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Abstract

Data fusion has always been a hot research topic in human-centric computing and
extended with the development of artificial intelligence. Generally, the coupled data
fusion algorithm usually utilizes the information from one data set to improve the
estimation accuracy and explain related latent variables of other coupled datasets.
This paper proposes several kinds of coupled images decomposition algorithms
based on the coupled matrix and tensor factorization-optimization (CMTF-OPT)
algorithm and the flexible coupling algorithm, which are termed the coupled images
factorization-optimization(CIF-OPT) algorithm and the modified flexible coupling
algorithm respectively. The theory and experiments show that the effect of the
CIF-OPT algorithm is robust under the influence of different noises. Particularly,
the CIF-OPT algorithm can accurately restore an image with missing some data el-
ements. Moreover, the flexible coupling model has better estimation performance
than a hard coupling. For high-dimensional images, this paper adopts the com-
pressed data decomposition algorithm that not only works better than uncoupled
ALS algorithm as the image noise level increases, but saves time and cost compared
to the uncompressed algorithm.

Keywords: data fusion; coupled image; machine learning; tensor decomposition;
AI

Introduction
Image data fusion has been a hot research topic in neuroscience, metabonomics and

other fields, and has been widely used in real life. The coupled data fusion algorithm

usually utilizes the information of one data set to improve the estimation accuracy

and the interpretation of related potential variables of other data sets. With the

development of electronic and imaging technology, it is difficult to find accurate data

for digital images for human beings, such as medical science [1], information remote

sensing and so on. In this situation, people hope to primitively analyze mass images

and select the information quickly and effectively by more convenient calculation

way. Moreover, traditional data processes mechanisms are less efficient when faced

with large amounts of data in human-centric computing. And we apply the tensor

structures to represent massive data to solve above problems in this paper because

of its multi-dimensional property.

Multi-source image data fusion refers to making the comprehensive image analysis

for the image data obtained from different acquisition devices (known as multi-

source heterogeneous image data), so as to achieve complementary information from

different information sources, and finally obtain clearer, more informative and higher

quality fused images. It is that we can use different types of electronic data collection
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Figure 1: The tensor structure of the
multispectral image.

Figure 2: The tensor structure of the video.

sensors to manage, analyze and integrate resources efficiently to provide clearer

images to humans. However, multi-source heterogeneous image data analysis is now

facing many problems. Complex data objects have multiple dimensions, and how to

depict the relationship between them through data analysis is one of the challenges

to solve urgently.

For example, we cannot utilize a general matrix to express the spectral image

as there are multiple spectral band, (e.g. the mode 3 axis), where each spectral

band represents a color image matrix. And we can see that multi-channel images

have natural tensor structures from the above case. Moreover, the superposition

of image matrix can be seen as a video if the mode 3 axis represents time, and

above two tensor structures are shown in Figures 1 and 2. Therefore, tensors can

express multiple relationships in the real world, while this paper studies image fusion

based on tensor analysis, which can abstractly describe the interaction mechanism

between multiple aspects of image data. In addition, tensor structure has strong

expression ability and computational properties, so it is very meaningful to study

tensor analysis of images. Tensor decomposition is a very significant knowledge

content, which can preserve the structural characteristics of the original image data

[2].

What’s more, multi-source heterogeneous semantics are much more rich. How to

build a generalization model that integrates multi-source data or discover the cor-

relation between them is another challenge for multi-source heterogeneous images.

In this paper, we generally use coupling to refer to the correlation between hetero-

geneous images. When doctors make the diagnosis for a patient’s brain, they can

get some images of the patient’s brain from a variety of ways, as shown in Figure 3.

And whether there is a coupling between these brain images, and how to combine

them to determine the etiology of patients are the questions to be discussed in this

paper. In addition, for the fusion of hyperspectral images and multispectral images,

it aims at integrating the information from them under the same scene, and then

generating fused images with more information and higher quality, the goal of this

task as shown in Figure 4. Similarly, what is the correlation between the informa-

tion contained in these spectral images and how to combine the complementary

information to obtain the clearer image are also the significance that this paper

need to study.

The outline of this paper is organized as follows. In ”Related work” section, related

work about coupled images fusion is discussed. And we mainly describe some basic

notations and definitions on tensors in ”Tensor and related notation” section. In
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Figure 3: The diagnosis process for a patient’s
brain.

Figure 4: The task diagram of hyperspectral
hyper-resolution.

”Coupled image fusion section”, the proposed coupled image fusion algorithms are

presented. Moreover, the experimental results on algorithms are shown in ”Exper-

iments and results” section. Finally, we give some conclusions and future research

directions we need to study next.

Related work
Recently, motivated by the tensor nuclear norm(TNN), Pan Zhou and Canyi Lu

proposed a novel low-rank tensor factorization method for efficiently solving the

3-way tensor completion problem, which can recover the synthetic data, inpainting

images and videos with superior performance and efficiency [3].For hyperspectral

images, tensor decomposition can make full use of space and inter spectral redun-

dancy between images, compressing the high spectral image and extracting the

related feature information fast and high-quality [4][35-36]. Chia-Hsiang Lin et al

proposed a convex optimization-Based coupled nonnegative matrix factorization al-

gorithm for hyperspectral and multispectral data fusion [34]. Shutao Li and Renwei

Dian proposed a coupled sparse tensor factorization (CSTF)-based approach for

fusing hyperspectral images and multispectral images to obtain a high spatial res-

olution hyperspectral image[5]. In addition, they consider high spatial resolution

hyperspectral image (HR-HSI) as a 3D tensor and redefine the fusion problem as

the estimation of a core tensor and dictionaries of the three modes[37]. Veganzones

and Cohen proposed a Canonical Polyadic decomposition (CP) algorithm based on

hyperspectral images, which was used to solve the problem of blind source signal sep-

aration [4]. They suggested to solve this problem as a low dimensional constrained

tensor decomposition and applied kinds of fast decomposition of large nonnegative

tensors which allowed a major speed up in the computation of the decomposition

[6].

