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Optogenetics 1n Silicon: A Neural Processor for
Predicting Optically Active Neural Networks
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Abstract—We present a reconfigurable neural processor for
real-time simulation and prediction of opto-neural behaviour. We
combined a detailed Hodgkin—-Huxley CA3 neuron integrated
with a four-state Channelrhodopsin-2 (ChR2) model into recon-
figurable silicon hardware. Our architecture consists of a Field
Programmable Gated Array (FPGA) with a custom-built comput-
ing data-path, a separate data management system and a mem-
ory approach based router. Advancements over previous work
include the incorporation of short and long-term calcium and
light-dependent ion channels in reconfigurable hardware. Also,
the developed processor is computationally efficient, requiring
only 0.03 ms processing time per sub-frame for a single neuron
and 9.7 ms for a fully connected network of 500 neurons with a
given FPGA frequency of 56.7 MHz. It can therefore be utilized
for exploration of closed loop processing and tuning of biologically
realistic optogenetic circuitry.

Index Terms—ChR2, FPGA, Hodgkin-Huxley, neural proces-
sor, neuromorphic circuits, neuroprothesis, optogenetics.

I. INTRODUCTION

O PTOGENETICS involves a genetic modification of cells
to make them sensitive to light by expressing light-gated
cation channels such as Channelrhodopsin-2 (ChR2) [1] or
anion channels in their cell membranes [2]. It has attracted
interest from multiple disciplines, particularly due to its ability
to genetically target neural sub-circuits, paving the way for high
spatial and temporal resolution with perhaps better biocom-
patibility than with electrical approaches [1]. Some promising
translational neuroprosthetic therapies to date include pacemak-
ers for epilepsy [4], [5] and visual prostheses [6].
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The kinetics of the molecule, were previously explored from
an engineering viewpoint by ourselves (Nikolic et al. [7] and
Grossman et al. [8]) using data from optogenetically transfected
hippocampal cells. However there are still challenges to be
addressed, such as how to physically stimulate large numbers
of neurons. More importantly, how can therapeutic or scien-
tific network stimulation protocols be translated into a partic-
ular three-dimensional light pattern? Such questions will be
application-specific and can be answered either empirically or
through modelling. The latter would require accurate software
models. To explore further, bio-silicon hybrid networks could
be used, with the potential for exploring both basic science and
downstream translation.

A range of methodologies exist to simulate and predict the
state of neural networks. These differ in their accuracy of
mathematical representation as well as their scope and range
of biological features. Abstract models such as integrate-and-
fire [9], Izhikevich [10], and Hindemarsh-Rose [11] provide
computational efficiency. This allows scaling to large network
simulations (of many thousands of neurons) on commodity
hardware. There is however a need for more moderate sizes of
neural networks but with bio-realism and real-time operation.
In particular, optogenetics can provide stimuli to relatively
localized neuronal circuitry. This requires the combination of
optogenetic models with spatially detailed Hodgkin—Huxley
models of neurons [12]. Such a system could potentially in-
terpret recordings and command stimulation equipment in real
time (through closed loop control), and could be very useful to
both the in vitro [13] and in vivo communities [14].

Previously, computer workstations have been used to achieve
high speed simulation of moderately complex neural net-
works. This is particularly the case when Graphics Processing
Units (GPU’s) are used for their parallel processing capability:
Fidjeland used a GPU kernel to simulate 55000 neurons with
1000 connections per neuron under bio-plausible conditions
[15]; Wang implemented a network with 1 million HH based
neurons on a commodity GPU, achieving a 28x speed-up
over CPU implementations [16], and Tadashi applied a cere-
bellum gain and timing control algorithm on a GPU for real-
time processing. However, with this technique it is difficult
to achieve accurately timed output states for stimulation in
real time using computational systems with operating systems.
Therefore further digital logic is required to provide buffering
and timing accuracy in the stimulus. This work is motivated
by the benefit for timing accuracy in putting the neural network
processing in this digital logic layer, and using the computer for
updating variables associated with the neurons and network.
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Fig. 1. An optogenetic-neuron architecture. The soma and dendrites contain
three different types of ion channels: voltage-dependent ion channels, cal-
cium dependent ion channels and light-dependent ion channels. The voltage-
dependent ion channels are: a sodium ion channel I, a calcium ion channel
Icq, the delayed rectifier K ion channel Iy (p ), and the A-type of transient K
ion channel Ig( 4y which are modelled using the HH equations. The calcium-
dependent ion channels are a long duration Ca-dependent K ion channel
I (A P), and a short duration Ca-dependent K ion channel I (cy. The
Ca-dependent ion channels depend on the current intracellular calcium con-
centrations, typically calculated only in the cytoplasmic shell near the cell
membrane as described in Traub et al. [20]. The light-dependent ion channel
is ChR2, based on the four-state Markov process of Nikolic et al. [7]. The
synapses receive synaptic currents from the other neurons and generated action
potentials are transmitted along the axon.

One of the most appealing solutions for creating such a
digital implementation is via reconfigurable logic, and in partic-
ular with a Field Programmable Gated Array (FPGA). FPGA’s
consist of arrays of logic and memory elements which can be
defined as particular digital elements and connected in highly
parallelized forms. These allow for rapid bespoke prototyping
of digital circuits and their relative connectivity. As they are
reprogrammable, they can be re-tuned to whatever neural net-
work configuration is required. The downside of FPGA’s is
that classically their relatively high power consumption means
that their application is limited to the benchtop. This is still
acceptable for in vitro applications however, and more recently
non-volatile forms of FPGA’s provide low power operation
suitable for battery-based applications.

