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Abstract—With the rapid development of mobile applications, 

networking technologies have been constantly evolved to offer a 

more convenient way of sharing information and online-

communication anytime and anywhere. Vehicular networks have 

the potential to become one of the important carriers of future 

mobile networks. The performance of current vehicular networks 

has been widely evaluated through simulation experiments due to 

the high cost and impracticality of other experimental approaches. 

The most paramount factors of vehicle networks are the 

authenticity of simulative evaluation, where the mobility of the 

vehicles is the first significant feature (i.e., the nodes of the 

vehicular network) that must be properly considered. However, 

generating the corresponding real mobility datasets has always 

been a big challenge although it is vital to the simulations of 

vehicular networks. Therefore, in this paper, we propose a 

learning-based generation method that can be used to build the 

vehicle-trajectory data for variety of vehicle densities. Firstly, with 

analyzing the road bayonet data, we obtain the hidden pattern 

between road traffic and time. Secondly, we deploy Vissim (a 

well-known traffic simulator) to generate the experimental data by 

considering the urban functional areas for the origins of vehicles. 

The generated experimental data are learned by Extreme Learning 

Machine (ELM), and the weight matrix of the parameters is 

obtained, which presents the impact of the experimental parameters 

on the simulation results. We prove the effectiveness of our 

method by comparing the generated vehicle-trajectory datasets 

with the vehicle density predicted by the weight matrix and the 

realistic traffic flow model.  
Keywords—vehicle mobility, dataset generation, vehicular 

networks, Vissim. 

I. INTRODUCTION 

With the increase in the volume of vehicular traffic and 
its serious environmental impact, the most concerned issue 
for transportation departments in most nations and regions is 
traffic management. With the rapid development of the 
recent wireless vehicular communication capabilities, an 
important part of the Intelligent Transportation System (ITS) 
is to enable efficient traffic management. As a fundamental 
element of ITS, vehicular networking technology has 
attracted much attention from academia and industry [1]. 
Vehicular network establishes the communication platform 
between vehicles, which improves traffic efficiency and 
brings reliable safety and multiple conveniences for the 
drivers and thereby makes the experience of travellers more 
comfortable [2]. For example, it is applied to support the 
safety driving by obtaining information on other vehicles 
(such as speed, direction, and position) and observing road 
condition. In both academia and industry, the performance 
evaluation of vehicular networking technologies should be 
taken under large-scale scenarios, which makes the real 
field tests of vehicular networks costly and impractical. 
Hence, simulation is the current optimal choice for the 
validation of vehicular network architecture and protocols. 
In this context, due to the dynamic and road-constrained 

nature of vehicles, the trajectory of vehicles is the key to 
achieving the close-to-real performance results in the 
simulation. Till now, it is still infeasible to collect dense 
vehicular trajectories where floating car data and car electric 
plate data are both sparse. The trajectory of vehicles has 
shown the big impact on the evaluation of routing protocols 
of vehicular networks where small changes of the trajectories 
or incomplete representation of vehicle traffic could cause 
the huge waves are shown in different performance metrics 
[3]-[5]. Therefore, generating real-world vehicle-trajectory 
has attracted tremendous research efforts. 

There is great substantial progress in the quality of 
vehicle-trajectory in the studies of vehicular networks over 
the last few years including the random mobility models 
employed [3], the stochastic mobility of realistic road 
topology [6], and the microscopic vehicular model [7]. The 
trajectories generated from the above models are input in 
professional simulation environments. Also, in parallel with 
the evolution of vehicle-trajectory, vehicle traffic dataset in 
the real world have grown in number and scale. 

In this work, we propose a learning-based generation 
method of the vehicle-trajectory dataset with considering the 
bayonet data and Extreme Learning Machine (ELM) [8] [9], 
which breaks the dependence of mobile simulation on the 
investigation report [10]. To make the experimental data 
more representative and realistic, the impact of urban 
functional areas on vehicle travel is considered when we set 
the origin point of vehicles. Besides, we propose a new 
scheme to tune the parameters of traffic simulation tools, e.g., 
Vissim. This method provides a feasible way to generate 
fixed-width vehicle trajectory data, which is no longer 
cumbersome and more practical. The weight matrix of 
parameter and simulated traffic flow model obtained by this 
method can be used to generate mobile trajectory datasets of 
different road topologies and vehicle densities and does not 
need to be modeled again. Also, the vehicle-trajectory 
dataset obtained by our method facilitates the simulation of 
communication protocols. 