In the past few years, there have been many researches on the application of CP

decomposition in image.In [7] and [38] used the CP decomposition into image com-

pression and classification . Marcella Astrid et al used the CP decomposition into

Convolutional Neural Networks (CNNs) to solve the image classification tasks [39].

Bauckhage introduced discriminant analysis to higher order data(i.e. color images)

for classification [8]. For hyperspectral and multispectral images (i.e. multi-source

heterogeneous data), kinds of methods exploits the Bayesian framework [9]-[11]

to fuse such images. Rodrigo and Jeremy proposed a Bayesian framework to define

flexible coupling models for joint tensor decompositions of multiple datasets[12][40].

They cast the problem of data fusion as the analysis of latent variable. And the la-

tent models between data are coupled through subsets of their variables, where the
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coupling refers to the relationship between these variables subset. That is, there is

a coupling relationship between the factor matrix after the tensor decomposition.

In this paper, we hope to use the coupling relation between images to solve the

problem, improving the accuracy and interpretability of the latent variables related

to the other data set from the information of one data set through joint tensor

decomposition algorithm.

In application, data analysis from different data sources needs to be handled

the heterogeneous datasets (i.e. a matrix or a high-order tensor) [13][41]. Recently,

matrix factorization and tensor-based factorization have been successfully applied

to multi-frame data restoration [14]-[17], recognition [18], [19], unmixing [20] and

data fusion [12], etc. For the data analysis of some coupled matrices and tensors,

corresponding coupled matrix and tensor factorization-optimization algorithm (i.e.

CMTF-OPT) was proposed in [21]. The numerical experiments showed that The

CMTF algorithm had better performance than CP algorithm in data recovery at a

certain level of noise.

Similarly, the higher order coupled tensor decomposition problem was also studied

in [6]. Model showed better performance in coupled tensor decomposition in the ex-

periments. Rodrigo and Jérémy studied the coupling relationship between different

data and the data decomposition algorithms under coupling, which showed that

the decomposition algorithm based on coupled data had better convergence and

the calculation of the algorithm took less time than alternating least squares (ALS)

algorithm [12]. So using the coupling relations between images is the necessary mea-

sure and work to decompose images. Moreover the algorithms in [12] and [21] are

not used to the coupled images. And S. Li and R. Dian do not make full use of the

coupling relationship between images and use this coupling relation to accelerate

the operation of the algorithm and restore the coupled image data [5]. Therefore,

this paper proposes the coupled image data decomposition algorithms based on the

CMTF-OPT algorithm [21] and the coupled tensor data decomposition algorithm

[12].

Tensor and related notation

In the nineteenth century, Gauss and Riemann put forward the concept of tensors

in the study of differential geometry. In 1916, Einstein applied tensors to the study

of the general relativity, which made tensor analysis to be an important tool in con-

tinuum mechanics, theoretical physics and other disciplines. In 2005, characteristic

polynomial was proposed for the first time in real symmetric tensor by Qi Liqun,

and he presented the definition of the eigenvalues [22].

In order to study the data fusion between the coupled images better and sim-

plify the presentation, this paper first introduces some of the following symbols and

definitions. For the general tensor, this paper uses the calligraphic letters to rep-

resent them e.g. X , the matrix is denoted by capital letters e.g. X, and the scalar

(or. vector) is represented by lowercase, e.g. x. The mode-n matricization of a ten-

sor X ∈ RI1×I2×···×IN is denoted by X(n), which can reduce the dimension of the

tensor.For a matrix A ∈ RI×J , vectorization is to expand the matrix by column,
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forming a IJ Column vector, that is

vec(A) =


a1
...

aJ

 ∈ RIJ . (1)

Given two matrices A ∈ RI×K and B ∈ RJ×K , the Khatri-Rao product is denoted

as A�B, and the calculation results is a matrix of size IJ ×K and defined by

A�B = [a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK ], (2)

where ⊗ is the Kronecker product.

Given two tensors A,B ∈ RI1×I2×···×IN , the Hadmard product denoted as A ∗ B,

and the calculation results is a matrix of size I × J , i.e.

A ∗ B =


a11b11 a12b12 · · · a1Jb1J

a21b21 a22b22 · · · a2Jb2J
...

...
. . .

...

aI1bI1 aI2bI2 · · · aIJbIJ

 . (3)

Given two tensors A,B ∈ RI1×I2×···×IN ,the inner product is defined as the sum

of the product of its elements, i.e.

〈A,B〉 =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

xi1i2···iN yi1i2···iN , (4)

we usually use ’◦’ to represent the outer product.