FPGA systems have already been used to implement
the Hodgkin—Huxley (HH) model, albeit with only voltage-
dependent ion channels: Smaragdos implemented an olivocere-
bellar 92-neuron network using a three-compartment HH model
[17]; Weinstein ef al. developed a system level design flow
for implementing voltage-dependent ion channels [18]; and
Graas et al. presented a timing multiplexing technique to
process multi-neuron activities sequentially [19].

In this work, we have developed an FPGA-based highly
biologically plausible processor for real-time simulation of
optogenetic neural networks. Fig. 1 depicts the opto-neural
architecture.

The first key advancement of this work lies in how we imple-
ment a biologically realistic neuron model with our four-state
ChR2 model [7]. In addition, we have incorporated calcium and
calcium-dependent ion channel models from both Traub ef al.
[20] and Soto-Trevifio ef al. [21] Calcium is an important ion
for neuronal adaptation (and also imaging).

Our model can be adapted to represent most forms of op-
togenetic channels (opsins) by modifying the time-constants,
reversal potential and conductance to capture the dynamics of

other variants. Therefore, compared to the other FPGA-based
neural systems, the short- and long-term calcium- and light-
dependent ion channels, allow the hardware to replicate more
advanced neural characteristics (e.g., light-to-spike processes
and calcium-related adaptation) in real-time.

The second key aspect of this system is its flexibility and
computational efficiency. The data management system and
configuration unit are separate to the computing data-path.
Thus, the system application objectives can be easily updated
by modifying corresponding model parameters (e.g., light ir-
radiance, architecture, neural parameters and network sizes).
For example, since each neuron’s stimulation level is calculated
sequentially, from pre-stored tables of different light levels in
the data generation system, the hardware is able to simulate the
effects of spatially varying illumination levels over a population
of neurons. This is especially useful for investigating multi-site
light stimulation strategies for optogenetics, such as for shaping
the illumination levels from arrays of LEDs.

Furthermore, our pipelined parallel processing requires only
0.03 ms for a single neuron and 9.7 ms for a fully connected
500-neuron network to calculate a simulation sub-frame. Thus
the applicability of this system for either open or closed loop
interaction with tissue is where the neuron count is in the
hundreds of thousands rather than millions. Examples of this
include active pixel sensor neural recording systems [22] and
stimulation systems (e.g., Wang et al. [23] and ourselves [24]).

It is also possible to directly translate the FPGA design into
an Application Specific Integrated Circuit (ASIC) chip. In this
instance, the chip would be sufficiently small and low power for
in vivo applications.

II. MODELLING THE LIGHT-TO-SPIKE PROCESS

The optogenetic-neuron mathematical model has been adapted
from previous work [7]. It combines a detailed Hodgkin—
Huxley neuron model with parameters for a CA3 neuron [20],
and integrates an additional ChR2 channel [7]. The structure
is shown in Fig. 1, which consists of four compartments: the
synapses, axon, dendrites and soma. In order to ensure hard-
ware translation, we do not attempt to increase the number of
compartments to reflect long neuronal arbors. Nevertheless, it is
still significantly more accurate than for abstract point-neuron
models.

A. Cell Model: Soma and Dendrites

Our cell model is essentially a two-compartment neuron
model: one compartment emulates the complete dendritic tree
including synaptic inputs and the other compartment models the
cell soma. Nominally there is a third compartment—the axon—
but in our model it is treated as a simple communication contact,
hence a separate compartment was not associated with it. The
common ion channels for both the soma and dendrites are:

* The voltage-dependent ion channel: a sodium ion channel
[Na*], a calcium ion channel [Ca’*], a delayed rectifier
potassium ion channel [K*(Dr)], and an A-type of tran-
sient potassium ion channel [K*(A)].
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e The calcium-dependent ion channel: a long duration
Calcium-dependent potassium ion channel [K*(AHP)],
and a short duration Calcium-dependent potassium ion
channel [K*(C)].

¢ The light-dependent ion channel: [ChR2].

The light-dependent ion channels (ChR2) are assumed to be
expressed only in the soma. We justify this as the surface area
of the dendrites of any given cell is relatively small compared
to the volume of tissue they inhabit, so optical stimulation is
best targeted at the soma. We feel the computational cost is
not justified by the small dendritic contribution of traditional
ChR2, which has very low channel conductance. However, if a
high conductance opsin were to be used, these effects could be
incorporated.

Synapses are assumed to be only in the dendrites. Similarly,
this is to simplify the model computationally, but again, this can
be easily changed if required.

The neuronal model is based upon the traditional HH differ-
ential equations [12] which treat individual channels as having
an individual conductance with a specific reversal potential.
The traditional model contains potassium, sodium and leakage
ion channel components. We have also incorporated calcium
and rhodopsin channels.