Our main contributions can be summarized as follows:  

⚫ A novel learning-based vehicle-trajectory 
generation method is proposed.  

⚫ We considered the urban function area when setting 
the origin point of the vehicle.  

⚫ Compared with real data, the proposed method 
achieves promising performance.  

The rest of the paper is organized as follows. The related 
work is discussed in Section II. In Section III, vehicle-
trajectory generation method is given in detail. Section IV 
describes the simulation experiment and the performance 
results. Conclusions are presented in Section V. 



II. RELATED WORK 

Nowadays, with the progress of modern science and 
technology, there is more road detection equipment deployed 
to collect data. As a consequence, a massive variety of 
mobility trace of vehicles is stored, where R&D has made 
many efforts to apply these data. 

Socio-traffic surveys represent a momentous source of 
information for obtaining vehicle-trajectory datasets. 
Existing study has made many efforts to generate large-scale 
vehicle-trajectory datasets that compass very large urban 
areas, and are realistic also from a macroscopic point of view. 
In [11], the authors propose the framework for vehicular 
mobility scenario generation, namely, En Route. By applying 
the framework to traffic camera dataset, they model the 
traffic demand of a large-scale urban scenario (city of 
London). Origin-Destination (OD) matrix is employed to 
identify the traffic demand, including the start time, the 
coordinates of origin, and destination of each vehicle trip in 
the simulation area. Currently, the stochastic traffic demand 
model and the shortest path-based algorithm are most 
commonly methods to establish traffic demand. However, 
these methods may lead to unrealistic vehicle flow and 
deviation of simulation results. The authors in [12] adopt the 
precise road traffic information gathered from the flow 
counters and the OD matrix model to simulate the vehicle-
trajectory in Luxembourgian. According to the official traffic 
flow data, the real traffic data is denser than the generated 
vehicle-trajectory data in some regions. 

The real-world car traces fetched directly from retrieving 
vehicle positions of GPS receivers has been employed for 
research, e.g., Floating Car Data (FCD). In [13], the authors 
analyze the FCD of Beijing, China, by dividing the urban 
functional areas. They apply the Gravity Model to predict the 
OD matrix of vehicles. As a result, they reproduce the 
scenario by using the simulation tool, Simulation of Urban 
Mobility (SUMO) [14] to generate the mobility data of urban 
vehicles. The generated vehicle movement data is compared 
with the traffic in Beijing. The results show that the method 
produces closed-to-reality vehicle-trajectory in most areas, 
but only not for the region in areas such as railway stations 
or bus stations. In [15], the authors generate the trajectory of 
social vehicles that last for 24 hours in Köln, where the 
traffic flow for each road is set by considering the micro-
driver behavior and the macro traffic flow. Then they use the 
Gawron’s algorithm to balance the traffic flow. Finally, they 

demonstrated that this dataset considering microscopic 
behavior has a significant impact on network performance 
assessment. However, if there is no accurate official data 
provided by the government, it is impossible to generate 
dataset by their method.  

Most of the previously discussed vehicle-trajectory 
datasets are synthetically generated by macroscopic traffic 
data into a microscopic mobility simulator. However, 
vehicle-trajectory prediction of objects has gradually become 
active research field and has been widely supported in 
moving objects databases. In [16], aiming at the 
disadvantages of the existing predictive trajectory algorithm, 
an improved algorithm based on Hidden Markov model-
based Trajectory Prediction (HMTP) is proposed, called 
HMTP∗, which captures the parameters required by the real-
world scenarios regarding objects with dynamically changing 
speed. Also, a vehicle-density-based method of trajectory 
division is employed to improve the efficiency of vehicle-
trajectory prediction. Extensive experiments are conducted to 
demonstrate the effectiveness of the proposed algorithm. The 
results of these experiments prove that the algorithm has a 
higher positioning accuracy than the general algorithm. 
However, this approach cannot be employed to predict the 
future location of moving nodes due to the spatiotemporal 
characteristic of the trace data. The trajectory of the dynamic 
object is predicted by employed Markov chain [17]. To 
compute the K-order transition matrices and predicted 
dynamic paths from constructing a Markov chain, the 
historical information is transmitted into directed connected 
graphs. However, this method heavily depends on the 
massive data of history trajectories. Thus, the feasibility and 
accuracy cannot be guaranteed. 