Let matrix A = (aij)m×n ∈ Cm×n, the Frobenius norm is defined as

‖ A ‖F= (

m∑
i=1

n∑
j=1

|aij |2)
1
2 . (5)

Tensor decomposition

In applications, the general tensor decomposition models can be divided into two

categories, which are the Canonical Polyadic/PARAFAC decomposition (e.g. CP

decomposition) and the Tucker decomposition model. The canonical decomposition

was originally proposed by Carroll and Chang [23] and PARAFAC (parallel factors)

by Harshman [24] separately. In 1966 Tucker [25] proposed the Tucker model. In

particular, the CP decomposition model is a special case of the Tucker decompo-

sition model.At the time, models were put forward to extract data characteristics

from psychological tests. For the general matrix model, we can extract the poten-

tial information of matrix data, such as hyperspectral data fusion and blind source

separation, by means of singular value decomposition of matrix, nonnegative ma-

trix decomposition and so on. Similar to the idea of low rank approximation of

matrix, researchers also want to extract latent information from tensor model data
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by means of tensor decomposition model.

For a tensor X ∈ RI1×I2×···×IN ,the CP decomposition is expressed as

X ≈
R∑
r=1

λra
(1)
r ◦ a(2)r ◦ · · · ◦ a(N)

r = [[λ; A(1),A(2), · · · ,A(N)]], (6)

where R is a positive integer, A(n) is called the factor matrix, which is a combination

of rank one vector a
(n)
r ,e.g.

A(n) = [a
(n)
1 , a

(n)
2 , · · · , a(n)R ], (7)

for n = 1, 2, · · · , N , λ ∈ RR, a
(n)
r ∈ RIn , A(n) ∈ RIn×R.

Especially, for the three order tensor X ∈ RI×J×K ,the CP decomposition is ex-

pressed as

X ≈
R∑
r=1

λrar ◦ br ◦ cr = [[λ; A,B,C]], (8)

where r = 1, 2, · · · , R, λ ∈ RR, ar ∈ RI , br ∈ RJ ,cr ∈ RK .

Here, the column of factor matrix A, B and C is normalized to 1, and λr is the

weight. If the weight is assigned to the factor matrix, the CP decomposition can

also be showed as

X ≈ (A
′
,B

′
,C

′
). (9)

Now we define Dr composed of λr is R × R × R order diagonal tensor, so the

equation can be transformed into

X = (A,B,C) · Dr. (10)

Coupled image fusion
Coupled data fusion

Data fusion, also known as collective data analysis, has been a hot topic in different

fields. Data analysis from multiple sources has attracted considerable people in the

Netflix Grand Prix. The goal is to accurately predict movie ratings. In order to

get better ratings, additional data sources supplement the user score, such as the

label information has been used. And the collective matrix factorization (CMF)

proposed by Singh and Gordon [26] is based on the correlation between data sets,

and the coupling matrix is factored simultaneously. Many researchers have paid

their more attention to image fusion technique based on pulse coupled neural net-

work. Literature [31] described the models and modified ones. As to the multi-focus

image fusion problem, Farshad G. Veshki et al. utilized the sparse representation

using a coupled dictionary to address the focused and blurred feature problem for

higher quality[32]. In order to create spectral images with high spectral and spatial

resolution, Yuan Zhou et al [33] proposed a fusion algorithm by combining linear

spectral unmixing with the local low-rank property by extracting the abundance
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and the endmembers of Hyperspectral images usually have high spectral and low

spatial resolution. Conversely, multispectral images.

For two matrices X ∈ RI×M , Y ∈ RI×L, the general CMF decomposition model

is established by minimizing the following objective function

f(U,V,W) =‖ X−UVT ‖2F + ‖ Y −UWT ‖2F, (11)

where the matrices U ∈ RI×R, V ∈ RM×R and W ∈ RL×R are the factor matrices,

R is the number of factors. In particular, because there exists a large number of high-

order data, the data fusion between the coupled tensor and the matrix is discussed

below.

For a tensor X ∈ RI×J×K and a matrix Y ∈ RI×M , the general coupled tensor

and matrx decomposition model is established by modifying the above objective

function

f(A,B,C,V) =‖ X − (A,B,C) ‖2F + ‖ Y −AVT ‖2F, (12)

where the matrices A ∈ RI×R, B ∈ RJ×R and C ∈ RK×R are factor matrices

obtained by CP decomposition of the tensor X .

Alternating Least Squares Algorithm for coupled matrix and tensor factorization

(CMTF-ALS) algorithm is proposed in [21]. The algorithm based on ALS is simple,

small and effective. However, the convergence of the algorithm based ALS is not

good with the missing data [27]. On the other hand, it is more robust to solve all

CP factor matrices with an optimized algorithm, and is more easily extended to the

missing data set [28]. Therefore, for high order data sets, with the support of the

algorithm proposed in [21], this paper presents some coupled image decomposition

algorithms, which describe the coupling analysis of heterogeneous image data sets.

Coupled tensor decomposition algorithm

CIF-OPT algorithm

The main purpose of this paper is exploring data fusion between coupled im-

ages. In general, images are stored in terms of tensor or matrix. Based on the

CMTF optimization(CMTF-OPT) algorithm in [21], a coupled images factorization-

optimization(CIF-OPT) algorithm is proposed. We firstly consider matrix image

and N -order tensor image with one mode in common, where tensor image is de-

composed through CP model and matrix image is decomposed through matrix

decomposition.