Equations (1) and (2) describe the time evolution of the
membrane potential for the soma compartment (dVioma/dt)
and for the dendritic tree compartment (dVgena/dt) in terms
of current flow through each channel

dVsoma
Csoma dt - = (Isyn+INa+IKdr+IKa+IKahp+IKc
+ Ice+Ichr2 +ILeak+gc(Vdend _‘/;oma))
9]
dVien
Cdend c(lit d - (Iana+Iaxdr+Iarka+ laxanp+Lake

+IdCa+IdLeak+gc(‘/soma - Vdend))- (2)

The current terms are described in Table I. The last term in
both equations describes the current between the compartments.
ge = 0.02 nS/um? is the conductance between the somatic
and the dendritic compartments, Csoma = 0.01 pF/ qu is the
membrane capacitance of the soma compartment, and Cgeng =
0.01 pF/um? is the membrane capacitance of the dendritic
compartment.

The mathematical equations for the current flow through the

voltage-dependent ion channels [20] are given by

Ii = g; X mfhf X (U—Ei)

dm(h)
dt

3

=m(h)s X (1 = m(h)) —m(h); x m(h).

“

where I; is the ion channel current, g; is the ion conductance,
m and h are gate variables (where h has the same form as
m) and m(h) and m(h), are the gate-variable steady-state
and time constant values respectively. Finally, v is the reduced
membrane potential (v =V — Viest) and E; is the reduced
reversal potential.

TABLE 1
PARAMETER VALUES OF VOLTAGE- AND
CALCIUM-DEPENDENT ION CHANNELS

Soma Dendrites
gmS/pm?) | E(mV)| g(nS/um?) | E(mV)
Na+ channel Ing 0.3 115 0 115
Delayed rectifier K+
channel Ixar 0.15 -15 0 15
A-type K+ channel I, 0.05 -15 0 -15
Long-term Ca2+- )
dependent K+ channel Tcanp| ~ 0.008 15 0.008 15
Short-term Ca2+-
dependent K+ channel Te 01 15 0.05 -15
Ca2+ channel Icq 0.04 140 0.02 140
Non-specific 125 125
membrane leakage Tiear| 0001 ) 0.001 )
TABLE II
ACTIVATION AND INACTIVATION VARIABLE RATE FUNCTIONS
Forward(a) Backward(B)
Ing(m) 0.32(13.1 —v) 0.28(v — 40.1)
131 -v v —40.1
o) 1 o)
17 —v 4
Iva(h) 0.128exp ( 5 ) 7T
1+ exp( £ )
0.016(35.1 — 20—v
lkar(m)|  _0016GB51-v) g oeeis ( )
351—-v 40
exp (—5 ) -1
Igqa(m) 0.02(13.1 —v) 0.0175(v — 40.1)
131-v v —40.1
e () -1 Jew(tg—) -1
-13-v 0.05
lka(h) 0.0016exp( )
18 101 —v
1+ exp ( 5 )
Ixqnp (M) min(0.2 x Ca?* 0.001
x 107%,0.01)
I (m) v =10 v—65 6.5-v
) (=22 2 - -
e |(“51) - (77l e (*37)
18.975 ke
v < 50; v < 50;
6.5-v . 0, v > 50;
ZeXp( - ), v > 50;
lea(m) 16 0.02(v — 51.1)
1+ —0.072(v — 65 v—>51.1
xXp(-007200 = 65)) | (V=5LT)
lea(h) 0.005, v < 0; 0, v<0;
exp(v/20) o, o 0.005 — a¢q ,
200 v > 0;

An empirical equation for intracellular calcium concentration
[Ca®"] was proposed by Traub e al. [20] and shown here in

d[Ca®"]

dt

= —Flc, — [Ca*Y] /704,

&)

Here, F' =3 is the scaling constant, and 7¢, = 13.33 ms
is the time constant for the decay of intracellular calcium
concentration, due to the rapid action of ion pumps which
extrude calcium. The corresponding parameters are shown in
Tables I and 1II.
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The four-state model of Channelrhodopsin-2 was previously
described by Nikolic et al. [7], which we believe to be optimal
in terms of the balance between accuracy and simplicity. The
model describes ChR2 as having four states; two closed states
and two open (conductive) states, and is shown in Fig. 1(b).

The retinal molecular core of the ChR2 rhodopsin complex
absorbs a photon to switch from all-trans to 13-cis-retinal. This
induces the channel to switch from a dark-adapted OFF state
[C1] to a dark-adapted ON state [O1]. If illuminated in this ON
state there is a chance of further photon absorption. This would
transition the ChR2 from a dark-adapted ON state [O1] to a
less conductive, light-adapted ON state [O2]. From there it may
thermally transition back to [O1] or decay to the light adapted
OFF state [C2]. The [C2] state slowly reverts to the [C1] state
(on the order of seconds) by thermal means.