By analyzing and discussing the existing mobility trace, 
we summarize the general regulation of excellent vehicle-
trajectory datasets. Overall, the ultimate vehicular mobility 
trace for vehicular network simulation should feature all of 
the following. 

⚫ The integrity of vehicle traffic should be included 
in the vehicle trajectory data. 

⚫ In the case of higher time granularity, an order-of-
second level of precision tracking of the position of 
each vehicle is a least. 

⚫ The realistic performance of the micro-behavior of 
individual drivers should be represented, and their 
interaction with other drivers and the road 
conditions are also reflected. 

The above survey shows that current trajectory obtained 
through real-world tracking cannot meet the requirements of 
the first two rule, as they are limited to subsets of the 
vehicle-trajectory datasets, e.g., exhibit reduced temporal 
detail, or update the position once a minute or a few minutes. 
These datasets are today mainly employed for the 
performance evaluation of high latency or opportunistic 
mobile communication networks. However, for a more 
general use case, significantly higher granularity and 
penetration rates are needed. However, it is easy to foresee 
that the public disclosure of such mobile datasets will be 
hindered because of privacy concerns and market rules, 
similar to today happening of logs collected by mobile 
network operators. The limitation of real-world mobile trace 
forces us to resort to generated synthetic vehicle-trajectory 
datasets. In fact, at the cost of computational complex, the 

Fig. 1 Flow diagram of datasets generation methodology 

 



generation of such trajectory datasets can meet any volume 
of traffic and time granularity. Thus, the first two 
requirements above can be fulfilled. 

The interaction of driver and driver, the driver and the 
road environment are considered in the currently generated 
vehicle-trajectory model. Moreover, most of the trajectories 
are generated by injecting macro data into the micromotion 
simulators. Couple with the availability of the real-world 
road map service, the third constraint can be easily met. In 
[18] detailed theoretical research of microscopic mobility 
modeling is proposed, and recommended readers for 
reference. The vehicle-trajectory dataset we introduce in the 
next sections satisfies the above constraints and is a new 
method to generate vehicle-trajectory data employed 
micromotion simulators.  

III. ESTABLISH SIMULATION MODEL 

The current mobility-model based vehicle-trajectory 
generation cannot meet the simulation needs of the vehicular 
network and vehicular networks. More trajectories of private 
vehicles are required as they represent the real movements of 
urban vehicles. However, due to privacy and security reasons, 
the data of private vehicles are quite difficult to obtain. 
Therefore, the development of vehicular network is hindered 
by the lack of sufficiently trajectory dataset. In this paper, we 
propose a generation method of the vehicle-trajectory dataset 
based on road bayonet data and ELM. 

As shown in Fig. 1, our generation method of vehicle-
trajectory dataset mainly includes three parts, the analysis of 
bayonet traffic, the data generation of the Vissim simulation, 
and the learning process of the parameters for the simulator. 
We adopt the bayonet data of several lanes near Jingtian 
Road in Shenzhen, China. By analyzing the data, the traffic 
flow is obtained of these roads. It is clear that the closer 
average traffic volume generated by the simulation is to the 
real one, the more accurately the generated vehicle-trajectory 
dataset can reflect the real traffic in the area. In Subsection B, 
a large amount of experimental data is generated according 
to different parameters. The generated experimental data is 
trained by applying the neural network learning algorithm, 
ELM to determine the weight of each parameter based on the 
experimental results. In this way, we set the parameters of 
Vissim simulation based on the weight matrix of the 
parameter to get the dataset of vehicle-trajectory which 
mirrors reality. 