Given a tensor image X ∈ RI1×I2×···×IN and a matrix image Y ∈ RI1×M which

have have the nth mode in common, where n ∈ {1, · · · , N}. Without loss of gener-

ality, we assume that two images coupled in the third mode, and the common latent

structure in these images can be extracted by CIF-OPT algorithm. The objective

function of the coupled analysis between the two image datasets is as follow

f(A(1),A(2), · · · ,A(N),V) =‖ X −[[A(1),A(2), · · · ,A(N)]] ‖2F + ‖ Y−A(n)V T ‖2F,

(13)
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In order to solve the above optimization problem, we can calculate its gradient

and solve it by using any first order optimization algorithm of [29]. Next, this paper

will discuss the gradient of the objective function,the first item of the function (12)

is written as

f1 =‖ X − [[A(1),A(2), · · · ,A(N)]] ‖2F, (14)

the second item of the function (12) is recorded as

f2 =‖ Y −A(n)V T ‖2F . (15)

Let S = [[A(1),A(2), · · · ,A(N)]],and the specific forms of the partial derivative of

f1 with respect to A(i) are as below

∂f1
∂A(i)

= (S(i) −X(i))A
(−i), (16)

where i = 1, 2, · · · , N .The matrices A and V ∈ RM×Rare factor matrices obtained

by matrix decomposition of the matrix Y.

A(−i) = A(N) � · · · �A(i+1) �A(i−1) �A(1). (17)

The specific forms of the partial derivative of f2 with respect to A(i) and V can

be computed as

∂f2
∂A(i)

=

{
−YV + A(−i)VTV, for i = n,

0, for i 6= n.
(18)

∂f2
∂V

= −YTA(i) + VA(i)TA(i). (19)

Combined with the above calculation results, we can calculate the objective func-

tion f .

∂f

∂A(i)
=

∂f1
∂A(i)

+
∂f2
∂A(i)

,
∂f

∂V
=
∂f2
∂V

= −YTA(i) + VA(i)TA(i). (20)

Finally, this paper calculates the gradient of the optimization function f , and its

specific form is a vector e.g.

∇f =


vec( ∂f

∂A(1) )
...

vec( ∂f
∂A(N) )

vec( ∂f∂V )

 . (21)

where the length of the vector is P = R
∑N
n=1(IN + M), which can be formed by

vectorizing the partial derivatives with respect to each factor matrix and forming a

column vector.
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For some missing data sets, coupling analysis can still be carried out. The imple-

mentation of the algorithm can ignore missing data, and only analyze the known

data elements to find the tensor or matrix model. And we applied it to the miss-

ing image and restored the original image based on the proposed coupled image

decomposition algorithm through the another coupled image, which refer to [21].

Flexible coupling models

Rodrigo and Jérémy proposed the flexible coupling models based on the joint de-

composition of Bayesian estimation in [12]. They mainly present two general exam-

ples of coupling priors such as joint Gaussian priors and non Gaussian conditional

distributions. For two tensors with noisy measurements Y and Y ′
, Y is a second

tensor(e.g. matrix) which can be the SVD Y = UΣVT + E, and Y ′
is a third order

tensor which can be written Y ′
= (A

′
,B

′
,C

′
) + ε

′
via CP decomposition,where E

and ε
′

are the noisy array.

Let θ = vec([U; Σ; VT]) and θ
′

= vec(A
′
; B

′
; C

′
). Here we assume the parameters

θ and θ
′

are random and consider that the coupling between them is flexible, for

instance, we could have V = B, or V = WB for a known transformation matrix

W. Under the some simplifying hypotheses underlying the Bayesian approach, the

Maximum a posteriori estimator(MAP) estimator is given as the minimizer of the

following cost function

arg min
θ,θ′

Υ(θ, θ
′
) = − log p(Y | θ)− log p(Y

′
| θ

′
)− log p(θ, θ

′
). (22)

where p(θ, θ
′
) is the joint probability density function, p(Y | θ) and p(Y ′ | θ′

) are

the conditional probabilities.

Given two CP models Y = (A; B; C) and Y ′
= (A

′
; B

′
; C

′
) with dimensions I,

J , K and I
′
, J

′
, K

′
and number of components (i.e. number of matrix columns) R

and R
′

respectively. Considering the coupling occurs between matrices C and C
′
.

Rodrigo and Jérémy illustrate this framework with three different examples: general

joint Gaussian, hybrid Gaussian and non Gaussian models for the parameters in

[12]. This paper only discusses the second example (e.g. the hybrid Gaussian model),

and the other two cases are not considered by us. If readers are interested, you can

refer to the literature [12].

If there is no prior information about some parameters, the joint Gauss modeling

is not enough. On the contrary, we consider that these parameters are deterministic,

while other parameters are still random Gauss priors. We call this model a hybrid

Gaussian model. In fact, it only covers one scene which is factor matrix C is coupled

to C
′

another by a transformation matrix, this coupled relation can be written by

HC = H
′
C

′
+ Γ, (23)

where H and H
′

are transformation matrices, Γ is noisy of independent and iden-

tically distributed (i.i.d.) Gaussian with matrix C, e.g. Γ ∼ N(0, σ2
c ).

Under the assumption of hybrid Gaussian model[5], the MAP estimation is ob-

tained by minimizing the following cost function, that is, transforming function (22)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



et al. Page 10 of 23

into

Υ(θ, θ
′
) =

1

σ2
n

‖ Y−(A,B,C) ‖2F +
1

σ′2
n

‖ Y
′
−(A

′
,B

′
,C

′
) ‖2F +

1

σ2
c

‖ HC−H
′
C

′
‖2F,

(24)

a. Hybrid gaussian modeling and alternating least squares(ALS) algorithm

To minimize the above objective functions, standard algorithm matched with con-

vex optimization can be used, Rodrigo and Jérémy proposed the modified version

of the alternating least squares(ALS) which is widely used and easy to implement.

We will refrain on detailing above algorithms.

