
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Neural Network’s Ensemble Methods

Ensemble Type Popular

Methods

Description

Varying Training

Data

Bootstrap

Aggregation

(bagging), K-fold

Cross-Validation,

Random Training

Subset

Varying Training Data ensembles, as the name

suggests, use different techniques to divide the

data into different subsets and then use these

subsets to train the model. The final output is the

weighted sum of all the single networks’ forecasts.

Varying Models Multiple Training

Run, Snapshot,

Horizontal

Epochs,

Hyperparameter

Tuning

This group of ensembles is used to train the same

data set using different variations of the neural

network. Everything from the activation function

to the number of neurons in the hidden layer.

Varying

Combinations

Model Averaging,

Stacked

Generalization

(Stacking),

Boosting,

Weighted

Average

In this family of ensemble methods, the way the

forecasts from single models are combined is

altered. These methods are used to update the

weights from each prediction model.

Table 5.2: Popular Ensemble Methods for Neural Networks

5.5 Neural Networks in Asset Pricing

In traditional factor models, each factor is tested in terms of its explanatory power

of the target variable (i.e. expected return). When it comes to neural networks, espe-

cially the ones with an extensive amount of hidden layers (i.e. deep neural networks),

the trainable parameters used, are adjusted through the learning process to maximise the

explanatory power of the network’s forecast. Constructing a factor model requires testing
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various combinations of variables, NNs are effectively performing multiple hypotheses at

the same time, thus facilitating the entire process. Neural networks allow the discovery

of the important relationships within the data, without the need for extensive feature en-

gineering. Moreover, recurrent neural networks allow to model these relationships using

the data from various points in time or even incorporate the changes in the structure of

the specific variables over time. In other words, NNs are capable of finding qualities and

sequences of a company’s data that have the most predictive power.

The factor model can be used to construct portfolios, sort stocks and produce a cross-

section of return analysis. Messmer (2017), uses a deep feed-forward neural network

(DFN) to predict the US cross-section of stock returns. Using the data from the CRSP

database from 1970-2014, he tested 68 individual firm characteristics, which are believed

to possess information to explain differences in expected cross-sectional returns as sug-

gested by Harvey, Y. Liu, and H. Zhu (2016) or Green, Hand, and X. F. Zhang (2017).

He recognizes the problem of over-fitting as the main concern when training the neural

network to predict excess returns. To deal with the excessive variance he employs various

regularization techniques such as bagging2 or early stopping3. Additionally, he performs

stochastic gradient descent on mini-batch of data which decreases computational cost

and proved to have regularization benefit (Wilson and Martinez, 2003). On the other

hand to control under-fitting he evaluates the created model on independent data sets,

derived using k-fold cross-validation, similarly to methods shown in 4.3.2, however, given

the large time period of data, k-fold splits are more likely to bring desirable outcome. To

find optimal hyper-parameters for his network, such as number of neurons per layer, num-

ber of hidden layers, activation algorithm etc. he employs random-search in which the

hyper-parameters are drawn randomly. To determine which hyper-parameters to choose,

he tested them on a sub-sample of data from 1970 to 1981 and therefore combines the

random set of 75 predictions (from 150 available) as well as all 150 predictions for each

stock to construct value-weighted portfolios for mid- and large-cap stocks separately.

The performance of the value-weighted portfolio is compared to the equally-weighted

2Bagging is the ensemble method that aggregates the multiple predictions from various models to
provide a final weighted forecast.

3Early stopping is another regularization strategy that stops the training process after the validation
error is not improved for a certain amount of iterations.
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one, Fama-French 5 factor model and Fama-French 5 factor model plus momentum fac-

tor, using the remaining time period (from 1981 to 2014). Finally, Messmer (2017), tests

his strategy results in terms of the Sharpe ratio using a linearly computed benchmark.

Overall, 16 different median, max, min, linear, value-weighted and equally-weighted port-

folios are compared. Figure 5.4 shows the results from his tests across large- and mid-cap

stocks.

Figure 5.4: This figure shows the return from mid- and large-cap stocks using the strategy
based on a deep forward network. The results are compared with the linear benchmark
and the Fama-French 5 factor model with a momentum factor. The DFN’s based strategy
delivers on average superior returns compared to other methods. However, the fact that
there is a significant difference between the best and worst-performing DFN portfolios,
represent the uncertainty arising from the model estimation.

Source: Messmer (2017)

The difference between the best and worst performing DFN portfolio reflects the

uncertainty arising from model estimation. Although the DFN used delivered a higher

return than linear based benchmark and other tested methods, the fact that there is

a huge difference between worst and best-performing DFN model’s deciles, highlights,

the uncertainty arising from model estimation. Additionally, when testing the impact of

trading cost on strategies’ return, he found that every month rebalancing prevents any

of the DFD’s strategies from achieving a positive mean return. Reducing the rebalancing
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frequency to every five months yields the best results when accounting for transaction

costs. Nevertheless, the superior performance of DFN compared to the linear benchmark,

highlights the importance of non-linear relationships between firm characteristics and

expected return. Furthermore, Messmer (2017), identifies the short-term reversal and

the twelve-month momentum factors as the main drivers of expected return.

The model created by Messmer (ibid.) performs well, considering the issues stated in 3.2.