A. Establish Traffic Model 

The road bayonet data of Shenzhen is considered, where 
we analyze the vehicle traffic statistics for several lanes, 
which contains all the vehicles information passing through 
the lane in the time range. The Shenzhen Ministry of 
Transport through carries on an automatic and systematical 
counting of the traffic flow through a set of counting devices 
on main road and motorway. As of 2018, traffic is counted 
in both directions at 5 different roads. The traffic volume 
changes with time also can be reflected by the bayonet data. 
The license plate number, time of passing the bayonet, and 
driving lane number are included in it. To eliminate data 
anomalies due to the operational errors, the data storage 
anomalies, and the missing data (duplicate data, error data, 
and incomplete data), we pre-process the data. 

Then we analyze the statistics on these data. The number 

of vehicles driving on the road at a different time is also 
distinct, which is important to the vehicle-trajectory dataset. 
For example, the traffic flow in the morning is the least, 
while around 4 pm is the most intensive traffic time. We 
divide a day into 12 timeslots, which means every two hours 
is a timeslot. We count the number of vehicles passing 
through the bayonet at each timeslot. Fig. 2 shows a traffic 
flow chart of Jingtian Road for six days. We observe that 
during these days, the traffic flow curve of Jingtian Road 
tends to be the same. According to the results of the bayonet 
data, it is obvious that the traffic flow of different levels of 
roads varies greatly. However, at each timeslot, the change 
in traffic volume still follows the rules above. Statistical 
information on the traffic flow of Southbound and 
Northbound Jingtian Road is shown in Fig. 3. The traffic 
flow of different directions of Jingtian Road tends to be the 
same. The traffic flow at different timeslots of these roads 
will be employed to construct the real-world traffic model.  

After defining the traffic flow model by analyzing the 
bayonet data, we now describe how Origin and destination 
are chosen. From the perspective of macro traffic, urban 
functional areas can be referred to regions containing 

Fig. 4 Traffic flow of Jingtian Road for six days 
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surrounding buildings with a special function. Also, urban 
functional areas are closely related to human mobility 
patterns, i.e. when people arrive or leave a place, and where 
they come from, and where they leave for. The area general 
can be divided into three functional areas, such as industrial, 
commercial, or residential, according to different functions 
and feature. As mentioned above, geographical zones’ 
surface and function type are obtained from OSM data. 
Through the analysis and modeling of urban mobile data, 
the probability for choosing an origin or destination is 
effected by three parameters, including the weight of its 
region function type, the weight of its attractive area, the 
weight of its prosperity. 

Next, we mainly consider choosing the appropriate place 
to be the origin of the vehicle. The probability for choosing 
a region as origin of vehicles is greatly influenced by the 
surface and type of the geographical region. First, the 
attractiveness of each region function type can be set to the 
default value. Additionally, the surface of each zone is also 
computed as it will be a parameter of its attractiveness. 
However, the functional type and surface of a region cannot 
fully determine its attractiveness in the topology area. For 
instance, two industrial regions of equal functional type and 
surface may not be equally attractive if one is located on a 
metropolis center and another is located on a region with 
low population density. Therefore, we define an extra 
weight that applies to the attractiveness of different region, 
which we define as prosperity weight. Prosperity place 
represents more intensive vehicle travel in this place. The 
attractiveness of an area within the simulation topology is 
determined by these three parameters, and the attractive area 
will become the origin of the simulated vehicle travel. The 
urban functional areas we divided are shown in Fig. 4. Red 
represents residential areas, green represents commercial 
areas, and purple represents industrial areas. Functional area 
information will be used as the basis for Vissim to generate 
vehicle trajectory data. The next section will explain how to 
generate Vissim simulation data. 

B. Generate Vissim Simulation Data 

Vissim is a microscopic, time-interval and driving 
behavior-based simulation tool for the traffic modeling of 
urban traffic and public transportation operations. It can 
generate visual traffic conditions online, or output various 
statistics such as travel time and queue length. As a 
microscopic traffic simulation model, Vissim includes a car-
following model [20] and a lane change model. 