Using the above algorithm to initialize the original tensor, the factor matrices

are generated randomly and the tensor is formed by the tensor product operation

between the factor matrices. Finally, we can estimate the effectiveness of the algo-

rithms by comparing the mean square error between the factor matrices obtained

by the above coupling tensor decomposition algorithms of the noisy tensor and the

original factor matrices. If we apply the above algorithms to image, we need to

initialize the original image, that is, generating the original factor matrices. In this

paper, we use the following algorithm(i.e. Algorithm 1) to generate coupled images.

In this paper, the ALS algorithm is used to initialize the image, we modify the

objective function and algorithm in [12] as follows:

Υ(θ, θ
′
) =

1

σ2
n

‖ Y − (A,B,C) · Dr ‖2F +
1

σ′2
n

‖ Y
′

− (A
′
,B

′
,C

′
) · D

′

r ‖2F +
1

σ2
c

‖ HC−H
′
C

′
‖2F,

(25)

In order to apply ALS algorithm, it’s necessary to calculate its gradient with

respect to every factor matrix and set it to zero. For coupled factors C and C
′
, this

algorithm only considers updating them simultaneously, which requires to solve the

following linear equations[5]:

Mvec([C; C
′
]) = vec([

1

σ2
n

Y(3)D;
1

σ′2
n

Y
′

(3)D
′
]), (26)

where M = [M11,M12; M21,M22], D = (B�A)T(B�A), D
′

= (B
′�A

′
)T(B

′�A
′
)

and

M11 =
1

σ2
c

IR ⊗HTH +
1

σ2
n

DT ⊗ IK ,

M22 =
1

σ2
c

IR ⊗H
′TH

′
+

1

σ′2
n

D
′T ⊗ IK ,

M12 = − 1

σ2
c

IR ⊗HTH
′
,

M21 = − 1

σ2
c

IR ⊗H
′TH.

(27)

b. Joint tensor decomposition of high dimensional coupled images

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



et al. Page 11 of 23

Algorithm 1. Algorithm for generating coupled images

step1: For two images, reading the image data with the image reading

function(Im2double) in MATLAB to generate the tensor X , X ′
.

step2: Applying CP decomposition algorithm (CP-ALS) to obtain â0,

b̂0, ĉ0, Dr, â
′

0, b̂
′

0, ĉ
′

0, D′

r.

step3: For simplification, absorbing the diagonal tensor Dr and D′

r in

â0 and â
′

0 to obtain Â0 and Â
′

0. Using the coupling factor σc and Ĉ0

to initial factor matric Ĉ
′

0 , e.g.

Ĉ
′

0 = ĉ0 + σc ∗ (γa, Rb);

step4: Using tensor product for Â0, b̂0, ĉ0 and Â
′

0, b̂
′

0, Ĉ
′

0 to obtain

new tensors. Then the noise is added to the tensors to have coupled

images Y, Y ′
.

a This footnote is a zero mean white Gaussian matrix.
b This footnote is the rank in tensor decomposition.

For the actual high-dimensional images, a high dimensional coupled image decom-

position algorithm is proposed. It is assumed that the coupling relationship between

images is as follow:

C = C
′
+ Γ, (28)

where Γ is an i.i.d. Gaussian matrix with variance of each element σ2
c and C

′
has

columns of given norm. If we disregard the coupling of the tensors, a common

method to retrieve the CP models is to compress the data arrays, decomposing the

compressed tensors, and then uncompress the obtained factors matrices, which is a

more computationally efficient way.

For a three-order tensor X ∈ RI×J×K ,the tucker decomposition is expressed as

X ≈
P∑
p=1

Q∑
q=1

R∑
r=1

gpqrup ◦ vq ◦ wr = [[G; U,V,W]], (29)

where U ∈ RI×P ,V ∈ RJ×Q, and W ∈ RK×R are the factor matrices ,which are

usually orthogonal.The positive integers P , Q, and R are the number of components

(i.e., columns) in the factor matrices U, V, and W, respectively. The tensor G ∈
RP×Q×R is called the core tensor. Tucker decomposition is a high-order principal

component analysis, which represents a tensor as a core tensor multiplied by a

matrix along each mode.

If we assume two tensors are noiseless, i.e.

X ≈
P∑
p=1

Q∑
q=1

R∑
r=1

gpqrup ◦ vq ◦ wr = (U,V,W)G,

X
′
≈

P
′∑

p=1

Q
′∑

q=1

R
′∑

r=1

g
′

pqru
′

p ◦ v
′

q ◦ w
′

r = (U
′
,V

′
,W

′
)G

′
,

(30)

In this section, we consider the decomposition algorithm of the coupled high di-

mensional images. The high dimensional image is decomposed into the low dimen-
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sional core tensor through the Tucker decomposition, and then decomposing the

two core tensors by CP decomposition to get the factor matrices, the compressed

CP models will reduce the cost and consumption of the calculation. There exists

the relationship below.

G ≈ (Ac,Bc,Cc),G
′
≈ (A

′

c,B
′

c,C
′

c), (31)

The factor matrix of the original tensor can be solved by matrix multiplication with

less computation.

(U,V,W)G = (UAc,VBc,WCc),A = UAc,B = VBc,C = WCc (32)

It is assumed that the coupling relationship between noiseless tensors in the com-

pressed space as

WCc = W
′
C

′

c + Γ (33)

However, if one tensor is noisy(i.e. Y),there exists the similarity coupling in the

compressed dimension

Cc = C
′

c + Γc (34)

where Γc is a matrix of same dimensions as Cc and with Gaussian i.i.d. entries of

variance. The hybrid objective function in the compressed space is modified to the

following objective function,which can be solved using the ALS algorithm.