These relations can be described as four coupled differential
equations

dC1

W - GrdCQ + Gdlol - Gal (t)Cl (6)
dO1
e =Ga1(t)Cl — (Ga1 + €ct)O1 + €,,02 @)
dO2
W =Gao (t)C2 — (Gdg + etC)OZ + e,01 (8)
dC2
W = Gd202 - (GaQ (t) + Grd)cz (9)
. €F[1 — eit/TChR], t < tiight
Ga(t) = {EF[e(t—tugm)/TChR _ e—t/Tc;LR], t > tight (10)
Ichr2 = (01 +~402) X Achr2 X genre X (V—Echr2)
1 —exp (_ V_EChRZ)
x Ny (1

(V — Ecnr2)/v1

where O1, O2, C1, and C2 are the proportions of ChR2 com-
plexes in the open states (1 and 2), and closed states (1 and 2),
which are conserved to sum to one. Gy41 and Ggo are the
deactivation rates O1—C1 and O2—C2 respectively, and e,
and e.; are the rates of transition between O1 and O2 and vice
versa and G4 is the rate of thermal conversion of C2 to CI.
G41 and G4 are the activation rates for C1 to O1 and C2 to O2
respectively [described in general terms in (10)], v = 0.05 is
the conductance ratio of O1 and O2. Light, F' is flux in photons
per ChR2 per millisecond and e is the quantum efficiency of
the rhodopsin. V' is the membrane potential of a neuron (in
mV), vg and v; are empirical constants equal to 40 mV and
15 mV and FEcnre is the channel reversal potential, equal to
0 mV. The ChR2 channel’s maximum conductance per unit
area, gchrz = 2.5 pS/pm? is multiplied by the ChR2 expres-
sion area Acpre to find the total channel conductance for the
cell. The corresponding rate parameters are given by Table II1.

B. Synapses

The synapse model is described in

Ly == 0ij(t—t)) x gi x & x (v; — By) (12)
j=1

TABLE III
THE PARAMETERS OF CHR2 MODEL
Parameter Value
TChRL 1.3 ms
TchRD 0.3 ms
Grg 3.33e-4 ms-!
€ct 0.053 ms-!
Ctc 0.023 ms-!
Gg1 0.13 ms-!
Gy, 0.0025 ms-!
Acnrz 5000 pm?
Vo 43 mV
Uy 70 mV
Jchr2 0.0025 nS /pum?
Echra 70 mV

where [ éyn indicates the total synaptic currents received by
the neuron ¢, n is the number of presynaptic neurons, indexed
by 7, with their train of spike times represented by t;-, Gi
is the maximum synaptic conductance of each postsynaptic
neuron, and e is the transmission efficiency. Spike events are
represented by d;;, a Dirac-delta function, which is 1 at the time
of a presynaptic spike (i.e., when ¢ — ¢’ = 0) or O otherwise.
Our intention here is to explore the network dynamics rather
than learning processes, however they could be included later

using synaptic potentiation/depression models from [25].

C. Axons

Cable theory such as described by Wilfrid [26] can be used
to simulate axonal transmission. Its incorporation would allow
for more detailed timing studies between synaptic connections,
e.g., spike correlated timing. However, the partial derivative
calculations would increase the required FPGA resources. In
this instance we believe that the cost outweighs the benefits.

As with other neural network systems, we assume that the
transmission channel efficiency is 100%, i.e., no spike loss
between soma and synapse. The transmission delay is one clock
cycle which occurs at the end of each computing frame.

If transmission delays are important to study, e.g., for rank
[27] or phase coding [28], then they are best introduced as direct
network delays. Our system can be reconfigured to interpret this
behaviour, but at the cost of additional memory blocks, which
would reduce the maximum implementable network size.

III. NEURAL PROCESSOR ARCHITECTURE

The neural processor mainly contains three components: the
computing data-path, the data generation/reconfiguration units,
and the router, which are shown in Fig. 2. The computing
data-path is specifically designed for calculating the previously
described mathematical equations (for details see Section I1-A),
the data generation system aims to deliver all the required
neuronal fixed model parameters to the different data-paths at
the corresponding time, the reconfiguration unit is to modify
the computing data-path based on the models, and the router is
for implementing the network’s synaptic connections.

The FPGA design utilizes 40-bit fixed-point precision, with
22 fractional bits. Therefore, the parameter’s dynamic range
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Fig. 2. A conceptual architecture of an FPGA based neural processor.
It consists of three main parts: data generation system, reconfiguration unit,
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Fig. 3. The computing data-path component. It contains three different algo-
rithm logic units (ALUs), one ALU controller and memory data registers.

that can be calculated is [—361, 361] with a resolution of 1074,
and the output membrane potential’s (v) range is [—50, 150],
which depends on the implemented LUT sizes. In addi-
tion, these parameter values are implemented by using flip-flop
and LUT slices.

A. Computing Data-Path

The computing data-path has three separate algorithm logic
units (ALUs), which are shown in Fig. 3. Here ALUI is for
calculating voltage-dependent ion channel (3) and (4), ALU2
is for calculating calcium-dependent functions (5) and ALU3
is for calculating the ChR2 state variables (7)—(9). (N.B. For
simplicity of implementation, the fourth differential equation
for C1’ is eliminated by substitution, since by conservation of
the states, it is equal to C1 =1 — O1 — O2 — C2.) Each ALU
receives two types of signal: the first are the data stream signals
from the data generation systems, determined by the software
model parameters. The second are the switch configuration link
signals from the configuration unit, determined by the software
model architecture and applications. The memory data register
(MDR) is applied to maintain an equal latency for the different
data-paths.

Since this architecture is pipelined, ion channels are calcu-
lated sequentially. These ALUs have to perform their calcula-
tions in a specific sequence to simulate the interactions between
different types of ion channels. This timing diagram is shown
in Fig. 4.

i Frame n-1 - Frame n 3
ALU1 J< ----- e ;0"""'121' ______ >U-
ALU2 - = [
ALU3 _I;I %
L

Integrator

Fig. 4. The timing diagram of the developed neural processor. The algorithm
logic units ALU1, ALU2 and ALU3 require 14, 3 and 3 clock cycles in each
frame. The processes are integrated at the last clock cycle in each frame.