The accuracy of the traffic simulation model mainly 
relies on the quality of the traffic flow model. Unlike other 
low complex models which apply the continuous speed and 
a car-following model, the car-following model used by 
Vissim is a psycho-physiological driving behavior model. 
The basic idea of the Vissim is, once the rear driver finds 
the distance between his/her vehicle and the preceding 
vehicle is less than his/her psychological (safe) distance, the 

rear driver then begins to slow down. Since the driver of the 
rear vehicle cannot accurately determine the speed of the 
preceding vehicle, the speed of the rear vehicle is then lower 
than the speed of the preceding vehicle for a timeslot. When 
the distance between the front and rear vehicles reaches 
another psychological (safe) distance, the driver of the rear 
from that area is added to the Vissim workspace. After 
vehicle begins to accelerate slowly. From this cycle, an 
iterative process of acceleration and deceleration is formed.  

Next, we would like to present how Vissim generates a 
vehicle-trajectory dataset. Firstly, we construct a road 
topology. To make our road topology closer to the reality, 
the relevant areas from the real map are considered to 
construct the road topology in the simulation. After 
determining the relevant simulating area, the road topology 
setting up the corresponding scale, the road segment is 
constructed according to the road topology. We correct the 
road topology so that it can match to the real world. 
Different simulation parameters are set to generate a large 
amount of simulation data for subsequent ELM training. Fig. 
5 is a road topology we constructed. The format of these 
parameters is shown in Table I. Input flow is the number of 
vehicles generated from the road per hour. The number of 
lanes with input flow divided by the total number of lanes is 
the input ratio. Average traffic flow is the average of the 
other lane traffic except for the input lane. We use average 

Fig. 5 Function areas 
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traffic flow as a performance metric of simulation results. 
The degree of similarity between average traffic flow and 
the bayonet traffic flow represents the fidelity of the 
simulation. To determine the weight of each parameter, we 
train many simulation data to get the combined effect of 
these parameters on the experimental results. 

In addition to the parameters mentioned above, we also 
should consider how to select the origin of a trip of vehicle. 
By analyzing the data of the real-world map, we divide the 
simulation area into different functional areas. As mentioned 
above, we manually set the attraction value of each 
functional area, and most vehicular travels often occur near 
the attractive functional area. Hence, when setting up the 
origin of the vehicle in Vissim, those attractive functional 
areas are considered.  

C. Determining Parameter Weights 

The traditional single-hidden-layer feed forward neural 
network consists of an input layer (IL), a hidden layer (HL) 
and an output layer (OL) [21]. The IL and the HL, the HL 
and the OL neurons are fully connected. Among them, the 
input layer has n neurons, corresponding to n input variables; 
the hidden layer has 1 neuron; the output layer has m 
neurons, corresponding to m output variables. The 
connection weight between the input layer and the hidden 
layer is W, while the threshold of the hidden layer neurons is 
b. To achieve better learning performance, this learning 
algorithm requires many iterative learning steps. This 
consumes high computation and results in low efficiency. 
On this basis, ELM is a new algorithm for a single hidden 
layer feedforward neural network (SLFN). The traditional 
feedforward neural network has the disadvantages of slow 
training speed, easy to fall into local minimum and is 
sensitive to the selection of learning rate. In contrast, the 
ELM algorithm randomly generates the input layer 
connection weight and the hidden layer connection weight 
and the thresholds of the hidden layer neurons. Moreover, 
there is no tuning required during the training process in 
which we only need to set the number of neurons of the 
hidden layer. Hence, a unique optimal solution can be 
obtained. Compared with the traditional training methods, 
ELM has the advantages of faster learning speed and better 
generalization performance. In particularly, ELM mainly 
has the following steps. 

⚫ It first determines the number of neurons in the 
hidden layer, and randomly sets the connection 
weight w of the input layer and the hidden layer 
and the threshold b of the hidden layer neuron. 

⚫ It then elects an infinitely differentiable function as 
the activation function of hidden layer neurons and 
then calculating the hidden layer output matrix H. 

⚫ Finally, it calculates the weight of output layer β. 

It is worth mentioning that the related research results 
[22] [23] show that many nonlinear activation functions can 
be used in ELM (such as sigmoid function, sine function, 
and compound function) as well as the non-differentiable 
functions. 