Υ(θ, θ
′
) =

1

σ2
n

‖ G−(Ac,Bc,Cc) ‖2F +
1

σ′2
n

‖ G
′
−(A

′

c,B
′

c,C
′

c) ‖2F +
1

σ2
c

‖ Cc−C
′

c ‖2F,

(35)

For the factorization of some coupled images, we expect that the factor matrices

obtained by factorization algorithm can be shown by images. That means to min-

imize the objective function under the constraint of nonnegative conditions. The

MU algorithm is usually used for nonnegative matrix factorization [6].

Experiments and results
The main idea of this paper is applying the above coupled data fusion algorithms

to deal with the image. It is well known that the stored data values of images are

ordinarily large. If the tensor decomposition algorithm is applied directly to the

coupled image data, the error is a big problem, which makes us use the command

Im2double in Matlab to scale the values to reduce the numerical error in program

operation.

CIF-OPT algorithm

In this section, the coupled matrix tensor decomposition method is applied to mul-

tispectral and panchromatic images. The original images which are the low spatial
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Algorithm 2. Joint tensor decomposition algorithm for the coupled images

step1: For two images, X , X ′
.

step2: Applying tucker decomposition algorithm to obtain

X ≈
P∑
p=1

Q∑
q=1

R∑
r=1

gpqrup ◦ vq ◦ wr = (U,V,W)G,

X ′ ≈
P

′∑
p=1

Q
′∑

q=1

R
′∑

r=1
g

′

pqru
′

p ◦ v
′

q ◦ w
′

r = (U
′
,V

′
,W

′
)G′

,

step3: Decomposing the two core tensors by CP decomposition to get the factor matrices

G ≈ (Ac,Bc,Cc),G
′ ≈ (A

′

c,B
′

c,C
′

c),

step4: Solving the hybrid objective function using the ALS algorithm.

Υ(θ, θ
′
) = 1

σ2
n
‖ G − (Ac,Bc,Cc) ‖2F + 1

σ′2
n

‖ G′ − (A
′

c,B
′

c,C
′

c) ‖2F + 1
σ2
c
‖ Cc −C

′

c ‖2F,

Figure 5: The multispectral image of area I Figure 6: The panchromatic image of area I

resolution multispectral image located in Beijing, China and the corresponding high

spatial resolution panchromatic image are as follows.

The experimental data are captured from Airborne Visible Infrared Imaging

Spectrome-TER (AVIRIS) in Beijing. The AVIRIS data can provide 224 spectral

segments with a spatial resolution of 20m, covering a spectral range of 0.2 ∼ 2.4m,

and its spectral resolution is 10nm. The size of multispectral and panchromatic im-

ages of area I which are shown in Fig.5 and Fig.6 are 300×300×3 and 300×300 pixels

respectively. The size of multispectral and panchromatic images of area II which

are shown in Fig.7 and Fig.8 are 256 × 256 × 3 and 256 × 256 pixels respectively.

The multispectral and panchromatic image data of area I are read and initialized

by MATLAB, and stored as tensor X ∈ R300×300×3 and matrix Y ∈ R300×300. And

the tensors of area II are generated in the same way.

According to the data generation of the CIF-OPT algorithm, the original data

are sampled from the multispectral and panchromatic images, and the initial factor

matrix is obtained by the ALS algorithm. Using the tensor product and the matrix

multiplication to calculate the noiseless initial tensor and matrix. Without losing

generality, we set the coupled factor matrix between tensor and matrix to C. In

order to study the performance of the algorithm better, experiments are carried out

under different noise levels.

Adding noise to the obtained tensor X ∈ R300×300×3 and the matrix Y ∈ R300×300

after initializing the images, e.g.

X
′

= [[A,B,C]] + ηN ‖[[A,B,C]]‖
‖N‖

, (36)
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Figure 7: The multispectral image of area II Figure 8: The panchromatic image of area II

where N ∈ R300×300×3 is the stochastic Gaussian noise tensor, η is used to control

the noise level. Similarly, the Gaussian noise is added to the matrix Y, that is,

Y
′

= AVT + ηN
‖AVT‖
‖N‖

, (37)

where N ∈ R300×3 is the stochastic Gaussian noise matrix, η is used to control the

noise level.

In this experiment, four different noise levels are set, which are 0, 0.1, 0.25, and

0.35 respectively. As the terminating condition of the CIF-OPT algorithm, it needs

to be satisfied

5f =
|fk+1 − fk|

fk
≤ 10−8, (38)

where f is the objective function, in addition, the maximum number of function

values and iteration number is set to 104 and 103 respectively. In the process of ex-

periment, the termination condition of algorithm depends on the change of function

value before and after iteration.

The main purpose of this section is to apply the CIF-OPT algorithm to the cou-

pled multispectral and panchromatic images and the specific results are shown in

Table 1. From Table 1, it can be seen that the CIF-OPT algorithm has the similar

fusion effect for different images, which shows that the algorithm has a certain ro-

bustness. The fusion effect will not change dramatically as the vary of image order

and data elements. Moreover, the number of iterations does not alter greatly with

the increase of order, which proves the feasibility of decomposition for coupled im-

ages.