In this design, ALU1 calculates the voltage- and calcium-
dependent ion channel activity in 14 clock cycles. When I,
results are released at time-point ¢, ALU2 receives the val-
ues to calculate the calcium concentration, and the outputs at
time-point ¢o are feedback to ALU1 for computing calcium-
dependent ion channels. In parallel, ALU3 calculates the ChR2
current based on the current membrane potential and light stim-
ulation. At the 15th clock cycle at time-point t3, the integrator
sums the outputs from ALU1 and ALU3 for the final output and
the system performs the next frame calculation.

The ALU1 hardware architecture is shown at Fig. 5, which
implements (3) and (4). During the process, the neural param-
eters (e.g., G, V) are released sequentially for calculation.
A complete frame comprises of 14 clock cycles. There are
also 3 switch control signals for the gate variable exponential
(Sell) and calcium calculation styles (Sel2 and Sel3). In the
system the forward and backward slices are for calculating the
activation and inactivation rate equations as shown in Table I.
As described in Fig. 6, five different gate variable calculation
styles can be selected in a system depending on the select
signals. Particularly, styles dO, d1 and d3 share the common
data-paths. Overall ALU1 has 4 configurations and 10 data
stream signals. Specifically, when I, is calculated from the
ALUI, the Sel signal in Fig. 3 will activate and send it to ALU2
for calcium computing. At the same time, the Sel signal will
send ALU2 into an inactive state.

The data-path of ALU3 is shown at Fig. 7. The values
G,1 and G2 are pre-calculated and depend on the light ir-
radiance. The three coupled differential equations (7)—(9) are
implemented to simulate the ChR2 four-state model’s dynamic
behaviour. The overall latency is optimized to 3 clock cycles,
and the time-step for numerical integration is set to 50 us.
For each loop, the previous state values O1’, 02’ and C2’
are used with the current light stimulation levels to generate
the ChR2 outputs. More importantly, ALU3 is only active for
1 clock cycle in a frame (14 clock cycles) due to the parallel
implementation and computing pipeline.

B. Data Generation System

The data generation system is shown in Fig. 8. As can be
seen, it contains n individual units and a Finite State Machine
(FSM). Each unit has one RAM cell and two program counters
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r'—!'<

Fig. 5. The ALUI1 hardware architecture. This unit aims to calculate voltage-dependent ion channel activities. The dashed arrows indicate system inputs and
outputs and Sels represent configuration signals. The forward and backward slices are for calculating the activation and inactivation rates shown in Fig. 1. E and
G are ion channel reversal potential and maximum conductances, while V' and C'a are neuron membrane potential and calcium concentrations used as inputs.
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Fig. 6. The hardware architecture of the forward (backward) slice. Five dif-
ferent gate variable calculation styles are calculated using the equation given
in Table II. Here, a,b, ..., g are the ion channel gate parameters. d0 is for
calculating forward variables (m) of I 4, K a, K dr,Ca(m)> @1 is for h variables
for Ing, Ka(n); A2 is for Iog(m); d3 is for Iogp) and d4 is for I qpp(m)-
Additionally a Look-Up-Table block is employed for calculating short duration
Ca-dependent ion channel gate variables. The meanings of the numerical values
(0.005 and 0.01) are given in Table II.

(PCs). The RAM is used for storing model parameters such
as activation (inactivation) rate parameters (e.g., a,b,...,e)
and ion channel conductance. PC1 is an index of the different
parameters of a neuron, and PC2 is an index of different neurons
in a network. An FSM is employed as a control signal to select
corresponding RAM states as output values. Specifically, the
FSM decides frame and sub-frame control signals. In addition,
memory address registers (MAR) are implemented based on
the latency in the computing data-path. Since the system uses
different sub-block RAM rather than an entire one, data man-
agement becomes more efficient and controllable. In a similar
manner, the reconfiguration unit shares this technique with the
data generation system.
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Fig. 7. Data-path of the ChR2 computing block. The mathematical descrip-
tions are given in (7)—(9). Where O1,02,C1 and C2 are the numbers of ChR2
molecules in the current open states 1 and 2, and closed states 1 and 2. G4
and G 4o are the transition rates for O1—C1 and O2—C2, et and e+ are
the transition rates between Ol and O2 and vice versa. G,1 and G2 are the
activation rates of C1—-01 and C2—02.
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are the memory address registers.
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RAM_networking LUT records the synaptic current values at time ¢ for neuron

Using this approach we note that the simulator can handle
biologically realistic situations which originate from uneven
light distribution and/or ChR2 expression: different light in-
tensities for different neurons can be stored in these units as
well. The PCs at the address index are responsible for sending
light-dependent variables at the correct times for modelling the
spatial distribution of light, while the other PCs in the recon-
figuration units turn on/off the ChR2 channels to implement
different levels of opsin expression.