Next, we can interpret the reason for using ELM to 
construct a weight matrix of parameter as in follow. The 
volume of real-time vehicle traffic on each road changes 
over time. Therefore, we cannot use only trajectory data 
with fixed-density to describe the state of traffic flow at all 

time of the day. For example, if we test protocols without 
the mobile trajectory data of various densities, it may lead to 
overly optimistic results. Testing routing protocols may 
have different results when we simulate the protocol over 
the vehicle-trajectory data of different vehicle sparseness. 
Therefore, we should generate different trajectories of 
vehicle sparsity over different timeslots to represent more 
comprehensive regional traffic data. However, Vissim 
cannot directly generate vehicle-trajectory with a specified 
density. The Vissim simulation parameters determine the 
type of generated vehicle-trajectory data. Hence, we need to 
get the relationship between Vissim parameters and 
simulation results to avoid duplication of work. The 
generation method of vehicle-trajectory proposed herein can 
generate the movement trajectories of different vehicle 
densities for the different timeslots. This method requires 
accurate bayonet data to perform pre-modeling which 
determines the traffic density of the road for each timeslot.  
After analyzing the characteristics of Vissim, we identify 
several parameters that have great influences on simulation 
results. We apply ELM to determine the parameter weight 
matrix, which is employed to study how these parameters 
affect the simulation results. Then, the relevant parameters 
are set in the Vissim by using the generated weight matrix 
of parameter, while the trajectory data corresponding to the 
vehicle density is obtained. The trained weight matrix could 
be applied to predict the vehicle density and be used to 
generate the vehicle-trajectory dataset.  

IV. EXPERIMENT 

This section mainly includes three parts: 1) processing 
bayonet data, 2) determining the weight matrix of the 
parameter, and 3) comparing and analyzing experimental 
results. Firstly, we process the bayonet data to build a real 
traffic model. Then, a large amount of Vissim simulation 
data is used to determine the weight matrix of the parameter. 
This weight matrix of the parameter can be used to predict 
Vissim simulation results and build Vissim simulation 
models. Finally, we generate vehicle-trajectory data based 
on the real traffic model and the weight matrix of the 
parameter. We upload most of the relevant code for building 
this model to the GitHub open source website, 
https://github.com/liuyufei1119/Traffic-mobile-data.git. The 
code is mainly divided into two categories, one is the code 
we use to process the bayonet data, and the other is the code 
that runs in Matlab [24]. The second type of code includes 
code that processes the training dataset and native ELM 
code. 

A. Process Bayonet Dataset 

The vehicle bayonet data we used is the traffic 
monitoring data that is collected from local roads in 
Shenzhen such as Fulong Road, Xinzhou Road and some 
main roads of Beihuan Road. The equipment of data 
acquisition stores all the information of the vehicle through 
the bayonet during this time, including the license plate 
number, the elapsed time, the monitoring point name and 
the lane number. However, a large amount of incorrect or 
malformed data could be collected where sometimes data 
loss may occur in case of fault collection devices. The dirty 
data could have a huge impact on data processing results. 
Therefore, before analyzing the data, we should clean the 
original data, remove the dirty data and keep the correct data 
for building real traffic model. The data for each monitoring 
point is stored in a separate file, and we classify the data 



 
based on the time when the vehicle passes the monitoring 
point. For the sake of observation, the statistics of the 
number of vehicles in each road are calculated while two 
hours are counted as a timeslot. For some unidirectional 
multi-lane roads, we again classify the vehicle data in the 
timeslot according to the lane number, which gives the traffic 
volume data for each lane per timeslot. Due to the 

breakdown of the detection equipment, the erroneous vehicle 
data of March 25 is too large to be used. Thereby, we deploy 
the average traffic data for the remaining six days as the real 
traffic model of the road. Fig. 6 shows the six-day real traffic 
model of Jingtian Road. It can be seen from this figure that 
the traffic volume of the road changes relatively, with the 
maximum traffic flow, starts from 16:00 to 17:00 and the 
smallest from 4:00 to 5:00. This traffic flow curve serves as a 
model to generate vehicle-trajectories using Vissim. The 
relationship of traffic volume over time will be used as a 
real-world traffic flow model and will be one of the 
evaluation criteria for generating vehicle-trajectory datasets.  