Table 1: Comparison of decomposition algorithms on different areas

η Area Iter FuncEvals f

0.10
1 521 1073 0.0098158

2 942 2693 0.0097922

0.25
1 842 1702 0.0583453

2 302 632 0.0581043

0.35
1 442 924 0.1080817

2 422 883 0.1077908

The change from coupled data to the coupled image decomposition algorithm

shows the iteration times and the maximum number of functions that CIF-OPT
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Figure 9: Comparison of objective function
values under different noise levels.
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Figure 10: Comparison of objective function
values under different noise levels.

algorithm needs to convergence is larger than CMTF-OPT algorithm. The results

are inevitable, because the coupled image needs to be initialized and converted to

the coupled data to achieve the algorithm when the coupled image is decomposed.

Therefore, the convergence of algorithm requires more iteration times. Accordingly,

by observing the experiment of adding noise to the coupled image, it can be seen

that the proposed algorithm can realize the decomposition of the coupled image,

and the decomposition effect is better than the CMTF-OPT algorithm under the

certain noise level. Consequently, the above results prove the feasibility of coupled

image decomposition.

Another ACMTF algorithm for coupling image decomposition conducted the same

noise level experiment for region I, and compared with CMTF-OPT algorithm. The

results are shown in Fig. 9. It can be seen that ACMTF algorithm is superior to

CMTF-OPT algorithm in different noise levels. Therefore, based on the same param-

eters and noise conditions, this paper conducts the same noise level experiment for

another ACIF algorithm of coupled image, and compares the target function value,

iteration times, error and other parameter results between the two algorithms. The

fusion effect under different noise levels is shown in Fig. 10. Experimental results

show that CIF-OPT algorithm is more effective than ACIF algorithm when the

added noise is less than 0.2. This is different from the data fusion effect of the two

algorithms in the coupled data, and with the increase of noise level, the perfor-

mance of the two algorithms in the fusion effect is almost the same, which shows

that the improved image decomposition algorithm does not have better advantages

than CIF-OPT algorithm.

In this paper, the number of iterations required for algorithm convergence is com-

pared as shown in Fig. 11. It can be seen from Fig. 11 that the number of iterations

required for ACIF algorithm to converge is more than CIF-OPT algorithm in most

cases, and the running time from reaching convergence condition to algorithm ter-

mination is longer when the algorithm is running. In order to comprehensively con-

sider various factors, this paper calculates the fusion errors of the four algorithms

to comprehensively compare the accuracy of the algorithm for data decomposition.

See Fig. 12 for the specific results.

Fig. 12 shows that to some extent, the decomposition effect of the coupled image

is better than that of the coupled data, but the error of the decomposition algorithm
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Figure 11: Comparison of iteration times in
different regions.

Figure 12: Comparison of the error values in
different noise levels.

Figure 13: The coupled image X .
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Figure 14: The coupled image X ′
.

of the coupled data has a certain stability, and the error difference is lower than

that of the decomposition algorithm of the coupled image. For the two algorithms

of coupled image decomposition, when the noise level is lower than 0.25, the error

value of the two algorithms is unstable, and the error value of Fig. 12 is small.

Therefore, with the increase of noise level, the error value of CIF-OPT algorithm

is very close to that of ACIF algorithm. So for the coupled image decomposition

algorithm, CIF-OPT algorithm shows better fusion effect at low noise level, and the

error difference and the number of iterations required for algorithm convergence are

less.

The above algorithm is mainly based on the comparison of the result parameters

of region I. We compare the iterations of the algorithm and the difference between

the objective function values for two different regions based on CIF-OPT algorithm,

and the results are shown in Fig. 13 and Fig. 14. It can be seen that there is no

obvious linear relationship between the number of iterations and the image size.

Because the magnitude of figure 14 is very small, the objective function values of

the two regions are very close, that is to say, the function optimal value of CIF-OPT

algorithm will not change significantly due to the difference of image size and pixel.

Based on the proposed CIF-OPT optimization algorithm, the multispectral images

of the missing data coupled with the panchromatic image are restored. That is, all
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Figure 15: Data estimation with 25% missing
data.

Figure 16: Data estimation with 50% missing
data.

Figure 17: The uncoupled original image.

the data of the panchromatic image are known. The specific results of the algorithm

are shown in Fig.15 and Fig.16. Where the missing data of this experiment occurred

in area II and the recovered data is the transformed data, not the original image

data. By observing the data curve recovered by the CIF-OPT algorithm, it is known

that the data recovery effect of the coupled image with 25% missing data is better

than the effect of image with 50% missing data. That is, the correlation between

real value and estimated value is stronger when the percentage of missing data is

25%, and the linear slope is closer to 1.

Straightforward hybrid Gaussian coupled decomposition

We consider the straightforward hybrid Gaussian coupling model C = C
′
+Γ. And

we select the small images inside the red frame as the uncoupled original tensors

of Algorithm 1 in Fig.17. The two CP models are generated by these images with

dimensions I = I
′

= J = J
′

= 30, K = K
′

= 3 and R = R
′

= 8, e.g. Y,Y ′
. Then

through simplification and adding Gaussian noise and different coupling intensity

to Y,Y ′
to obtain the new tensors Y,Y ′ .The original tensor images are shown in

Fig.18 and Fig.19. And the new tensor Y is almost noiseless σn = 0.001, while Y ′

has some noise σ
′

n = 0.1. The coupled images were generated by Algorithm 1, and

decomposed by the ALS algorithm(i.e. Alg. 1) in [5]. Alg. 1 is applied to estimate
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Figure 18: The coupled image Y.

Figure 19: The coupled image Y ′
.

the CP models under 400 different noise and coupling realizations. We also evaluate

the total MSE on the C and C
′

factors and the total MSE for an ALS algorithm.