C. Routing System

The routing system is shown in Fig. 9. Spike events from
three processors are sequentially sent into shift registers for
processing, and the results are fed-back individually. The basic
mechanism is as follows: when a neuron spike event (1 or 0)
arrives, its corresponding post-synaptic neuron location (e.g.,
1—-1,1—2...,1—n) will be addressed by the neuron
index. By multiplying the synaptic strength pre-stored in the
LUT and the spike event, the updated synaptic inputs are stored
in the RAM block at the same location (e.g., 1 — 1f,1 —
2t ..., 1 — n'). After calculating the states for all the neurons
in the network, the accumulator adds all the received synaptic
inputs per neuron for the next frame calculation (the process
happens at the last sub-frame periods). For example, for neuron
index 1, all the synaptic currents (1 — 1¢,2 — 1%, ... . n — 1)
will be accumulated and represented by (:,1)*. Two memory
data registers are implemented for storing the accumulator
results. One is for sending the previous frame’s synaptic inputs
(e.g., (s 1)t’1) to the calculated neuron, the other one is for
storing the currently summed synaptic inputs (e.g., (3, 1)%) for
computing in the next frame. The frame period is the prod-
uct of the total number of neurons with the processing time
per neuron.

index 1 to index 2 and index 3.
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Fig. 10. The hardware simulation results of ChR2. The results from the

software model developed previously by Nikolic et al. [7] are shown in black
together with the FPGA simulation results shown in red. The short light
pulses are 1, 2, 3, 5, 8, 10 and 20 ms. The software fitting parameters used
are Topr = 1.3 ms, v = 0.1, ect = 0.01, et = 0.02, G41 = 0.35 ms 1,
Ggo = 0.02ms™ 1, Ipax = 0.2 nA.

IV. RESULTS
A. ChR2 Ion Channel

The individual silicon ChR2 channel simulation results are
shown in Fig. 10. Light pulses of seven durations are used in
this experiment: 1, 2, 3, 5, 8, 10 and 20 ms.

The FPGA simulations indicate that the developed silicon
ChR2-HH neuron model behaves similarly to its biological
counterpart, on which the software model is based (data not
shown but can be seen in [7]). However, there are some slight
differences between the model and the FPGA implementation,
especially at 2 and 3 ms light pulses, which are due to the digital
truncation errors and fixed-step integration.
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Fig. 11. The hardware experimental results of the neural processor. (a) the results of a single neuron with constant stimulus (0.1 nA), (b) the results of a single
neuron with pulsed electrical stimulation (duty cycle = 50% with injected current 0.1 nA), (c) the results of a single optogenetic neuron with constant light
stimulation (0.4 mW/mm?), (d) the results of a single optogenetic neuron with pulsed light stimulation (duty cycle = 50% with light irradiance 0.4). The cell
membrane potential is shown in purple, stimulation cycles are shown in blue and the ChR2 current is shown in green. The FPGA signals are converted into
analogue signals by using an external DAC based on a CY3214-PSoCEVALUSB PSoC1 development board.

B. Hippocampal CA3 Neurons

Voltage-dependent and [ChR2-expressing + voltage-
dependent] hippocampal CA3 neurons have been simulated for
comparison. Fig. 11(a) and (b), show oscilloscope readings of
our neuron in response to constant and pulsed electrical stimu-
lation (duty cycle = 50% with injected current 0.1 nA): the red
line is the membrane potential and the blue line represents the
electrical pulses. Fig. 11(c) and (d), show oscilloscope readings
of our neuron’s response to constant and pulsed light stimulation
(duty cycle = 50% with light irradiance 0.4 mW/mm?): the pur-
ple line is the membrane potential (showing action potentials)
and the green line is the ChR2 current.

A comparison between software (simulated with Matlab) and
hardware firing rates is shown in Fig. 12. For an electrical
stimulus, as the stimulus strength increases, the firing rate in-
creases accordingly. When the injected current exceeds 0.6 nA,
the CA3 neuron approaches its saturation and the firing rate
collapses. For the light-based stimulus, the firing rate increases
with light intensity (from 0.01 to 10 mW/mm?) and duty cycle
(from 10% to 80%). In both conditions software and hardware
systems show identical and biologically realistic results.

In the simulations we used a relatively low light irradiance
level (as an effective threshold) of 0.4 mW/mm?. This value
was experimentally found to be adequate to evoke opto-neuro
activity for reasonably long pulses (> 50 ms), whereas the value
of 1 mW/mm? tends to be used for short pulses (< 5 ms).
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Fig. 12. A comparison of firing rates between (Matlab) software and hardware
simulations. (a) The injected currents are: 0.01 to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9 and 1 nA. (b) The light irradiances are 0.01, 0.02, 0.05, 0.07, 0.1, 0.2,
0.5,0.7, 1,2, 5,7 and 10 mW/mm?. The duty period is 100 ms.
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Fig. 13. Real-time simulation of an optogenetically transfected network of spiking neurons. (a) Shows the light irradiance pattern for a network. (b) Shows the
network firing patterns without synaptic connections. (c) Shows the network firing patterns with strong excitatory synaptic connections.

In other experiments, even lower light intensities have been
found to evoke a response (e.g., Mattis et al. [29] used
0.1 mW/mm?) so 0.4 mW/mm? was a compromise. This repre-
sents the power density reaching the neuron for in vitro exper-
iments or simulations. However in more complex experimental
setups, i.e., in vivo studies, the light will be absorbed and
scattered by other (non-transfected) brain tissue, reducing the
effective power density at the target neurons. In that case
approximate calculations of the true power density just require
a multiplicative correction factor, which would need to be de-
termined by experimental measurements. Several studies have
modelled these attenuating effects and produced software to
simulate and calculate them [40], [41] and there is even an
iPhone app called Optogenetics Pro for the purpose [42].