We have a total of 9 sets of data, one of which is 
abnormal due to damage to the test equipment. Also, five of 
the remaining eight sets of data belong to highways or 
national highways, and the traffic volume of these roads is 
highly dense. Fig. 7 shows the traffic flow of the North Ring 
Road. There are also three groups of data for ordinary city 
lanes. Compared with highways, vehicles in ordinary city 
lanes are slower and have a lower traffic volume. In this 
method, urban area simulation is mainly considered, so only 
these three sets of data are used as the real traffic model. Fig. 
8 is a traffic diagram of an intersection during the simulation. 
In addition to the parameters mentioned above that have a 
greater impact on the experimental results, some parameters 
have less impact, such as the composition of the traffic flow. 
For these parameters, we generally use the default value of 
Vissim. 

B. Determine Weight Matrix of Parameters 

After getting the real traffic model, this subsection 
describes how to generate the weight matrix of Vissim 
parameter. Firstly, we generate the initial experimental data 
by applying Vissim. Different Vissim parameters are set to 
generate the experimental data, which can develop a diverse 
set of experimental data. We select two regions on Google 

Fig. 9 The effect of input flow on the results 

 

 

Fig. 10 Comparison of test results 

 

 

Fig. 8 Simulation screenshot 
 



Map as road topology maps for generating experimental 
data. Variable-control methods are used to generate raw data, 
which makes the data intuitive and clear. To generate the 
continuous experimental data, only one parameter was 
changed per experiment compared to the previous 
experiment. This continuous data helps us to make statistics, 
and it also visually shows the impact of this parameter on 
the experimental results. Fig. 9 is experimental data 
obtained by continuously changing the input flow while 
other parameters are unchanged. It can be seen that the 
average traffic volume increased as the input traffic 
increased. The input flow is linear with the average traffic 
flow when other parameters are constant within a certain 
range. In this way, we generate a lot of experimental data. 

The weight matrix of the parameter is trained by ELM 
below, and its execution environment is Matlab2014a. The 
activation function of ELM we choose the "Sigmoid" 
function. All input attributes must be normalized to [-1,1] 
before training the data with ELM. We also apply the 
number of effective lanes, input flow, input time, and input 
ratio as input data, and the average traffic volume as output 
data. For the number of hidden neurons in ELM, we 
consider the optimal value from the incremental 
experiments. The initial number of hidden neurons is set as 
20. Finally, the best results are summarized in Table II. 
When the number of hidden layer nodes is 1000, the training 
result of ELM is optimal.  

After the training of ELM, a parameter weight matrix is 
learned. Fig. 10 is the comparison of test results. ELM 
training deviation is 0.0269 where test deviation is set as 
0.0276. The weight matrix of the parameter can be used to 
predict the simulated vehicle flow of Vissim, or the value of 
each parameter according to this matrix can be derived from 
the vehicle density for the different timeslots. In this way, 
the corresponding vehicle-trajectory can be generated 
according to the real traffic model of different regions at 
different times. 

C. Experiment Comparison and Analysis 

According to the generated weight matrix of the 
parameter, we can predict the Vissim simulation results. 
Comparing the predicted results with the Vissim simulated 
results to analyze the effectiveness of the weight matrix of 
the parameter. We acquired a suitable area of Beijing on 
Google Maps to build a Vissim road topology. After 
constructing the road topology, the values of the Vissim 
simulation parameters are also required for simulation. We 
get the traffic density of the timeslot we want to simulate by 
real traffic model. Next, we will talk about how to use 
Vissim to generate a vehicle-trajectory dataset close to real 
traffic model. It is necessary to set the appropriate 
parameters for Vissim to obtain the vehicle-trajectory data 
corresponding to different vehicle density. The appropriate 
origin of vehicle travel needs to be considered before setting 
these simulation parameters. As shown in Fig. 3, we select 
the origin of the vehicle based on the divided functional 
areas. We give priority to those attractive functional areas as 
the origin of vehicle travel. According to the size of the 
simulation area, there are ten points in the simulation as the 
origin of vehicle travel. Hence, the road next to the ten most 
attractive functional areas is selected as the origin. After 
setting the origin of vehicle travel, we consider setting 
Vissim simulation parameters to carry out simulation 
experiments. 