And the total MSE on a factor, for example the total MSE on C with Nr different

noise realizations is (1/Nr)
∑K
k=1

∑R
r=1

∑Nr

n=1(Ckr− Ĉn
kr)

2, where Ĉn
kr is the factor

estimated in the n-th noise realization.

Due to the different coupling intensity of the image, we used the above algorithms

to decompose the image and get the mean square error of the factor matrix C for

different coupling intensity. We can see that the factor matrix is generally better

estimated by increasing the coupling density while applying a hard coupling(i.e.

C = C
′
) in Fig.20, since more information comes from the clean tensor through the

coupling. For a flexible coupling,instead of the mean square error decreases while

1/σc > 102. And in the interval 1/σc ∈ [10; 104], the flexible coupling model has

better estimation performance than the hard couplings. For 1/σc > 104, the flexible

couplings works better than a hard coupling.

Compressed coupled decomposition

For high-dimensional images, the compressed data decomposition algorithm is

adopted in this paper. The selected images are the Lena noised images which are as

follows in Fig.21 and Fig.22. The tensors are generated by the following two images

with dimensions I = I
′

= J = J
′

= 256, K = K
′

= 3 and P = 50, Q = 40. For

the coupled compression decomposition algorithm of large images, the number of
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Figure 20: Total MSE for the factors C and C
′

with different algorithms.

Figure 21: The coupled image X . Figure 22: The coupled image X ′
.

decomposed components is not well defined. Therefore, under the condition of the

same coupling density (1/σc = 103), we selected the best number of components

based on the MSE on factor matrix C. The experimental results are shown in

Fig.23, which showed that the mean square error of factor matrix is the smallest

when R = 3. So later in this paper, R = 3 as the best number of components is

used for other experiments. Factor matrices are generated by CP decomposition

algorithm similarly to the previous example. The matix C is coupled with factor

matrix C
′

with additive zero mean Gaussian noise of variance σ2
c . Where

σc = |det(C
′ −C)

det(γ,R)
|, (39)

and γ is a zero mean white Gaussian matrix. The data array Y is almost noiseless

σn = 0.001, while Y ′ has some noise σ
′

n = 0.1.We compare the performance of the

coupled algorithm in the compressed space and the uncompressed space.Results for

20 iterations of the coupled algorithms are shown in fig.24 and fig.25. Compression

was computed with randomized SVD from [30]. And initializations were given by

two coupled uncompressed ALS with 1000 iterations, themselves initialized by de-

composing images.

As shown in the picture, the compression and ALS algorithms show similar

performance in the case of coupling, and the decomposition accuracy of the two
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Figure 23: Decomposition performance of three algorithms under different ranks .
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Figure 24: Total MSE for the factors C and C
′

in the compressed space.
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Figure 25: Total MSE for the factors C and C
′

in the uncompressed space.

algorithms decreases with the increase of the coupling density.

Then we study the relationship between noise and algorithm estimation perfor-

mance. The SNR for Y is set to 22 dB, and it varies from 4 dB to 20 dB for

Y ′
.Where

SNR(Y) = 10log10
R(1 + σ2

c )

IJσ2
n

,SNR(Y
′
) = 10log10

R

I ′J ′σ′2
n

. (40)

We compare the performance of the coupled algorithm in the compressed space

and the uncompressed space, as well as standard ALS in the uncompressed space.

Note that in Fig.26,When the SNR<18dB, uncoupled ALS algorithm works better
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Figure 26: Reconstruction MSE of noisy factor C
′

with different algorithms.
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Figure 27: Computation time in the compressed space.
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Figure 28: Computation time in the uncompressed space.

than the remaining two algorithms.As the noise level increases,for SNR>18dB,the

uncoupled ALS algorithm decreases estimation performance in both coupled and

compression cases.

On the run time of the algorithm, Fig.27 and Fig.28 show the clear difference in

computation time between kinds of decomposition algorithms. We can see that the

compression decomposition algorithm obviously saves time and cost compared to

the uncompressed algorithm which may be rather slow. As the noise level increases,

uncoupled ALS decreases estimation performance in both coupled and compression

cases. In addition, hybrid coupling model is only verified in Gaussian condition to

show its effectiveness and we will do other experiments in the future to demonstrate

the versatility of the algorithm.
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Conclusions
In this paper, we propose two algorithms for coupled image decomposition, which

mainly utilize the CMTF-OPT algorithm and the flexible Bayesian model in the

coupled data decomposition.For the proposed CIF-OPT algorithm, the correspond-

ing experiments show that the effect of the coupled image decomposition under

the influence of different noise is robust, and the fusion effect is better than the

CMTF-OPT algorithm, which shows that the coupled images decomposition al-

gorithm is feasible. In addition, because the expression of a phenomenon can be

different from all kinds of data sets, the link set of data decomposition should be

flexible. Therefore, this paper presents the modified flexible Bayesian model. From

the experiments of it, we can easily see that the factor matrix could be estimated

better by increasing the coupling density. And from the aspect of algorithm, the

flexible coupling model has better estimation performance than the hard coupling

models. Moreover, a coupled data compression scheme is derived from tensor images

of large data sets. As the noise level increases, uncoupled ALS decreases estima-

tion performance in both coupled and compression cases. On the run time of the

algorithm, the compression decomposition algorithm obviously saves time and cost

compared to the uncompressed algorithm. In fact, the image matrix is nonnegative.

Therefore, when considering the coupled image decomposition algorithm, adding

non negative constraints is our work in the future.
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