C. Optogenetically Transfected Neural Network

We simulated a 25-neuron opto-neural network. Each neuron
receives different light stimulation as shown in Fig. 13(a).
Each neuron randomly connects to 16—17 neurons on average
with maximum synaptic conductance of 0.01 nS/um?. The
unconnected neural responses (i.e., no network connectivity)
are shown in Fig. 13(b). As expected, this is, similar in response
to that with the original irradiance patterns: only five neurons
with light-stimulation above threshold (0.4 mW/mm?) had sig-
nificantly elevated firing rates, while the others remained silent.

The network dominating condition is shown in Fig. 13(c). In
this case, the synapses are all excitatory, i.e., no negative feed-
back. It can be seen that the average firing rate is 45 Hz and the
light pattern can no longer be seen in the spatial distribution of
neural responses. In this scenario, the irradiance pattern has an
effect, but on the overall firing rate rather than a spatial pattern
of activity, which is dominated by the synaptic connections.

Fig. 14 shows an interesting example of activity in Neuron
(1, 1) where the two scenarios above are moderated such that
the firing behaviour is determined by both surrounding network
activity and the pattern of optical stimulation. That is, the
optical stimulus on its own would not produce such significant
neural activity.

V. DISCUSSION
A. System Scalability

We implemented different numbers of neuron on the FPGA
processor to test the system’s scalability by measuring the wall-

D. Neuron (1,1) subthreshold behaviours
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Fig. 14. An example of an opto-neuron with (red trace) and without synaptic
connectivity (grey trace) exhibiting super-threshold firing and sub-threshold
behaviours respectively.
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Fig. 15. The speed performance of the neural processor implementing different
network sizes. At cross point A, the network performance shows non-linear
behaviour rather than linear behaviour. At cross point B, the individual router
processing periods will be longer than the processor’s. At cross point C, the
maximum neuron number that can be implemented on the processor for real-
time computing is found to be 500 and takes 9.7 ms (assuming that the fastest
biologically-realistic firing frequency is 100 Hz).

time required for the system to generate a single spike (sub-
frame). As shown in Fig. 15, the processor wall-time increases
linearly with the number of neurons (blue line). This is because
the calculations are sequential. In contrast, the router processing
time depends exponentially on the number of neurons due to
the memory based approach (where all the connections are pre-
stored in the LUTSs). At cross point B, the routing computing
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TABLE IV
THE SUMMARY OF FPGA BASED NEURAL MODELING

ELGraas04 Randallo7 Andrew07 Cheungl2 JUN14 Georgiosl4 Our work
Cell types HH HH LIF 1zhik LIF HH* HH+
Neural Model Sizes 17 40 32 64000 100000 9% 500
Processor numbers 1 1 1 1 48 8 3
Synaptic connection \ all-to-all all-to-all Memory-  Routing- all-to-all  Memory-
Hardware implementation based based based
architecture )
FPGA chip XC2Vv1000 XC4VSX35 XC351500  XC6SX475T XC7VX485T XC7VX485T XC7VX485T
Arithmetic precision  Fixed-point  Fixed-point  Fixed-point Fixed-point Fixed-point Floating-point Fixed-point
Time step(ms) 0.001 0.01 \ 1 1 0.05 0.05
Speed Speed up X400 x8.7 x3125 x2.48 x40 x12.5 x1
performances
Operations in 1 ms <1200 >1200 <13 <13 30 22200 11880
FPGA frequency(Mhz) 26 28 50 100 121 100 56.7
FFs 2816(44%) 13840(90%) 26624(28%) 135032(22%) 176424(29%) 162217(27%) 18177(3%)
LUTs \ \ 26624(44%) 199421(67%) 268544(88%) 251485(83%) 32142(10%)
Resources RAMs 12(30%) \ 32(34%) 886(83%) 960(93%) 804(78%) 891(86%)
DSPs 40(100%)  183(95%)  \ \ 2304(82%)  1600(57%) 1431(51%)
Optogenietic No No No No No No Yes

Behaviours

period exceeds that of the neural processing. At cross point C,
the maximum number of neurons which can be implemented
on the processor for real-time computing can be seen to be 500,
for which the simulation time is 9.7 ms (assuming the fastest
biologically-realistic firing frequency is 100 Hz).

Specifically, with fewer than 45 neurons, the network sim-
ulation time equals the processor time. This is because the
processor and router compute in parallel in the hardware, and
the routing period of a frame is less than a processor sub-
frame period. However, with more than 45 neurons, indicated
at cross point A, the system transitions from scaling linearly to
non-linearly with the network size (neuron number). This is be-
cause the router requires more time for routing tasks compared
to the processor’s sub-frame periods at this stage, meaning that
the processor has to wait until the router finishes its current
frame tasks. Therefore, the system simulation performance
will mainly depend on the router itself. Overall, the system
performance exhibits a linear relationship to network size when
it is below 45 neurons, and displays a non-linear relationship
for more than 45 neurons (shown by the black line).

B. Comparison With Other Work

Comparisons between this work and previous FPGA neuron
implementations are shown in Table IV. HH* indicates that a
HH based model with three compartments, and HH+ represents
our optogenetic-calcium enhanced model. Compared to the
previous work, the major novelty of the presented work is that
we include long- and short-term calcium- and light-dependent
ion channels in the system. This enables our implementation to
produce more biologically realistic behaviours when compared
to other abstract models.