It is not only in line with finance theory but also showed high explanatory capability in

estimating excess returns of the stocks. It clearly specifies what factors, along with their

predictive power, are to be implemented to the model and employ modern regularization

techniques to ensure the most optimal structure of his network. As the model is still

being improved, we expect that in the near future it could become a useful tool that will

aid investment professionals in portfolio creation.
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Limitations

6.1 Limitations of Machine Learning

In this chapter, we showed multiple applications of machine learning in asset price

forecasting. Although some of the methods discussed shown promising results in practical

application, designing an asset-pricing model requires more than accurate predictions.

The machine learning algorithms are designed to improve the way the model can fit the

data, however, they do not disclose underlying economic mechanisms or equilibria. In

addition to the data scientist responsible for designing and adjusting the model, there is a

need for economists who can provide an underlying structure for the estimation problem.

Only that way the created models can be implemented into the finance theory and further

contribute to the asset-pricing field.

6.1.1 Machine Learning and Regulatory Environment

Apart from concerns regarding the model’s predictive power and constraints coming

from traditional econometric and financial theory, investors have to also consider the

legal implications while using machine learning in asset pricing. Although algorithmic

forecasts are on average 10% more accurate than human forecasters, across numerous

domains, people continue to have a very low tolerance to machine learning’s errors (i.e.

algorithm aversion) (Dietvorst, Simmons, and Massey, 2014). Since the 2008-GFC, reg-

ulators undertook a more proactive approach when designing a financial regulation. For

example 2018’s E.U. General Data Protection Regulation (GDPR), grants investors the

right to ask companies about their machine learning practices. Such a decision prompted

private institutions to make their machine learning algorithms more transparent as well

as ensure they are in line with finance theory (Kou et al., 2019). Furthermore, the

Markets in Financial Instruments Directive (MiFID) II also introduced in 2018, allows
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regularity authorities to require detailed information about the machine learning algo-

rithm company uses, including the details of trading strategies or limits of the systems

employed (Sheridan, 2017).

6.2 Limitations of This Study

The main purpose of this chapter was to explain the potential use of machine learning

techniques in asset pricing. Although the results from individual studies were discussed,

it is impossible to determine the effectiveness of any of the models presented in sections 4

and 5, without performing additional tests. Possibly all of the discussed methods would

have to be evaluated over the same time period using the same dataset. Only such test

would allow evaluating the predictive power of each model in comparison to the other

methods including traditional factor models discussed in section 2.

Moreover, some of the investigated models such as these described in 4.2.2 or 4.3.2 diverge

from traditional finance theory by leaving the estimation of the stock prices only to the

momentum-based factors. However, more recently, finance practitioners and academics

have focused on making the loss functions of machine learning algorithms more in line

with the finance theory. For example, modern machine learning techniques are being used

to reduce the number of features in the model (Feng, Giglio, and Xiu, 2020), (Kelly and

Pruitt, 2015). Additionally, the implementation techniques used for model explainability,

such as LIME Ribeiro, Singh, and Guestrin (2016) or SHAP Lundberg and Lee (2017)

into the programming languages allows researchers to explain their algorithms better.
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Conclusions

In conclusion, this chapter first provided the theoretical framework for traditional

asset-pricing methods and highlighted their limitations, which we believe can be addressed

by machine learning techniques. The current machine learning techniques show promising

results in dealing with high dimensional data of large volumes, such as today’s financial

data. Although, in this chapter we have not performed any tests that would allow for

evaluation of machine learning models described, identifying main obstacles in designing

a factor model, served as the main discussion point in the assessment of the models.

From showing the statistical overview of each examined methods, to discussing their

current application in asset-pricing, we were able to show the disruptive power of machine

learning in the financial field. Machine learning methods such as penalized linear models,

regression trees, support vector regressions or Markov switching models can be used to

model expected return in respect to finance theory but also aid its development thanks to

innovative solutions they provide. Traditionally, the modelling process involved testing

numerous predictor variables in terms of their t-statistics and therefore combine findings

into the linear regression model. Machine learning techniques can handle large amounts

of data relatively easily, thus allowing for more possible factors to be tested. Moreover,

they also introduce more appropriate evaluation methods such as bootstrapping or cross-

validation, which let researchers assess their models more deeply without the significant

increase in computational cost. Additionally, some of the methods that are able to capture

non-linear interactions among variables, are yet to be fully documented when it comes

to financial data. Furthermore, we believe that the one of the most rapidly developing

subset of machine learning, neural networks are especially fit for the asset-pricing problem.

Thanks to their ability to deal with a massive amount of variables and highly adjustable

properties, neural networks make a great tool for estimating excess returns of stocks. NNs

can learn from data and use the knowledge to adjust their structure. In that respect,

the output from the ANNs can be viewed as a factor itself, mainly because of the fact
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that it can be used to construct portfolios, sort the stocks or perform a cross-section of

return analysis. The issue remains with carefully constructing a network itself, deciding

on its width and depth as well as other hyperparameters. It is crucial for the network

effectiveness, to structure it the best way possible. However, the task is highly problem

dependant, thus calls for experts from the desired field to contribute. Luckily the recent

developments in the open-source software community open doors for many researchers

outside of the data science field to exploit the use of neural networks in other disciplines.

The finance theory has not yet confirmed whether the neural networks are indeed a good

tool in estimating asset price. Nevertheless, increasing availability of NNs frameworks

will help to address this question.
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