     

Now we can determine these simulation parameters by 
applying our constructed weight matrix of parameters. 
Firstly, a simulated vehicle flow model needs to be modeled. 
Here we focus on one of the models, that is, the simulation 
temporal model. The experimental data employed to build 
this simulation model are generated by a series of 
experiments, with the following parameters. The number of 
effective lanes is set as 10. The input ratio is the ratio of the 
number of effective lanes to the total number of lanes, and 
its value is 0.233. The initial input time is set to 300, while 
the initial input flow is set to 150, reduced the input time 
from 300 to 50 with the other parameters unchanged. Then 
the weight matrix of parameters is predicted to this set of 
parameters, as shown in Table Ⅲ, this is part of the 
simulated vehicle flow model we generated. To compare the 
experimental results with the real traffic conditions, the 
traffic flow counter is placed on three main roads in the road 
topology. Two counters are placed on each road to count the 
traffic flow in two directions and record the traffic flow 
lasting one minute from 300 seconds to 360 seconds after 
the start of the simulation. In Table IV, The counter mainly 
records the number of vehicles passing through the 
monitoring points in this minute. We compare the vehicle 
flow data recorded by the counters with the real vehicle flow 
data. As shown in Fig. 11, counter number 1 and 2 represent 
traffic flow data collected by counters in different directions 
of a lane, and so on. Vehicle-trajectory data generated by 
simulation show roughly the same volume of traffic at 
monitoring points as the real data. The average traffic flow 
of these six counters is 5.17, and the average traffic flow of 
the card data is 5.65. This represents that the vehicle 

Fig. 11 Average vehicle flow contrast 
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trajectory data we generate can truly reflect the real-world 
traffic situation in the region. 

According to Fig. 2, we randomly select the traffic-flow 
density corresponding to the six timeslots of Jingtian Road. 
The traffic flow density is the average number of vehicles 
passing through the section within one minute. Table V is 
the result of our experiment comparison. If we reduce the 
amount of change in the input time in the simulated vehicle 
flow model, we can get better experimental results. 

Using our method, we can easily set the parameters of 
Vissim to get the movement trajectory datasets of a different 
time or different density. After many experiments, we found 
that the traffic flow will be unevenly distributed at the 
beginning of the simulation. Because Vissim only generates 
traffic at a fixed location, the vehicle will only move at the 
birth point if the simulation time is too short. The vehicle-
trajectory data generated by the simulation about 300s can 
have good balance. In general, this method can generate 
movement trajectory datasets with different vehicle densities 
according to different timeslot, and can also predict 
simulation results according to Vissim parameters, so this 
method has strong practicability. 

V. CONCLUSION 

The lack of vehicle-trajectory dataset hinders research in 
vehicular networks. To address this problem, we propose a 
method for generating vehicle-trajectory dataset using 
Vissim based on bayonet data. Comparing with the data of 
the clamp port, it is proved that the vehicle trajectory data 
generated by our method is authentic. An important reason 
for the authenticity of the experimental data is that the 
impact of urban functional areas on vehicle travel is taken 
into account when we set the origin point of vehicles. Our 
methods mainly include establishing real traffic model, 
generating Vissim simulation data and generating weight 
matrix of parameter. It can be employed to construct 
simulated vehicle flow model and generate vehicle-trajectory 
datasets, demonstrating the effectiveness of our approach by 
comparing it to real Vissim experimental data. In our 
approach, the vehicle uses the default method of the 
simulation tool to select the driving route, which may result 
in a vehicle with a purposeless repeating trajectory. In the 
future, we will consider adding weights to each road to let 
the vehicle choose its route, and we will consider using more 
parameters to measure the effectiveness of the generated 
vehicle-trajectory dataset. For example, we will add the 
congestion level of each lane to the standard for measuring 
the simulation results, which will make our dataset 
generation method better. Also, the traffic flow model of 
each road requires more accurate measurement data to the 
model, and it is not currently available. However, in the 
future, we intend to acquire and use such data. 
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