The neuron model itself exerts a major influence on the
hardware architecture design. General models with strong bio-
physical meaning have smaller time steps than mathematically
abstract models: Izhikevich [30] and LIF [31] models have 1 ms
time step while HH [21], [22] based models have time- steps
ranging from 0.001 to 0.05 ms. This is because complex neural
models require higher integration step resolution to compute the
detailed ionic dynamics. As a result, the number of hardware
operations for 1 ms of biological time in bio-physical models
is significantly larger than for the high-level phenomenological
neuron models: LIF and Izhikevich hardware implementations
take only 30 and 13 operations to simulate 1 ms of biological
time, whereas the HH model with 3 compartments and our
model require 22,200 and 11,880 operations respectively for the
same period.

Another vital issue concerns the implementation of neural
communication on the hardware. There are two major
approaches for this: memory-based and routing-based. The
memory-based approach uses on/off chip memory for pre-
storing network connections. For each computing loop
iteration, the neuron spike events will be sent to their
postsynaptic-neuron targets according to their address packages
(e.g., neuron and synaptic indices). Similarly to Cheung et al.
[30], our design also follows this principle. It enjoys low latency
and simple hardware design, but memory resource/bandwidth
limits will be reached when the neuron number exceeds a
certain threshold (dependent upon the resources of a particular
FPGA). The other approach is to use a network-on-chip archi-
tecture; a tailor-made routing strategy implemented to deliver
multi-core spike events in a system such as the SpiNNaker
platform [32]. Our previous work [33], [34] employed this
approach to implement cerebellum model [30] connections.
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TABLE V
THE SUMMARY OF DEVELOPED PROCESSOR APPLICATIONS

Applications Hardware requirements

Optogenetic actuators
investigation

Updating the parameters and
configuration signals for ChR2
computational blocks

Verification of optical—
neural interfaces

Updating all parameters in the
data generation system and
configuration signals in the

control blocks

Multi-site light stimulation
strategies investigation

Updating all parameters in
spatially varying light
stimulation profiles

It shows excellent system scalability but has more complex
hardware design to ensure low latency.

In addition, Randall et al. [18], Andrew et al. [31] and
Smaragdos et al. [17] implemented an all-to-all connection
through their custom-designed techniques.

In prior work, different designs have used different methods
to assess their relative computing performances. It is there-
fore hard to directly compare system speed and efficiency:
Graas et al. [19] proposed increasing the FPGA clock frequency
and the step size for a speed up of 40 x real-time; Cheung et al.
[30] designed an event-driven and fully pipelined architecture
for 2.48 x real-time; Smaragdos et al. [17] optimized their HLS
C-code for 12.5 x real-time. Fully pipelining and shortening the
critical path are employed in our system speed optimizations.

There are also several different hardware platforms such as
Spinnaker [32], Neurogrid [36], IFAT [37], and GPU [16] for
neural modelling. Each system has strengths and weaknesses in
particular areas. For example, Neurogrid and IFAT are mixed-
signal based architectures that are less reconfigurable but enjoy
elegant design and efficient power consumption.

C. Applications

The developed hardware can serve as a multi-functional
platform to investigate optogenetic related topics. Some of
these potential applications are summarized in Table V.

The first application is the investigation of optogenetic actua-
tors such as channelrhodopsin, halorhodopsin [38] and archaer-
hodopsin [39]. Depending on the required model, the ChR2
computing block can be easily re-configured to model other
opsins by updating its parameters and configuration signals.

Also, since an optical-neural interface system [23] is hard
to verify due to the complicated nature of the experiments, it
would be useful to develop optogenetic hardware (e.g., optrode)
functionality by using silicon networks at first. This will greatly
speed-up development and improve the hardware success rates
before investing time in biological experiments.

Finally, as mentioned, society faces important challenges in
fully realizing the potential of optogenetics as a method, such
as how to translate therapeutic or scientific network stimulation
into a particular three-dimensional light pattern. We hope that
the developed processor will prove to be a reliable tool with
which to address those challenges.

D. Future Work

One of the main areas for further development will be in
developing new techniques for system optimization. For exam-
ple, the natural communication in biological systems tends to
be asynchronous and event driven. Therefore, an asynchronous
communication protocol [43] coupled with an event driven
approach [44] may potentially make the system more power
efficient. Furthermore, sharing the common computing-path
[45] (e.g., ALU1) and optimization of the neural network mod-
ularity [46], [47] will result in utilizing less hardware resources.
Finally, multi-core architectures [48] represent a promising way
to scale the number of implemented neurons towards brain-
scale sizes with real-time computation.

VI. CONCLUSION

In this work we have designed and implemented an FPGA-
based neural processor for real-time simulation of opto-neural
behaviour. The developed neural processor can successfully
reproduce the photo-kinetics of mammalian neurons expressing
optically active ion channels [7] in a biologically realistic neural
network model. It only requires 0.03 ms for a single neuron and
9.7 ms for a fully connected 500-neuron network to generate
a spike. Therefore the system, with its real-time computing
performance and highly biologically-realistic behaviour, can be
applied in many ways as a powerful tool for multidisciplinary
researchers in the field of optogenetics.
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